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Open Positions in Wuhan Math Center

The Center for Mathematical Sciences, at Huazhong University of Science and
Technology, Wuhan, China, is a mathematical research and education institution.
Our mission is to promote interactions between mathematics and other disciplines,
and to connect branches of mathematics. The Center's current research themes
include stochastic mathematics, applied/computational mathematics, core
mathematics, mathematical physics, and data science. Distinguished applicants in
all areas of mathematical sciences will be considered.

Open Positions

-« Assistant/Associate Professorships

Basic requirements:

A PhD degree in mathematical sciences or related fields, with distinguished
research credentials.

* Postdoctoral fellows

Basic requirements:

New or recent PhD graduates in mathematical sciences or related fields, with
distinguished research potential.

The compensation packages, including salary, start-up funds and housing
allowance, are highly competitive, and are commensurate with qualification and
experience.

The Center will also sponsor qualified candidates to compete for the National
Junior Endowed Professorships.

How to Apply: Applicants should send these materials to mathcenter@hust.edu.cn:

1) Acover letter;
2) A curriculum vita with a list of 3 references;
3) A research statement.

Contact Us

Email Professor Jinqgiao Duan: mathcenter@hust.edu.cn
Web Page: mathcenter.hust.edu.cn
Ads in MathJobs https://www. mathjobs. org/jobs/list/ 16913

Center for Mathematical Sciences
Huazhong University of Science & Technology
1037 Luoyu Road, Wuhan, 430074, China

WechatQR Code
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Mid-South Algebraic Topology
and Geometry Workshop (online)

n_;”:"

hosted by "‘.“\ ) FrAHLLT P co-organized by X

Center for Mathematical Sciences

Website: https://msatg.github.io/msatg2022/

East Lake Mathematics Colloquium
André Henriques (University of Oxford)
Charles Rezk (University of lllinois at Urbana-Champaign)

Confirmed Speakers

David Gepner (John Hopkins University) Daniel Murfet (University of Melbourne)

Xing Gu (Westlake Univefsity) Yun Shi (Brandeis University)

Xiaowen Hu (Sun Yat-Sen University) Nathaniel Stapleton (University of Kentucky)
HanaJia Kong (Institute for Advanced Study) Guozhen Wang (Fudan University)

Chunyr Li (University of Warwick) Chenglong Yu (Tsinghua University)
Wen-Wei Li (Peking-University) Ningchuan Zhang (University of Pennsylvania)
Weinan Lin (Peking University) Lutian Zhao (University of Maryland)

Kiran Luecke (University of California, Berkeley)  Yu Zhao ( University of Tokyo )

Contact

Zhen Huan 2 Hao Sun

Huazhong University of Science and Technology y South China University of Technology
1037 Luoyu Road, Wuhan, China e 5 381 Wushan St, Guangzhou, China
Email: 2019010151@hust.edu.cn thems ‘ Email: hsun71275@scut.edu.cn
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1. 2022 4 9 FEEEER KT KRR G B RV AR PO PR (Higher
symplectic stacks in differential geometry) 5. 10 H7EE = 54 0H % B Gk (=

D JamE) Ik

SEUREM: Higher symplectic stacks in differential geometry
BREIN: KR HE EEEFERKRF

BFHE: 20224210 H 6 H-10 H 9 H
Zoom ID: 889 1241 3953

Passcode: 330378

WEZHE:
Schedule Outline
2022 £ 10 H 6 H ® Kan simplicial objects with Grothendieck
3:00-3:50 pm: Lecture pretopologies,
4:00-4:30 pm: Discussion ® Lie n-groupoids;
® Lie 2-groups as categorification of Lie groups,
2022410 H 7 H ,g I.) g. SToup
® Morita equivalence: via a) hypercovers, b) weak
3:00-3:50 pm: Lecture ) ) )
) ) equivalences, c) bibundles (sometimes called
4:00-4:30 pm: Discussion ) o
Hilsum-Skandalis bibundles);
2022 £ 10 H 8 H ® NQ manifolds (a sort of d.g. manifolds),
3:00-3:50 pm: Lecture ® Lie n-algebroids (as tangent complex of Lie
4:00-4:30 pm: Discussion n-groupoids);
® m-shifted symplectic Lie n-groupoids, with
example of BG (or Lie group) together with several
2022410 H9 H , p, d(l fg 1p)'i et
interesting models of symplectic forms, s ectic
3:00-3:50 pm: Lecture ) s ) y p o ymp
. . Morita equivalence, .M. (infinitesimal
4:00-4:30 pm: Discussion
multiplicative) forms on Lie n-algebroids, which
provide models of symplectic forms.




BBEES o KSCAIHT

> AN KR, EEEERRFASEEL, BEARIL s e s e i Gl
I3 A3FE. 1999 FELEILFURAIRAF A 22 AL, 2004 SEFEININ R A8 7E A 73153k
B2, H IR R N B Toe e il 425, 2013 SRR [ AR ER R A 3RS
LA . I Poisson JUA[, ZEEEARSE Ao JUIET T 9C . 7E Duke Math. J.,
Compos. Math., Adv. Math., JEMS, Math. Ann., Trans. Amer. Math. Soc., Comm.
Math. Phys., IMRN, Ann. Inst. Fourier (Grenoble), Z54%& FRFE KR 30 4
Bt

2.2022 4 7-8 3 ESRRF ML RS2 E Y HAERAEE A PO R (R ge T HERT
wePk A G N LD 2 HE R .

WEA: BRZHENGE U R EEYS TP RN

WREHT: £4EE, Professor Weizhen Wang

WRERTE: 7 H: 25, 27, 29; 8 A: 1, 3, 5, 8, 10; BE: 6:30-9:30 pm

https://meeting.tencent.com/dm/IH4JcdI2Z7uX

BRI 537-5597-9896 HFD: 123456

WRERHE:

> SRR HERT RORES, s, A E B B . BB AU T A SR PR A
DA% sk F SO RS W HEIRT (1 — A — Mt 73 RS BT 7E 2 Fh 25l vt
MM, AEIEESE, Renl s RS N . WA KT 5op 4t
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FAMEG

wEMH: Online algorithms for data representation
wEAN: R ERIITERS)

BFfE]: 2022.08.26, T4 14:00-15:00 (JLIEEFE])
MR AP RIEOR S B R A0 813

MEMHE:

>

In the most basic version of online learning, the forecaster gets access one after
another to a sequence z,,z,,... of elements. At each time =1, 2, ..., before z, is
revealed, the forecaster gives his guess of value of z, on the basis of the previous
observations and other available side information. We considered the problem of
online clustering and sequential learning of principal curves. For the former, we
introduced a new and adaptive online clustering algorithm relying on a
quasi-Bayesian approach, with a dynamic estimation of the number of clusters. We
proved both regret bounds for the algorithm and gave a corresponding
RIMCMC-flavored implementation. For the latter, inspired also by the
quasi-Bayesian idea, we gave an algorithm relying on the mode of Gibbs-posterior

and proved the sublinear regret bound for it.

HZURIERTAN A, UM K S AR R 2 D
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» The 7th International Conference on Random Dynamical Systems, Hanoi,21-25,

June.

PR IOAT: BRAG, 9KE, WIS, &b, R, Fdl, w5y, Bleth.

> HEFOINA 2022 46 H 27 H-7 3 1 HS I 42 }Ea' SPA £l (BENLLRE K
H: W ] Stochastic Processes and their Applications) , #f 42 i SPA 2 H [E FR1H
BRI T, R T RENLE R A H N ) A B 2 1 R A I B 2R 2 18
PR IR, AR DRI B Brax B30 2847

> Hestun Az 7 H 30 H-8 H 5 HE JUs AR ABEER K (ICCMD, K
AR AT

NESE MATHEMATICIANS

o F i %
H INTERNATIONAL CONGRESS I CC
2022

=SiNadiE: 202247831H=885H
SNHES: ST MRS SIE

iR 2022£FE78B10H 22:008811!

BiEEHE

2022.7.30
s =VGEMEERI
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SSCE R ETE R B EL

2022.7.31
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Academic Achievement
FARBR
HEHLT—I HERRLE

1. Extracting stochastic governing laws by non-local Kramers—Moyal formulae

——Yubin Lu, Yang Li, Jinqgiao Duan
Philosophical Transactions of the Royal Society A
https://doi.org/10.1098/rsta.2021.0195

» With the rapid development of computational techniques and scientific tools, great
progress of data-driven analysis has been made to extract governing laws of
dynamical systems from data. Despite the wide occurrences of non-Gaussian
fluctuations, the effective data-driven methods to identify stochastic differential
equations with non-Gaussian Lévy noise are relatively few so far. In this work, we
propose a data-driven approach to extract stochastic governing laws with both
(Gaussian) Brownian motion and (non-Gaussian) Lévy motion, from short bursts of
simulation data. Specifically, we use the normalizing flows technology to estimate
the transition probability density function (solution of non-local Fokker—Planck
equations) from data, and then substitute it into the recently proposed non-local
Kramers—Moyal formulae to approximate Lévy jump measure, drift coefficient and
diffusion coefficient. We demonstrate that this approach can learn the stochastic
differential equation with Lévy motion. We present examples with one- and
two-dimensional decoupled and coupled systems to illustrate our method. This
approach will become an effective tool for discovering stochastic governing laws and

understanding complex dynamical behaviours.

2. Analysis of multiscale methods for stochastic dynamical systems driven by
a-stable processes
——Yanjie Zhang, Xiao Wang, Zibo Wang, Jinqiao Duan
Applied Mathematics Letters
https://doi.org/10.1016/j.am1.2022.108462

» In this paper, we firstly analyze the strong convergence of projective integration

method for multiscale stochastic dynamical systems driven by a-stable processes,
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which is used to estimate the effect that the fast components have on slow ones. Then
we obtain the p th moment error bounds between the solution of slow component
produced by projective integration method and the solution of effective system with
p € (). Finally, we corroborate our analytical results through a specific numerical

example.

3. Homogenization of nonlocal partial differential equations related to stochastic
differential equations with Lévy noise
——Qiao Huang, Jingiao Duan, Renming Song
Bernoulli
https://doi.org/10.3150/21-BEJ1365

» We study the “periodic homogenization” for a class of nonlocal partial differential
equations of parabolic-type with rapidly oscillating coefficients, related to stochastic
differential equations driven by multiplicative isotropic a-stable Lévy noise (1<a<2)
which is nonlinear in the noise component. Our homogenization method is
probabilistic. It turns out that, under suitable regularity assumptions, the limit of the
solutions satisfies a nonlocal partial differential equation with constant coefficients,

which are associated to a symmetric a-stable Lévy process.

4. Bursting hierarchy in an adaptive exponential integrate-and-fire network
synchronization
——Congping Lin, Xiaoyue Wu, Yiwei Zhang
Biological Cybernetics
https://doi.org/10.1007/s00422-022-00942-9

» Neuronal network synchronization has received wide interest. In the present
manuscript, we study the influence of initial membrane potentials together with
network topology on bursting synchronization, in particular the sequential order of
stabilized bursting among neurons. We find a hierarchical phenomenon on their
bursting order. With a focus on situations where network coupling advances spiking
times of neurons, we grade neurons into different layers. Together with the neuronal
network structure, we construct directed graphs to indicate bursting propagation

between different layers. More explicitly, neurons in upper layers burst earlier than

N7 B
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those in lower layers. More interestingly, we find that among the same layer, bursting
order of neurons is mainly associated with the number of neurons they connected to
the upper layer; more stimuli lead to earlier bursting. Receiving eftectively the same
stimuli from the upper layer, we observe neurons with fewer connections would burst

earlier.

5. Hochschild cohomology of dg manifolds associated to integrable distributions
——Zhuo Chen, Maosong Xiang, Ping Xu
Communications in Mathematical Physics
https://doi.org/10.1007/s00220-022-04473-z

» For the field K=R or C, and an integrable distribution Fc7, ® K on a
smooth manifold M, we study the Hochschild cohomology of the dg manifold
(F [1],d ~) and establish a canonical isomorphism with the Hochschild cohomology
of the algebra of functions on leaf space in terms of transversal polydifferential
operators of F. In particular, for the dg manifold (7('[1],0) associated with a
complex manifold X, we prove that its Hochschild cohomology is canonically
isomorphic to the Hochschild cohomology HH*(X) of the complex manifold X. As

an application, we show that the Duflo-Kontsevich type theorem for the dg manifold

(Ty'[1],0) implies the Duflo-Kontsevich theorem for complex manifolds.




prEE=x o skscolE I

Qualifying Exams

BRI

Probability Theory Qualifying Exam

Center for Mathematical Sciences Huazhong University of Science and Technology
mathcenter.hust.edu.cn
Fall 2022

Note: This exam covers the book “Probability-Second Edition”, by A.N.Shiryaev.
Total: 100 points (10 points for each problem).

1. (10 points) Let the random variables 7,,...,7, satisfy E(7, |771,...,77k_1)=0.
Show that the sequence &=(&,),,., with & =n, and

k
é:kﬂ = 277[+1f;(7715-'-977,‘) 9
i=1

where f, are given functions, is a martingale.

2. (10 points) Prove that:
(a) liminf 4, = limsup 4,
(b) limsup 4, Nliminf B, c limsup(4, (1B,) < limsup 4, (\limsup B, .
(c)If A T4 or A 4 A4, then liminf 4, =limsup 4, .

3. (10 points) Let (Q,F,P) be a probability space and A an algebra of subsets
of Q such that o(A)=F. Using the principle of appropriate sets, prove that
forevery £>0 and Be F thereisaset Ae. A such that

P(AAB)<¢.

4. (10 points) Let & and 7 be random variables on (Q2,F), and A4 e F . Then

the function
s(w)=¢c(o)-1,+n(w)l;

is also a random variable.

5. (10 points) Let (&,),., have the property that Z;E |§n|p<oo for some p>0.
Show that & — 0 (P-a.s.).

6. (10 points)

(a) Write the definition of the conditional expectation of a negative random
variable & with respect to the o -algebra /¢

(b) Let &,¢&,,... be independent identically distributed random variables with
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10.

E|&| <00 . Show that

E(S

S8 )= 5, (a.s.),
n

where S =& +..+¢& .
(10 points) Using Fatou’s lemma, show that
P(lim4,) <limlimP(4 ), P(lim4,)>limlimP(4,)

(10 points) Suppose that the random elements (X,Y) are such that there is a
regular distribution P,(B) =P(Y € B|X =x). Show that if E|g(X,Y)|<eo then
El:g(X, Y)|X = x:l = Ig(x,y)Px (dy) (Py-as.)

(10 points)

(a) Write the Borel-Cantelli Lemma.
(b) Prove the Borel-Cantelli Lemma.

(10 points) Let (&,),., be a sequence of independent identically distributed
random variables. Show that

E|§|<o e ZP{|‘§1|>‘9'”}<°°
n=1

5

>g}<oo =0 (P-as.).
n

@iP{i

n




BBEES o KSCAIHT

Exam for Numerical Analysis
Center for Mathematical Sciences Huazhong University of Science and Technology

Note: This exam covers J.Stoer & R.Bulirsch: Introduction to Numerical Analysis

Chapters 3-7. Total 100 points (20 points for each problem).

1.

If feC’ [a,b] then there exists an x € (a,b) such that the error of the trapezoidal

rule is expressed as follows:

Sb-aXf@+ fO)- [ f0d=—(b-a)' ().

Derive this result from the error formula (which is in (2.1.4.1)) by showing that
f"(&(x)) is continuous in x.

Let Ax=b be given with

0.780 0.563 0.217

A= and b= .

0913 0.659 0.254

The exact solution is x” = (1,—1) . Further, let two approximate solutions
x| =(0.999,-1.001)x) =(0.341,-0.087)

be given.
(a) Compute the residuals r(x,), r(x,). Does the more accurate solution have a

smaller residual?

(b) Determine the exact inverse 4~ of 4 and cond(4) with respect to the maximum
norm.
(c) Express Xx—x=Ax using r(X), the residual for x.

Give an iterative method for computing Yfa , a>0, which converges locally in
second order. (The method may only use the four fundamental arithmetic operations.)

For u, v, w, zeR", n>2, let
9 b b 9 b

A=uv" +wz".
(a) With A, A4, the eigenvalues of

G v'u Ve
Zu el
show that A4 has the eigenvalues A4, 4, ,0.

(b) How many eigenvectors and principal vectors can A4 have? What types of Jordan
normal form J of A are possible? Determine J in particular for 4=0.

Let 7n(x;h) be the approximate solution furnished by Euler’s method for the
initial-value problem
V'=y,y(0)=1
(a) One has 7(x;h)=(1+h)"".
(b) Show that 7(x;4) has the expansion




(N

ENE LTS § o
%} Center for Mathematical Sciences

n(x;h)= i’]:(x)hi with 7,(x)=e",

i=0

which converges for |h| <I;the 7,(x) here are analytic functions independent of h.
(c) Determine 7,(x) for i=1,2,3.
(d) The 7,(x), i =1, are the solutions of the initial-value problems

fupzw»i%ﬁ%%

7,(0)=0.
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Popular Mathematics
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From determining the compound interest on borrowed money to gauging chances at the
roulette wheel in Monte Carlo, Stefanie Reichert explains that there’s no way around

FEuler’s number.

Even outside school or university, we cannot escape Euler’s number. Jacob Bernoulli is
credited with discovering e while thinking about matters of continuous compound interest
in 1683. He realized that when the compounding period became smaller and smaller and
more and more periods were considered, the amount of money would converge towards a
limit that was later found to be one of the representations of e. Since then, use of Euler’s
number has become more widespread and now it appears in many branches of science

and in everyday life.

For example, Euler’s number shows up in probability theory. Imagine you are in Monte
Carlo enjoying a few games of roulette, which is a Bernoulli trial process. If you place a
bet on a single number, your chances are 1/37 to win that game. For 37 games, the
probability that you will lose every single time is — maybe surprisingly — close to 1/e.
Or, pretend you are at the theatre, where you — along with everybody else — leave your
coat in the cloak room, which has one hook per guest, and receive a number. However,
your coat is placed on a random hook. The probability that none of the coats are on the
correct hook for a large number of guests approaches, again, 1/e. The number of practical

examples is endless.

The history of e reads like the Who’s Who of mathematics and physics. It all started with



https://www.nature.com/articles/s41567-019-0655-9#author-information
https://www.nature.com/articles/s41567-019-0655-9#author-information
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the discovery of the logarithm by John Napier: Euler’s number is hidden deep in the
many pages of the appendix tabulating natural logarithms in his 1614 work Mirifici
Logarithmorum Canonis Descriptio. Later, when Bernoulli studied the case of continuous
compound interest, he concluded that the limit must converge to a number between 2 and
3. As it turned out, this limit equals Euler’s number (less commonly known as Napier’s

constant), and Bernoulli came up with its first approximation.

It took a while before scholars connected the dots and realized that the base of the
logarithm introduced by Napier and the limit discovered by Bernoulli were closely
related and settled on a common notation. Gottfried Leibniz referred to what is now
known as Euler’s number as b in discussions with Christiaan Huygens, whereas others
such as Jean-Baptiste le Rond d’Alembert preferred to use the notation ¢ instead. This
dispute was eventually settled when the Swiss mathematician Leonhard Euler (pictured)
used the letter e in an early essay on the firing of cannons — and his choice became

increasingly popular.

Similar to m, Euler’s number e = 2.71828 is irrational and also transcendental —meaning
it doesn’t form a solution of a non-zero polynomial equation with integer coefficients.
Whether e (or ) is a normal number remains to be determined. A normal number consists
of a sequence of digits in which single digits between 0 and 9 occur with a frequency of
10%, whereas each pair of digits between 00 and 99 occurs with a frequency of 1%, and

SO on.

Euler is credited with a whole bunch of constants besides e, so one should be careful not
to mix Euler’s number up with Euler’s constant, also called the Euler - Mascheroni
constant, y =~ 0.57721, defined as the limit of the difference between the harmonic series
and the natural logarithm. The Euler—Mascheroni constant appears, for example, in the
Bessel function of the second kind, and has not been proven to be irrational or
transcendental. Another tricky case are Euler numbers (also known as zig or secant
numbers), referring to the number of odd alternating permutations in expressions for the

secant and hyperbolic secant (https://go.nature.com/2N0G3tc). To complicate things

further, at least three other mathematical terminologies are in use denoting the Euler
number of a finite complex, Euler primes or the Euler characteristics, a topological

invariant. And in fluid dynamics, the Euler number characterizes the energy loss in a
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flow.

We have all encountered Euler’s number in more ways than one — from natural
logarithms to the definition of the exponential function, which relies on the series
expansion of e discovered by Euler himself in 1748. The constant e appears practically
everywhere in science: popping up in the definition of the standard normal distribution;
allowing us to decompose a time-dependent signal into its frequencies via Fourier
transformation; telling us how to calculate the half-life of radioactive elements; playing a
crucial role in the growth of bacteria; and governing temperature-activated chemical

reactions.

e A [=] )5 [r]e

7] [w[o]a < [¥[= ]

Not for nothing, e counts among the most important constants in mathematics and

physics, along with 0, 1, 7 and & that all show up in Euler’s identity €™ + 1 = 0. It is truly

a constant in everyone’s life.
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Fields of joy
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The announcement of the 2018 Fields Medal winners, made last month at the opening of
the International Congress of Mathematicians held in Rio de Janeiro, Brazil, was greeted

with widespread acclaim well beyond the mathematics community.

Of the four winners, the work of Alessio Figalli on optimal transport, which seeks the
most efficient way to distribute goods on a network, is probably the most straightforward
to connect to the real world. The recognized contributions of the other three awardees,
Caucher Birkar, Peter Scholze and Akshay Venkatesh, are on more abstract topics
concerning algebraic varieties, p-adic fields and number theory, respectively — humbling

subjects even for the most theoretically inclined of physicists.

Although often referred to as the Nobel Prize of mathematics, the Fields Medal is in fact
very different in terms of its procedures, criteria, remuneration and much else. Notably,
the Nobel is typically given to senior figures, often decades after the contribution being
honoured. By contrast, Fields medallists must all be under 40, an age at which, in most

sciences, a promising career would just be taking off.

S ‘ 16 \'f


https://www.nature.com/articles/s41567-018-0289-3
https://www.nature.com/articles/s41567-018-0289-3

BREES o RKLEUS

Indeed, the most famous instruction left by the prize’s main proponent, John Charles
Fields, was that the awards should be both “in recognition of work already done” and “an

encouragement for further achievement”.

So let us celebrate the work of these brilliant young mathematicians. And let us

encourage them to further achievements that will doubtless spill into physics as well.
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Mathematics, the queen of sciences
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On 5 July 2022, the International Mathematical Union (IMU), an international
non-governmental and non-profit scientific organization, announced the awardees of
some of the most prestigious and important prizes in mathematics. All of these awards
represent important scientific contributions that substantially move the field of
mathematics — and science as a whole — forward. Some of the awards from this year
are also particularly noteworthy for the computational and computer science

communities.

The Fields Medal, often described as the Nobel Prize of mathematics, recognizes
outstanding mathematical achievements and is awarded to mathematicians under 40 years

of age. This year, there were four medalists in total, among the awardees, Hugo

Duminil-Copin, a professor at the Institute of Advanced Scientific Studies in France and
at the University of Geneva in Switzerland, works on the intersection between
mathematics and physics. One of his most notable contributions is the development of
mathematical models that can be used to explore a fundamental physical phenomenon
known as phase transition: as an example, when ice melts, a phase change occurs and
solid transforms into liquid water. In their work, Duminil-Copin and colleagues extended
the well-understood two-dimensional Ising model to higher dimensions; notably, this
extension resolved the continuity problem of phase transition in three-dimensional Ising

models.

The IMU Abacus Medal, previously known as the Rolf Nevanlinna Prize, is awarded to
theoretical computer scientists under 40 years of age for outstanding contributions in the
mathematical aspects of information sciences, including computer science, scientific
computing and numerical analysis. Notable winners of the previous Rolf Nevanlinna
Prize include, for instance, Leslie Valiant, for his many contributions to theoretical
computer science; Peter Shor, for his work on quantum computation, and more

specifically, for deriving Shor’s algorithm; and Jon Kleinberg, for his contributions to the
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mathematical theory of the global information environment, including small-world
networks and the theory underlying search engines. This year, the Abacus Medal goes to
Mark Braverman, a professor of computer science at Princeton University, for bringing
mathematical rigor — from information theory — into communication complexity, an
area that considers scenarios where there are multiple parties performing computation.
Braverman’s work focuses on developing techniques for proving precise estimates on the
amount of communication needed between multiple parties, with the goal of minimizing
the amount of information that they need to share to complete their task: in other words,
how can the task be accomplished with each party learning as little as possible from each
other? Practically, this has implications on various real-world settings that depend on
interactive communication, such as information security, data compression, and the

design of streaming algorithms.

Another notable awardee for the computational science community is Elliott Lieb, a
professor of mathematics and Higgins professor of physics at Princeton University, who
is the recipient of this year’s Carl Friedrich Gauss Prize. This prize is awarded for
outstanding mathematical contributions that have found important applications outside of
mathematics; in Lieb’s case, his contributions have had extraordinary breadth, with
implications in fields such as quantum mechanics, quantum information theory, and
computational chemistry. Among many achievements, Lieb and colleagues solved the
two-dimensional Ising model; proved the strong subadditivity of quantum entropy, which
is a basic theorem in quantum information theory; and provided various proofs of
thermodynamic functions, including in the homogenous electron gas, which serves as the
basis of many functionals in density functional theory. Lieb’s work on determining
various inequalities has contributed to the calibration of density functionals, the
understanding of the stability of matter, and the establishment of constants in functional

analysis to assess nonlinear quantum systems.

It is certainly not surprising that the concepts and advances in the field of mathematics
are widely important to other areas of research, including computational science. Carl
Friedrich Gauss, the famous mathematician after which one of the prizes is named, is said
to have stated that mathematics is ‘the queen of sciences’. We could not agree more with

such a statement.
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Machine learning to guide mathematicians
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By Fernando Chirigati
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Conjectures, which are propositions that are suspected to be true (often because of a
consistent observed pattern) but that no one has been able to prove or refute, are
incredibly important within the field of mathematics. Since the advent of computers,
mathematicians have had a powerful technology at their disposal, which has helped to
accelerate the investigation of conjectures. For instance, computational techniques such
as machine learning (ML) have been used to directly and automatically generate
conjectures. However, mathematicians must then go over the multiple auto-generated
conjectures and try to further understand and prove them. What if ML could be used to
guide the intuition of an expert mathematician, instead of taking the center stage of this
process? In a recent work, Alex Davies, Pushmeet Kohli and colleagues proposed a
framework to do exactly that: the mathematician has a hypothesis based on her expertise,
and the framework helps her to verify and interpret such a hypothesis, guiding her in

identifying conjecture candidates that may be worth pursuing.

The framework works as follows. The mathematician has a hypothesis that two
mathematical objects, X(z) and Y(z), are related. The first step is to generate a dataset
of X(z) and Y(z) pairs. Then, in the next step, supervised learning is used to train a

function f that predicts Y(z) using X(z) as input: f , in this case, represents the
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relationship between these objects, meaning, the hypothesis raised by the mathematician.
A key advantage here is that, by using supervised learning, a broad set of nonlinear
functions could be learned. If the accuracy obtained with f is statistically above chance,
which indicates that the relationship might indeed be true, attribution techniques are used
to better interpret the relationship. This makes it possible to find which features are more
pertinent for the predictions of Y(z), and therefore potentially more relevant to further
investigate. This entire process, from refining the hypothesis and generating data to
training the model and interpreting the results, can be iteratively repeated until the
mathematician reaches a viable conjecture using the learned relationship and the most
relevant features. Note that, in this work, the mathematician takes the center stage and

drives the framework by using her expertise to refine the results as appropriate.

Notably, the authors used this framework in two distinct areas of mathematics (knot
theory and combinatorial representation theory), identifying previously unknown
relationships in these areas. But the potential implications of their approach go beyond
these two areas: the proposed framework has the capability to put ML in the vanguard of
mathematical research, but by guiding, and not replacing, the unique expertise of our

mathematicians.
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