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News i

5 H: Stochastic regularization method for linear ill-posed problems
g N B8EER BT

A H: 2024 451 A3 H (BI=)

A TE . 10:00-11:00
a2 354-175-615

ECA=E RS

Due to rapid growth of data sizes in practical applications, in recent years stochastic
optimization methods have received tremendous attention and proved to be efficient in
various applications of science and technology including in particular the machine learning
applications. In this talk we propose randomized Kaczmarz method, stochastic gradient
descent method and stochastic mirror descent method for solving linear ill-posed inverse
problems. The convergence and convergence rate are provided. Several numerical examples

validate the efficiency of the proposed algorithms.

L S=UNIFIE
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ik H: Deep Learning Methods for Parameter Identification in Elliptic Equations:
model and error analysis

et N ERA DU

s 2024451 H 16 H (EHI—)

W WA 10:00-12:00

bt IR 813

PR 639-783-215

et i

In this presentation, we introduce a deep learning method for parameter identification in
elliptic equations. We begin by establishing novel stability estimates that serve as the guiding
principle for proposing appropriate loss functions. We propose a model that leverage
Tikhonov regularization and physics-informed neural networks (PINNs). Furthermore, we
conduct a rigorous analysis for convergence rates of reconstructions which provide valuable a
priori insights for the choice of regularization parameters, as well as the size of the neural
networks. Finally, we demonstrate the remarkable stability of the method with respect to the

data noise through various numerical experiments.

- SEPNITPIE

> RO ORGSRl 0% BT, NGES S RERANA BEEE .
FENFYLEEE ) B R B8 7T BT ACM Transaction on Probabilistic Machine
Learning %2z, 11 [E B Gt 22 oW La% 22 21 0 2 B B S A 58 AR AR AE B35 Ann.
Stat.. J. Amer. Statist. Assoc.. Statist. Sci.. SIAM J. Math. Anal.. SIAM J. Control Optim..
SIAM J. Numer. Anal.. SIAM J. Sci. Comput.. Appl. Comput. Harmon. Anal.. Inverse
Probl.. IEEE Trans. Inf. Theory. IEEE Trans. Signal Process.. J. Mach. Learn. Res..
ICML. NeurlPS. AAAI IR .
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Detecting the most probable transition pathway based on optimal

control theory

M B R A O BB M R T AR Pl AR BT <6 A R A i P 538 0@ A 4 =X
AR EME SR ARLE G, Wit 7 — P BEHL3) /1 R G oK v] BRIE % B A2 1 72
I ERBE R S8 Maier-Stein 6% [ N RGANE FRW)-IFIF D) -THFAIY) (NPZ) R4t
=ANBENLEN ) R G EERAE TAZOTEE, FEHET T SRRSO S A SR B TV A R
SO TAEE BT i IR REN LI BN T B R KRG HT IR « AR UK RAE AR
Ti| Applied Mathematical Modelling, 635 —{F3& PRI R ZH T o0 A R
Fo

MRER

AN RAT (RIS ) SR RGBT PR AN, 2 HRAGHE
RO TR . Bk, KNS REWASS Z B KT RERE R A e — A
HE PR R BRI B A2 AT AU ORI Onsager-Machlup 1 FZ B IR /S
fH o RS R RT BE AT AS 450 1) A 7 1) il B 7 3 R D fy s PR e I P ) 1 il R R e
) 1) R ) — P R0 7 R T I PR R L S OB R R, (H B TE A4 R g R A BhR
Y, BRI TARRA R SRR SROEEBAAZEG, ARCRIE T m4EREnLsh 1 &4
PRI # A2

FEMANE
e — MR TR 2 ) A FR IR GE T (Method of Successive Approaximation)
TV

1: Input: &° 8, x,;
2: Iterations: for k=0 to K, do;
3: build neural network for controller 8,

4: forward solve i =V H (.2 ', 0F) = f(r.x¥ .0F), x!" = x, with second-order Runge-Kutta;
5: backward solve " = -V _H (r.x"™.p".6%), 5 =—V, ®(x") with second-order Runge-Kutta;
6: compute the loss function L =—H;

7: update 6% to 057" = argmax,eg 7 (1, X7, P70, X7, PP,

8: train the network for 8¢ according to back propagation gradient decent;

9: after K iterations, the optimal solution is obtained when the loss function converges.
L0: Output: x7, g}, 8 .

ERFIEAEIRACK A Hamilton 1EWJTFERE, SR W Jekg- Bt id. IR SKAR X [F]
S SR ARAERE AR & py o RIS RESL— TR I Z R AL (MLP) SRIZRE | m o) o
VR SR AR I B J5 — R KD BRI L B BT 22 2% S0 H RIRAE IE S5 (¥ I 20
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Hpp HEZH, LR EBIIBIEERIEEER WS XFRIAR KR 2 %A W
P S NSRBI B H AR R, TR A A ) R IR Dy A ] )

Z 5B el & L) —4E0E R Gk G2 FE R ATAT M, IR S5 R PR
SERHAT RS, DA DR FE B Sl o ARG 1% 07158 FH T 4k Maier-Stein {6 %% R4t
LR B ASAS Z 8] f K AT RERIIE M B8 AT . B Ja R TV N T — A = 4E 1S 74 -1
Y- shY) (NPZ) R4, MU FE TR — Lo A 28 2 I 5 ) LA

For I f5e R AT e (R BR AR T TN BE AL BN /12 RGRPIRA TR R BB . AT
W Ot 7 —Fh o5 R EUE SR il s R AT RE AT RS B8 12, fEM/ME Onsager-Machlup
YERZ e 5N, A8 S 05 i 3 v i) P ey BV g AR KA SR BEAN R 28 X 2% 7 7%

1o HEFE:
https://www.sciencedirect.com/science/article/pii/S0307904X23005607#se0080
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Early warning indicators via latent stochastic dynamical systems

P RIBEOR SR T Bee M e BB T A& 1 —FlogT 07 i A7 TR 5% 1) S 3 1A
A SRR YERUE T W E B 57 o Gl B A4 I R B A IR AR b, R AE B
Tt AR R AR, T T RE RIS T . MRS CRERAE SR
JIHI Chaos, WICH—FE N APRIER A H A O A RO

BRE R
FEVFZ DS RN A, G BARREM TRE A FEtE, IR 2% R gl

YL LI H e RAR BN A A I PUE Fa bR 2 R EL 2L

HRANE
TBAESN I R G UEAS 5 W TARRAR T I 3 2D IR

=—— ' Directed |
== —— Anisotropic Early Warning
 Diffusion Map | Indicators

i ; ; Neural () S
Dimension Reduction -
D3ta :
PESBIOReeINIO — | LatentStochastic
Latent Space :
Latent Space Dynamical Systems
EEG Data Scdetig. ,

dz(t) = pe(z)dt + ne(z)dB,

AR AR R AN AERELB) 71 R G, SR = P72 & /5 5 (Onsager-Machlup
fEbn BEARRSTRAR B RS ML R TR HR ) o NI AP T5 7%, BT 70N 524 L B A i 8
R SERE S . SRR, IXFP AT DA RO AT B IR A Fe 4 IR i e 57 e RS
XAITIRIE R LL B bR R 2% s e 18] Fr 41

FFRE X

SR 2B P 00 o 0 R0 R U B O EE . RV s ) AR S AR R AT T,
FA IEE RS FRAE RS T P AR KA o R AR e R A 2 IR 46 (1) B8 I 7E T
DN ) R AT SR 7 Th R PR DGR FH o RV AE AR AT CEBE AL 1 R A E B,
FH =AM TUE(E S, B Onsager-Machlup 845 FEAR BRI R Iabr. X
SEAR AR B 1O R AE R TS R R g AN AER M . A, MRGERE T S X L
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F

1o CHEFE:
https://pubs.aip.org/aip/cha/article/34/3/031101/3268416/Early-warning-indicators-via-latent-

stochastic
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1-3 ARFRX:

[1] L Feng, T Gao, W Xiao, J Duan. Early warning indicators via latent stochastic dynamical
systems[J]. Chaos: An Interdisciplinary Journal of Nonlinear Science, 2024, 34(3).

[2] J Chen, T Gao, Y Li, J Duan. Detecting the most probable transition pathway based on
optimal control theory[J]. Applied Mathematical Modelling, 2024, 127: 217-236.

[3] T Wang, X Wang, Y Shi, W Xin, Z Jiang, T Gao, J Duan. Euler-Maruyama Method Based
Channel Prediction: An LDE-Net Implementation and Field Evaluation[J]. IEEE
Transactions on Vehicular Technology, 2024.

[4] L Yang, T Gao, W Wei, M Dai, C Fang, J] Duan. Multi-task meta label correction for time
series prediction[J]. Pattern Recognition, 2024: 110319.

[5] J Guo, T Gao, P Zhang, J Han, J Duan. Deep reinforcement learning in finite-horizon to
explore the most probable transition pathway[J]. Physica D: Nonlinear Phenomena, 2024,
458: 133955.

BB

Fourier neural operator based fluid-structure interaction for predicting
the vesicle dynamics
——W Xiao, T Gao, K Liu, ] Duan, M Zhao
Accepted by Physica D: Nonlinear Phenomena
SEH T AT I 2 B R B R A R AR A, T e RO FST R, Hrp

e T BR 22 73 73 A [ A SR fige o 5 8 B 2 SR o A AR R, A IR NG Sk FE AN ]

IS#4aEN, FHREAT 7B BRSO 2 b A S BB T SRR

WETAR L

Action Functional as Early Warning Indicator in the Space of Probability Measures
——P Zhang, T Gao, J Guo, J Duan

https://arxiv.org/abs/2403.10405
FIH Schordigner HrEL R 7T 1 2 T1EHZ B B TE SR bR, H7E Morris-Lecar #5281
HLSEHI R /R 2& B B EEAT T M AL
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PREERT TR AR LM Jeans ANEaE . HRTAE—4ER 00 T 285 06 R IRWIME FHF 7R
Jeans AFEE M) —FRRIAL I IR BRI R . BARRIR TN TR, (H2 S EE
O A ) AR B s, WA . HElA Lo 3, A 5E Oz ) S

a8

o

> MREERE
PN X 97 L S A A I SR8 S B R, A& ShIE B AR FRIA A LT T8 S B
ARER, T AR

> RIS

H AT AR E B il 20 7 R AR E MRS (GSS) WU i R G h AR ME gk i Ra e
P, WIRELSRFSEMARANIR. FH Koopman 7NN, BT RGEHF
TEE SRR ARG RIVER . HREIR EAEHES T

> BB

Fourier neural operator based fluid-structure interaction for predicting the vesicle
dynamic #% phyisca D #ZIi.

WEFE T AR RO RIS TE S 2 A5k, SR AS R R AACRS A S AR AL, BT AT
TN T AEAC AR s IEWT T T 4R 22 4E Stokes Uit BURE LI R S HAEEHL A o

> KB

BOHTIE FC R SR TR AT 118 . JURTIN L LA R 3 ) R G M 7 vE  Jy TH. AE
HETIR RN R /NMEIBER A EET, HE TR A X —1 55
RRAR o

KRR F

W Wu, Y Zhang, X Zhou. Conditional entropy formula with respect to monotonic
partitions[J]. Journal of Dynamical and Control Systems, 2024: 1-24.
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Qualifying Exams BAEEIR

Smooth Manifolds Qualifying Exam 1

Note: This exam covers John M. Lee — “Introduction to Smooth Manifolds”. 10 points for

each problem.

1. (a) Let M be a topological manifold with boundary. Prove that:
1. M is locally compact.

ii. M is locally path-connected.

(b) Let M be a topological n-manifold with boundary. Prove that:
i. OM is a closed subset of M and a topological (n—1)-manifold without boundary.

ii. M is a topological manifold if and only if oM =¢.
2. Let P:]R'”l\{O}—HRk+1 be a smooth function, and suppose that for some deZ,

P(2)=2"P(x) for all 2eR\{0} and xeR“*\{0}. (Such a function is said to be

homogeneous of degree d.) Show that the map P:RP* >RP* defined by
I5([X]) = [P(X)] is well defined and smooth.
3. Suppose M, N, P are smooth manifolds with or without boundary, and F:M — N is a

local diffeomorphism. Prove the following:

(@) If G:P—>M is continuous, then G is smooth if and only if F oG is smooth.

(b) If in addition F'is surjective and G:N — P is any map, then G is smooth if and only

if FoG issmooth.

4. Suppose M < R" is an embedded m -dim submanifold, and let UM < TR" be the set

of all unit tangent vectors to M:

UM ={(x,0)eTR":xeM,0eTM,Jv|=1}
It is called the unit tangent bundle of M. Prove that UM is an embedded (2m—1) -dim

submanifold of TR" =R"xR".

| 10 |
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10.

Suppose F:M —N and G:N —P are smooth maps, and G is transverse to

embedded submanifold X < P. Show that F is transverse to the submanifold G’l(X)
ifand only if GoF is transverse to X.

Show that SO(2), U (1) and S' are all isomorphic as Lie groups.

Let S<M be asubmanifold Let ' be a smooth vector field on S. Prove that there exists
an open set U containing S and a smooth vector field V on U such that V | s=V.

Hint: Use partition of unity.

Prove that H}, (]RZ) =0.

Hint: Let w=a(X,y)dx+b(x,y)dy be a closed I-foorm on R* . Consider
f(xy)=] a(s,0)ds+| b(xt)it.

Let M be a smooth manifold with or with or without boundary. Show that the total spaces
of TM and T°M are orientable.

Suppose M is an oriented compact smooth manifold with boundary. Show that there does
not exist a retraction of M onto its boundary.

Hint: If the retraction is smooth consider an orientation form on oM .

| 11 ]
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Smooth Manifolds Qualifying Exam 2

Note: This exam covers the book “Introduction to Smooth Manifolds” Chapters 1-16, by John
M. Lee.

1. (a) Give the definition of a smooth manifold.

(b) Show that RP" is Hausdorff and second-countable, and is therefore a topological

n-manifold.
2. (a) Give the definitions of smooth functions, smooth maps and diffeomorphisms.

(b) For any topological space M; let C(M) denote the algebra of continuous functions
f:M—>R. Given a continuous map f:M —N, define F":C(N)—->C(M) by
F(f)="foF.

(i) Show that F* is a linear map.

(ii) Suppose M and N are smooth manifolds. Show that f:M — N is smooth if and

only if F*(C*(N))=C”(M).

(iii) Suppose f:M — N is a homeomorphism between smooth manifolds. Show that it

is a diffeomorphism if and only if F* restricts to an isomorphism from

C*(N)—>C*(M).

3. Suppose M and N are smooth manifolds with or without boundary, and F:M — N is a

smooth map. Show that dF,:T,M —T_ N is the zero map for each peM if and

(p)

only if F'is constant on each component of M.

4. (a) Give the definitions of submersions, immersions and embeddings.

Then present some examples.

(b) State and prove the Inverse Function Theorem for Manifolds.

State the Rank Theorem.

5. Every smooth n-manifold M with or without boundary admits a smooth immersion into

| 12 |
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R?" in the special case oM =0.

. If G is a smooth manifold with a group structure such that the map GxG — G given by

(9.h)—>gh™ is smooth, then G is a Lie group.

(a) Define smooth vector fields X,Y e X (]Rs) by

0 O 0
X =x—2+ 2 )2,
X6x+8y+x(y+)az

Y :£+ yg.
ox oz

Compute the Lie bracket [X ,Y] )

(b) (Extension Lemma For Vector Fields on Submanifolds) Suppose M is a smooth

manifold and S< M is an embedded submanifold with or without boundary. Given

XeX (S), show that there is a smooth vector field ¥ on a neighborhood of S in M such
that X =Y|. Show that every such vector field extends to all of M if and only if S is

properly embedded.

. Let M be a smooth manifold with or without boundary, and let X :M —TM be a rough
vector field. The following are equivalent:

(a) X is smooth.

(b) For every f eC”(M), the function Xf issmooth on M.

(c) For every open subset U M and every f eC”(U), the function Xf is smooth
on U.
(d) Suppose @',...," are linearly independent, and so is the collection of convectors

nt,....n" eV

. Let M be a smooth manifold with nonempty boundary, and let z:IntM — M denote
inclusion. There exists a proper smooth embedding R:M — IntM such that both

tcR:M —>M and Reoz:IntM — IntM are smoothly homotopic to identity maps.

| 13 |
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Therefore, ¢ is a homotopy equivalence.

10. (a) Show that @' A...A@* on a finite-dimensional vector space are linearly dependent if

and only if @' A... A0 =0.

(b) Prove that span(a)l, o ) = span (771, . .77") if and only if there is some nonzero real

number c such that @' A...A®" =c' A...AR".

| 14
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HF /1% Exam 1

1. FiEN 100 78 B9 —Hf Sk LR 100 K B S KAT, SK'E /) De Broglie i ? (2
N I THE LIS T 6.6X1034 ] o )

1,2

2. Wy (x)=Ae " (a WHED, RA—LHHA=? GR: [ eV dy=Vz)
3. HEIREL

¥ (x,t)= Ae Mgt

RFA, 1 w2 IERSZ

() A4k, RH AKME

(b) SR x A X2 B HAFRAE

(c) RH x BIbrUEZE
4, FFREN m Bk FE - GELRIEAB I, ZERE T BERR RN

V(x)— 0,0<x<a,

oo, BB
Tl FH 58 583 22 05 7 FE SR AR 1) 58 53— AL I BB B DL N AT BE R BE - 1E

A7 ()

=Y

5. #% L12E 4 &, 1] de Broglie FISER 51, BELHRN T HE & 1T AEEUE..

6. — 4 W kK T & £ OE T l//(X)= Te_z‘zwt (B R
T
" , 1.3.5..0e.(2n -1 ‘
Ixz”e‘”dx: 35n1(n )\/E)Sk:
0 2"a" a

(1) BEErEHEo =% e

| 15|
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(2) BHHERITHIMET =

N

7. FRH TAVEATIEA R ANER), B

@Mﬁ?
@[ f

®2,

K=1

8. EWIM: MJEKREFFIE K, #YRF MR AW A AL SRS, &
FW =AY, EWJERER F AR A 98

9. FEN m KPR TSNS, BHR2TEEN a, ISR RR IR T3 RE
FRIANEA 52 V0

10. —NHAF A RARTTWIME A, BB NE— A AES Ly, My, , 5500 A a)
Fla,. HABRRATWIMEB, EHHEANEUAMLES L o Flo,, 7550 RAKEE
b A, o PRAAAERZ [8]47 K & -

W1:(3¢1+4§02)/57 Y, :(4(01_3(02)/5'
(a) METTWNE A, R R Na . MafeillEy 5 (B AR RETEHAE?

(b) WERIAEFNE B, WREMISE R AT ENHIK LR 2 D7
(e) fERIFINH B Z )5, FRINE 4. RAGR e K LEZEZ D7
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EF /1% Exam 2

. (a) H4 & de Broglie #%? 75 H de Broglie % 1314 3.

(b) HAFERPRERES? A A2

(c) ZFTKTHEREAH AR R? 5 A K7 2 i 4 B 744 F 1103
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Celebrity Story & AN#HEFE
2024 4R DR A5 = ——REREBE ML I vE B % K Michel Talagrand

Mathematician who tamed randomness wins Abel Prize

By Davide Castelvecchi

3 720 H, #RERFA SR T B E AT, 2024 S FERT DR BOR 4 715 H ey

% Michel Talagrand, PARFMAENEFICANZ R Mk ) ZAS B DTk, DA AR B PR
AGETt 2277 T A H R

Michel Talagrand laid mathematical groundwork that has allowed others to tackle problems

involving random processes.

A mathematician who developed formulas to make random processes more predictable and
helped to solve an iconic model of complex phenomena has won the 2024 Abel Prize, one of
the field’s most coveted awards. Michel Talagrand received the prize for his “contributions to
probability theory and functional analysis, with outstanding applications in mathematical

physics and statistics”, the Norwegian Academy of Science and Letters in Oslo announced on
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20 March.

Assaf Naor, a mathematician at Princeton University in New Jersey, says it is difficult to
overestimate the impact of Talagrand’s work. “There are papers posted maybe on a daily basis

where the punchline is ‘now we use Talagrand’s inequalities’,” he says.

Talagrand’s reaction on hearing the news was incredulity. “There was a total blank in my
mind for at least four seconds,” he says. “If [ had been told an alien ship had landed in front of

the White House, I would not have been more surprised.”

The Abel Prize was modelled after the Nobel Prizes — which do not include mathematics —

and was first awarded in 2003. The recipient wins a sum of 7.5 million Norwegian kroner
(US$700,000).

‘Like a piece of art’

Talagrand specializes in the theory of probability and stochastic processes, which are
mathematical models of phenomena governed by randomness. A typical example is a river’s
water level, which is highly variable and is affected by many independent factors, including
rain, wind and temperature, Talagrand says. His proudest achievement was his inequalities1, a
set of formulas that poses limits to the swings in stochastic processes. His formulas express
how the contributions of many factors often cancel each other out — making the overall result

less variable, not more.

“It’s like a piece of art,” says Abel-committee chair Helge Holden, a mathematician at the
Norwegian University of Science and Technology in Trondheim. “The magic here is to find a

good estimate, not just a rough estimate.”

Thanks to Talagrand’s techniques, “many things that seem complicated and random turn out
to be not so random”, says Naor. His estimates are extremely powerful, for example for
studying problems such as optimizing the route of a delivery truck. Finding a perfect solution
would require an exorbitant amount of computation, so computer scientists can instead
calculate the lengths of a limited number of random candidate routes and then take the

average — and Talagrand’s inequalities ensure that the result is close to optimal.
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Talagrand also completed the solution to a problem posed by theoretical physicist Giorgio
Parisi — work that ultimately helped Parisi to earn a Nobel Prize in Physics in 2021. In 1979,
Parisi, now at the University of Rome, proposed a complete solution for the structure of a spin
glass — an abstracted model of a material in which the magnetization of each atom tends to

flip up or down depending on those of its neighbours.

Parisi’s arguments were rooted in his powerful intuition in physics, and followed steps that
“mathematicians would consider as sorcery”, Talagrand says, such as taking n copies of a
system — with n being a negative number. Many researchers doubted that Parisi’s proof
could be made mathematically rigorous. But in the early 2000s, the problem was completely
solved in two separate works, one by Talagrand2 and an earlier one by Francesco Guerra3, a

mathematical physicist who is also at the University of Rome.

Finding motivation

Talagrand’s journey to becoming a top researcher was unconventional. Born in Béziers,
France, in 1952, he lost vision in his right eye at age five because of a genetic predisposition
to detachment of the retina. Although while growing up in Lyon he was a voracious reader of
popular science magazines, he struggled at school, particularly with the complex rules of

French spelling. “I never really made peace with orthography,” he told an interviewer in 2019.

His turning point came at age 15, when he received emergency treatment for another retinal
detachment, this time in his left eye. He had to miss almost an entire year of school. The
terrifying experience of nearly losing his sight — and his father’s efforts to keep his mind
busy while his eyes were bandaged — gave Talagrand a renewed focus. He became a highly

motivated student after his recovery, and began to excel in national maths competitions.

Still, Talagrand did not follow the typical path of gifted French students, which includes two
years of preparatory school followed by a national admission competition for highly selective
grandes écoles such as the Ecole Normale Supérieure in Paris. Instead, he studied at the
University of Lyon, France, and then went on to work as a full-time researcher at the national
research agency CNRS, first in Lyon and later in Paris, where he spent more than a decade in

an entry-level job. Apart from a brief stint in Canada, followed by a trip to the United States
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where he met his wife, he worked at the CNRS until his retirement.

Talagrand loves to challenge other mathematicians to solve problems that he has come up
with — offering cash to those who do — and he keeps a list of those problems on his website.
Some have been solved, leading to publications in major maths journals. The prizes come
with some conditions: “I will award the prizes below as long as I am not too senile to

understand the proofs I receive. If I can’t understand them, I will not pay.”

JF SR -
https://www.nature.com/articles/d41586-024-00839-6
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An Al physicist can derive the natural laws of imagined universes

MIT BIWF RN TR T — DN LRBERSE, ZRGEIRN “AL B EEMEER”,
RENSHES HY — LE AR 5 A ) B e, X B ARl S 0 1 BB BT ] 5 o F) SR 2 2k T i
EAER . EhrEE S ARE IR B, 1M H AT ANGX SR A 34T HEWT, LA
MARIINL A A AT T EE 5, O “ NTRAEEMAHARIL” BE5E 24l

As a student, Galileo famously observed a lamp swinging in Pisa Cathedral and timed its
swing against his pulse. He concluded that the period was constant and independent of its

amplitude.

Galileo went on to suggest that a pendulum could control a clock and later designed such a
machine, although the first clock of this type was built by Huygens some 15 years after
Galileo’s death.

In making this discovery, Galileo’s genius was to ignore all the messy details that were
otherwise present in the cathedral—air resistance, temperature, flickering light, noise, other
people, and so on. He considered a simple model of a swinging lamp using only its period,

focusing on the salient detail.

For many historians, Galileo’s approach represents the earliest stage in the evolution of the
scientific method, the same process that has produced flight, quantum theory, electronic

computing, general relativity, and even artificial intelligence.

In recent years, Al systems have begun to find interesting patterns in data themselves and
even derived certain laws of physics as a result. But in these cases, the Al always studied a
special data set that had been isolated from real-world distractions. The ability of these Al

systems is a long way from the ability of humans such as Galileo.

And that raises an interesting question: is it possible to design an Al system that develops
theories the way Galileo did, zeroing in on the information it needs to explain different
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aspects of the world it observes?

Today we get an answer, thanks to the work of Tailin Wu and Max Tegmark at MIT in
Cambridge, Massachusetts. These guys have developed an Al system that copies Galileo’s
approach and some of the other tricks that physicists have learned over the centuries. Their
system—called the Al Physicist—is capable of teasing out several laws of physics in mystery

worlds deliberately constructed to simulate the complexity of our universe.

Wu and Tegmark begin by identifying a significant weakness of modern Al systems. When
given a big data set, they typically look for a single theory that governs the entire thing. But

that becomes increasingly difficult the bigger and more messy the data set becomes.

Indeed, the inside of a cathedral would be a virtually impossible environment for any current

Al system to mine for laws of physics.

To cope with this problem, physicists use a number of thought processes to simplify the
problem. The first is to develop theories that describe only a small part of the data set. That
produces multiple theories that all describe different aspects of the data—Ilike quantum

mechanics and relativity, for example.

Wu and Tegmark have developed the Al Physicist to treat big data sets in the same way.

Another general rule that physicists use is Occam’s Razor—the idea that simpler explanations
are better. That’s why physicists generally discount theories requiring a prime mover to create
the universe, or the Earth or life itself: the supposed existence of a prime mover raises an

additional set of question about its nature and origin.

Al systems are well known for producing overly complex models to describe the data they are
trained on. So Wu and Tegmark also teach their system to prefer simpler theories over more
complex ones. They do this using a straightforward measure of complexity based on the

amount of information the theory encapsulates.

Another famous physicists’ trick is to look for ways to unify theories. If one theory can do the

job of two, it is probably better. This has driven physicists’ quest to find the one law that rules
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them all (although there is little in the way of actual evidence that such a theory exists).

A final principle that has helped physicists fare well is lifelong learning: the idea that if a
particular approach worked in the past, it might work on future problems. So Wu and

Tegmark’s Al Physicist remembers learned solutions and tries them on future problems.

Armed with these techniques, Wu and Tegmark put their Al Physicist through its paces. They
do this by devising 40 mystery worlds governed by laws of physics that vary from one
location to another. So a ball thrown into one of these worlds might initially fall under the
force of gravity into a region governed by an electromagnetic potential, then into a region

governed by a harmonic potential, and so on.

The question that Wu and Tegmark ask is whether their Al Physicist can derive the relevant
laws of physics simply by looking at the movement of the ball over time. And they compare
the behavior of the AI Physicist with that of a “Newborn Physicist” that uses the same
approach but without the benefit of lifelong learning, as well as with a conventional neural

network.

It turns out that both the Al Physicist and the Newborn Physicist can derive the relevant laws.
“Both agents are able to solve above 90% of all the 40 mystery worlds,” they say.

The main advantage of the Al Physicist over the Newborn agent is that it learns more quickly
using less of the data. “This is much like an experienced scientist can solve new problems
way faster than a beginner by building on prior knowledge about similar problems,” say Wu

and Tegmark.

And their system is significantly better than a conventional neural network. “Our [Al
Physicist] typically learns faster and produces mean-squared prediction errors about a billion

times smaller than a standard feedforward neural net of comparable complexity,” they say.

That’s impressive work that suggests Al systems could have a significant impact on the way
science proceeds. Of course, the real test will be to let the Al Physicist loose on a real
environment, such as the inside of Pisa Cathedral, and see whether it derives the principle

behind mechanical clocks.
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Or perhaps to let it loose on other complex data sets, such as those that regularly baffle
economists, biologists, and climate scientists. There is surely low-hanging fruit here for a

system capable of gathering it.

And if the Al Physicist is successful, historians of science may well look back on it as one of
the first steps in a new era of evolution for the scientific method beyond Galileo and his

human colleagues. There’s no telling where that may take us.

JESC R -

https://www.technologyreview.com/2018/11/01/1895/an-ai-physicist-can-derive-the-natural-la

ws-of-imagined-universes/
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How Al Is Shaping Scientific Discovery

By Sara Frueh
Physicist Mario Krenn sees artificial intelligence as a muse — a source of inspiration and
ideas for scientists. It’s a description born from his past research and his current work at the
Max Planck Institute for the Science of Light, where he and his colleagues develop Al

algorithms that can help them learn new ideas and concepts in physics.

His efforts began years ago, when a research team Krenn was part of struggled to come up
with an experiment that would let them observe a specific type of quantum entanglement.
Krenn, suspecting that their intuition was getting in the way, developed a computer algorithm

that can design quantum experiments.

“T let the algorithm run, and within a few hours it found exactly the solution that we as
human scientists couldn’t find for many weeks,” he said. Using the blueprint created by the
computer, his colleagues were able to build the setup in the laboratory and use it to observe

the phenomenon for the first time.

In a subsequent case, the algorithm overcame a barrier by reviving a long-forgotten technique
and applying it in a new context. The scientists were immediately able to generalize this idea

to other situations, and they wrote about it in a paper for Physical Review Letters.

“But, if you think about it, none of the core authors of this paper came up with the idea that
is described in the paper,” said Krenn. “The idea came completely, implicitly from the

machine. We were just analyzing what the machine has done.”

Krenn was among the speakers at a recent two-day meeting hosted by the National Academies

that looked at the present and future of Al in advancing scientific discovery.

Al is advancing science in a range of ways — identifying meaningful trends in large datasets,
predicting outcomes based on data, and simulating complex scenarios, said National Academy
of Medicine President Victor Dzau in his welcoming remarks. As the technology develops, it
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may acquire the ability to carry out independent investigations.

“As we envision Al for the future and using it to do independent scientific inquiry, there’s a
lot to consider,” said Dzau. “We have to be very careful about understanding the potential of
[emerging technologies] possibly affecting society in many different ways ... cost, access,
equity, ethics, and privacy.” He noted that ongoing committees at NAM are exploring

potential impacts in such areas.

Already speeding science

Al is accelerating research on complex neurodegenerative diseases like Alzheimer’s disease
and Parkinson’s disease, explained Steven Finkbeiner, a senior investigator at the Gladstone

Institutes.

When his team began using Al to analyze images of cells, “one of the very first things that
surprised a lot of the biologists in my group was how rich their data might be, and it may

contain information that basically we can’t see as humans, or have overlooked,” he said.

His team employed a deep-learning algorithm to try to identify the point at which a cell
becomes destined to die — something human scientists have struggled to do, and a key
endpoint in understanding neurodegenerative diseases. After being trained with 23,000
examples, the team’s deep-learning network was able to identify changes in the cell nucleus

that could predict with high accuracy which cells were destined to die.

Finkbeiner’s team is now using deep learning to identify even earlier changes in a cell that
predict its eventual death — early enough that intervening in the process may eventually be

possible.

Amy McGovern, a professor at the University of Oklahoma, explained how Al is being
applied to meteorology. Initially AI has been used to correct biases in existing weather

prediction models, which can improve forecasts and save lives and property.

“Now we are using it to try to improve our foundational understanding of the science of

specific events,” she said. For example, researchers are using Al to generate synthetic storms
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and identify new precursors to tornadoes. Tornadoes are rare enough that real ones alone don’t

generate enough data to inform that effort.

Autonomy in the future?

Going forward, Al will likely be developed to go beyond tasks like identifying patterns in data
and designing experiments. Speakers explored whether there will eventually be “Al scientists”

that are able to act independently and also partner with human scientists.

Doing so would mean that Al scientists would have the capacity to perform scientists’ core
competencies, explained Yolanda Gil, principal scientist at the University of Southern
California’s Information Sciences Institute. This includes not only tasks like gathering and
analyzing data but also a reflection process — what’s a good hypothesis to work on? — and
the creativity to come up with new paradigms and ideas. “These are big challenges for AL”

said Gil.

Hiroaki Kitano, CEO of Sony Al, explained his proposal for the Nobel Turing Challenge — to
come up with Al systems by 2050 that can make major discoveries autonomously, at the level
of discoveries worthy of a Nobel Prize. “Can Al form a groundbreaking concept that will

change our perception?” he asked.

It’s both a challenge and a question, Kitano said. “If we manage to build a system like that, is
it going to behave like the best human scientists, or does it show a very different kind of
intelligence? Are we going to find an alternative form of scientific discovery that is something

very different from what we do today?”

Navigating ethical dilemmas

Deborah Johnson, professor emeritus of engineering and society at the University of Virginia,

29 ¢¢

expressed concern about the use of the words “autonomy,” “autonomous,” and “Al scientist,”
because they seem to distance human scientists from responsibility for the Al systems they
create and any negative impacts that result. “I worry that this is going to lead to a deflection

of accountability and responsibility for what happens.”

Johnson was on a panel that explored ethical and societal issues that Al research raises —
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including how the benefits it yields can be distributed widely rather than reserved for a few.

“Much of the investment and excitement in the areas I work in — in medical artificial
intelligence — is about pushing frontiers,” said Glenn Cohen, deputy dean of Harvard Law
School. “It’s taking the work of top dermatologists or top brain surgeons and making it even

better, helping people who already have access to very high-quality oncology survive longer.”

While that’s great, Cohen continued, much of the benefit of Al lies in its ability to
democratize expertise — taking the expertise of average doctors and scaling it up to make it
available to people in rural areas and all over the world. Right now, the investment and
intellectual property and funding incentives don’t match that ethical goal, and we need to

think seriously about how to restructure those incentives, he said.

Vukosi Marivate, ABSA UP Chair of Data Science at the University of Pretoria, said that
governance of Al is a team sport; ethical decisions and responsibility shouldn’t rest solely
with Al developers and scientists. Society should have a voice in what the expectations for

limits on these technologies should be.

“And for society to have a voice, they must understand what is going on,” said Marivate. “It
can’t just be that you have these discussions about societal impact, and then society’s not
there.” Al developers and scientists should not be making decisions on their own that affect

other people broadly, he said.

Moderator Bradley Malin, a professor at Vanderbilt University, emphasized the need to set up
an ongoing process to reason about Al-related societal and ethical issues as they inevitably,
unpredictably emerge. “These dilemmas are going to arise, and it’s probably unlikely that

we’re going to know all of them beforehand.”

JRSC B

https://www.nationalacademies.org/news/2023/11/how-ai-is-shaping-scientific-discovery
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Elliptic Curve ‘Murmurations’ Found With Al Take Flight

By LYNDIE CHIOU
Mathematicians are working to fully explain unusual behaviors uncovered using artificial

intelligence.

Elliptic curves are among the more beguiling objects in modern mathematics. They don’t
seem complicated, but they form an expressway between the math that many people learn in
high school and research mathematics at its most abstruse. They were central to Andrew Wiles’
celebrated proof of Fermat’s Last Theorem in the 1990s. They are key tools in modern
cryptography. And in 2000, the Clay Mathematics Institute named a conjecture about the
statistics of elliptic curves one of seven “Millennium Prize Problems,” each of which carries
a $1 million prize for its solution. That conjecture, first ventured by Bryan Birch and Peter

Swinnerton-Dyer in the 1960s, still hasn’t been proved.

Understanding elliptic curves is a high-stakes endeavor that has been central to math. So in
2022, when a transatlantic collaboration used statistical techniques and artificial intelligence
to discover completely unexpected patterns in elliptic curves, it was a welcome, if unexpected,
contribution. “It was just a matter of time before machine learning landed on our front
doorstep with something interesting,” said Peter Sarnak, a mathematician at the Institute for
Advanced Study and Princeton University. Initially, nobody could explain why the newly
discovered patterns exist. Since then, in a series of recent papers, mathematicians have begun
to unlock the reasons behind the patterns, dubbed “murmurations” for their resemblance to the
fluid shapes of flocking starlings, and have started to prove that they must occur not only in

the particular examples examined in 2022, but in elliptic curves more generally.
The Importance of Being Elliptic

To understand what those patterns are, we have to lay a little groundwork about what elliptic

curves are and how mathematicians categorize them.

An elliptic curve relates the square of one variable, commonly written as y, to the third power

of another, commonly written as x: y*=x>+A4x+B, for some pair of numbers 4 and B, as long as
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A and B meet a few straightforward conditions. This equation defines a curve that can be

graphed on the plane, as shown below. (Despite the similarity in the names, an ellipse is not

an elliptic curve.)

Though plain-looking, elliptic curves turn out to be incredibly powerful tools for number
theorists — mathematicians who look for patterns in the integers. Instead of letting the
variables x and y range over all numbers, mathematicians like to restrict them to different
number systems, which they call defining a curve “over” a given number system. Elliptic
curves restricted to the rational numbers — numbers that can be written as fractions — are
particularly useful. “Elliptic curves over the real or complex numbers are quite boring,”

Sarnak said. “It’s only the rational numbers that are deep.”
Here’s one way that’s true. If you draw a straight line between two rational points on an

elliptic curve, the place where that line intersects the curve again will also be rational. You

can use that fact to define “addition” in an elliptic curve, as shown below.
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Draw a line between P and Q. That line will intersect the curve at a third point, R.
(Mathematicians have a special trick for dealing with the case where the line doesn’t intersect
the curve by adding a “point at infinity.”) The reflection of R across the x-axis is your sum
P+Q. Together with this addition operation, all the solutions to the curve form a mathematical

object called a group.

Mathematicians use this to define the “rank” of a curve. The rank of a curve relates to the
number of rational solutions it has. Rank 0 curves have a finite number of solutions. Curves
with higher rank have infinite numbers of solutions whose relationship to one another using

the addition operation is described by the rank.

Ranks are not well understood; mathematicians don’t always have a way of computing them
and don’t know how big they can get. (The largest exact rank known for a specific curve is

20.) Similar-looking curves can have completely different ranks.

Elliptic curves also have a lot to do with prime numbers, which are only divisible by 1 and
themselves. In particular, mathematicians look at curves over finite fields — systems of
cyclical arithmetic that are defined for each prime number. A finite field is like a clock with

the number of hours equal to the prime: If you keep counting upward, the numbers start over

again. In the finite field for 7, for example, 5 plus 2 equals zero, and 5 plus 3 equals 1.

Patterns formed by thousands of elliptic curves bear a striking similarity to Alex Ramsay/Alamy Stock Photo
murmurations of starlings.

An elliptic curve has an associated sequence of numbers, called a,, which relates to the
number of solutions there are to the curve in the finite field defined by the prime p. A smaller

ap means more solutions; a bigger a, means fewer solutions. Though the rank is hard to
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calculate, the sequence a, is a lot easier.

On the basis of numerous calculations done on one of the very first computers, Birch and
Swinnerton-Dyer conjectured a relationship between an elliptic curve’s rank and the sequence
ap. Anyone who can prove they were right stands to win a million dollars and mathematical

immortality.

A Surprise Pattern Emerges

After the start of the pandemic, Yang-Hui He, a researcher at the London Institute for
Mathematical Sciences, decided to take on some new challenges. He had been a physics
major in college, and had gotten his doctorate from the Massachusetts Institute of Technology
in mathematical physics. But he was increasingly interested in number theory, and given the
increasing capabilities of artificial intelligence, he thought he’d try his hand at using Al as a
tool for finding unexpected patterns in numbers. (He had already been using machine learning
to classify Calabi-Yau manifolds, mathematical structures that are widely used in string

theory.)

In August 2020, as the pandemic deepened, the University of Nottingham hosted him for an
online talk. He was pessimistic about his progress, and about the very possibility of using
machine learning to uncover new math. “His narrative was that number theory was hard
because you couldn’t machine-learn things in number theory,” said Thomas Oliver, a
mathematician at the University of Westminster who was in the audience. As He remembers,
“I couldn’t find anything because I wasn’t an expert. I was not even using the right things to

look at this.”

Oliver and Kyu-Hwan Lee, a mathematician at the University of Connecticut, began working
with He. “We decided to do this just to learn what machine learning was, rather than to
seriously study mathematics,” Oliver said. “But we quickly found that you could

machine-learn a lot of things.”

Oliver and Lee suggested that He apply his techniques to examine L-functions, infinite series
closely related to elliptic curves through the sequence a,. They could use an online database

of elliptic curves and their related L-functions called the LMFDB to train their machine
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learning classifiers. At the time the database had a little over 3 million elliptic curves over the
rationals. By October 2020, they had a paper that used information gleaned from L-functions
to predict a particular property of elliptic curves. In November they shared another paper that
used machine learning to classify other objects in number theory. By December, they were

able to predict the ranks of elliptic curves with high accuracy.

But they weren’t sure why their machine learning algorithms were working so well. Lee
asked his undergraduate student Alexey Pozdnyakov to see if he could figure out what was
going on. As it happens, the LMFDB sorts elliptic curves according to a quantity called the
conductor, which summarizes information about primes for which a curve fails to behave well.
So Pozdnyakov tried looking at large numbers of curves with similar conductors

simultaneously — say, all the curves with conductors between 7,500 and 10,000.
Elliptic curves with a conductor
between 7,500 and 10,000 ® Rank 1 ® Rank 0

More
solutions

A

Average a b

Fewer
solutions -8

0 2,000 4,000 6,000 8,000

| —_— Prime numbers _

This amounted to about 10,000 curves in total. About half of these had rank 0, and half rank 1.
(Higher ranks are exceedingly rare.) He then averaged the values of a, for all the rank 0
curves, separately averaged a, for all the rank 1 curves, and plotted the results. The two sets
of dots formed two distinct, easily discernible waves. That was why the machine learning

classifiers had been able to correctly ascertain the ranks of particular curves.
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“At first 1 just felt happy that I’d completed the assignment,” Pozdnyakov said. “But
Kyu-Hwan immediately recognized that this pattern was surprising, and that’s when it

became really exciting.”

Lee and Oliver were enthralled. “Alexey showed us the picture, and I said it looks like that
thing that birds do,” Oliver said. “And then Kyu-Hwan looked it up and said it’s called a
murmuration, and then Yang said we should call the paper ‘Murmurations of Elliptic

Curves.’”

They uploaded their paper in April 2022 and forwarded it to a handful of other
mathematicians, nervously expecting to be told that their so-called “discovery” was well
known. Oliver said that the relationship was so visible that it should have been noticed long

ago.

Almost immediately, the preprint garnered interest, particularly from Andrew Sutherland, a
research scientist at MIT who is one of the managing editors of the LMFDB. Sutherland
realized that 3 million elliptic curves weren’t enough for his purposes. He wanted to look at
much larger conductor ranges to see how robust the murmurations were. He pulled data from
another immense repository of about 150 million elliptic curves. Still unsatisfied, he then

pulled in data from a different repository with 300 million curves.

“But even those weren’t enough, so I actually computed a new data set of over a billion
elliptic curves, and that’s what I used to compute the really high-res pictures,” Sutherland said.
The murmurations showed up whether he averaged over 15,000 elliptic curves at a time or a
million at a time. The shape stayed the same even as he looked at the curves over larger and
larger prime numbers, a phenomenon called scale invariance. Sutherland also realized that
murmurations are not unique to elliptic curves, but also appear in more general L-functions.
He wrote a letter summarizing his findings and sent it to Sarnak and Michael Rubinstein at the

University of Waterloo.

“If there is a known explanation for it I expect you will know it,” Sutherland wrote.

They didn’t.
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Explaining the Pattern

Lee, He and Oliver organized a workshop on murmurations in August 2023 at Brown
University’s Institute for Computational and Experimental Research in Mathematics

(ICERM). Sarnak and Rubinstein came, as did Sarnak’s student Nina Zubrilina.

Zubrilina presented her research into murmuration patterns in modular forms, special complex
functions which, like elliptic curves, have associated L-functions. In modular forms with large
conductors, the murmurations converge into a sharply defined curve, rather than forming a
discernible but dispersed pattern. In a paper posted on October 11, 2023, Zubrilina proved that

this type of murmuration follows an explicit formula she discovered.

“Nina’s big achievement is that she’s given a formula for this; I call it the Zubrilina
murmuration density formula,” Sarnak said. “Using very sophisticated math, she has proven

an exact formula which fits the data perfectly.”

Her formula is complicated, but Sarnak hails it as an important new kind of function,
comparable to the Airy functions that define solutions to differential equations used in a

variety of contexts in physics, ranging from optics to quantum mechanics.

Though Zubrilina’s formula was the first, others have followed. “Every week now, there’s a
new paper out,” Sarnak said, “mainly using Zubrilina’s tools, explaining other aspects of

murmurations.”

Jonathan Bober, Andrew Booker and Min Lee of the University of Bristol, together with
David Lowry-Duda of ICERM, proved the existence of a different type of murmuration in
modular forms in another October paper. And Kyu-Hwan Lee, Oliver and Pozdnyakov proved
the existence of murmurations in objects called Dirichlet characters that are closely related to

L-functions.

Sutherland was impressed by the significant dose of luck that had led to the discovery of
murmurations. If the elliptic curve data hadn’t been ordered by conductor, the murmurations

would have disappeared. “They were fortunate to be taking data from the LMFDB, which
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came pre-sorted according to the conductor,” he said. “It’s what relates an elliptic curve to the

corresponding modular form, but that’s not at all obvious. ... Two curves whose equations
look very similar can have very different conductors.” For example, Sutherland noted that )?
=x% — 11x + 6 has conductor 17, but flipping the minus sign to a plus sign, }° =x° + 11x + 6
has conductor 100,736.

Even then, the murmurations were only found because of Pozdnyakov’s inexperience. “I
don’t think we would have found it without him,” Oliver said, “because the experts
traditionally normalize a, to have absolute value 1. But he didn’t normalize them ... so the

oscillations were very big and visible.”

The statistical patterns that Al algorithms use to sort elliptic curves by rank exist in a
parameter space with hundreds of dimensions — too many for people to sort through in their
minds, let alone visualize, Oliver noted. But though machine learning found the hidden

oscillations, “only later did we understand them to be the murmurations.”

JFE SR
https://www.quantamagazine.org/elliptic-curve-murmurations-found-with-ai-take-flight-2024
0305/
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