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Preface 

These notes gather together what we regard as the essentials of real analysis 
on IR.n. 

There are of course many good texts describing, on the one hand, Lebesgue 
measure for the real line and, on the other, general measures for abstract spaces. 
But we believe there is still a need for a source book documenting the rich 
structure of measure theory on IR.n, with particular emphasis on integration and 
differentiation. And so we packed into these notes all sorts of interesting topics 
that working mathematical analysts need to know, but are mostly not taught. 
These include Hausdorff measures and capacities (for classifying "negligible" 
sets for various fine properties of functions), Rademacher's Theorem (asserting 
the differentiability of Lipschitz functions almost everywhere), Aleksandrov 's 
Theorem (asserting the twice differentiability of convex functions almost every­
where), the Area and Coarea Formulas (yielding change-of-variables rules for 
Lipschitz maps between IR.n and JR.m), and the Lebesgue-Besicovitch Differen­
tiation Theorem (amounting to the Fundamental Theorem of Calculus for real 
analysis). 

This book is definitely not for beginners. We explicitly assume our readers 
are at least fairly conversant with both Lebesgue measure and abstract mea­
sure theory. The expository style reflects this expectation. We do not of­
fer lengthy heuristics or motivation, but as compensation have tried to present 
all the technicalities of the proofs: "God is in the details." 

Chapter I comprises a quick review of mostly standard real analysis, Chapter 2 

introduces Hausdorff measures, and Chapter 3 discusses the Area and Coarea 
Formulas. In Chapters 4 through 6 we analyze the fine properties of functions 
possessing weak derivatives of various sorts. Sobolev functions, which is to say 
functions having weak first partial derivatives in an LP space, are the subject of 
Chapter 4; functions of bounded variation, that is, functions having measures 
as weak first partial derivatives, the subject of Chapter 5. Finally, Chapter 6 

discusses the approximation of Lipschitz, Sobolev and BV functions by C1 
functions. and several related subjects. 

We have listed in the references the primary sources we have relied upon 
for these notes. In addition many colleagues, in particular S. Antman, Jo-Ann 



Jllll 

Cohen, M. Crandall, A. Damlamian, H. Ishii, N. Owen, P. Souganidis, and 
S. Spector, have suggested improvements and detected errors. We have also 
made use of S. Katzenburger's class notes. 

Early drafts of the manuscript were typed by E. Hampton, M. Hourihan, 
B. Kaufman, and J. Slack. 

LCE was partially supported by NSF Grants DMS-83-01265, 86-01532, and 
89-03328, and by the Institute for P hysical Science and Technology at the Uni­
versity of Maryland. RFG was partially supported by NSF Grant DMS-87-0411! 
and by NSF Grant RII-86-10671 and the Commonwealth of Kentucky through 
the Kentucky EPSCoR program. 

Warnings 
Our terminology is occasionally at variance with standard usage. The principal 
changes are these: 

What we call a measure is usually called an outer measure. 
For us a function is integrable if it has an integral (which may equal ±oo). 
We call a function f summable if I J I  has a finite integral. 

We do not identify two LP, RV, or Sobolev functions which agree a.e. 

The reader should consult as necessary the list of notation, page 261. 



1 
General Measure Theory 

This chapter is primarily a review of standard measure theory, with particular 
attention paid to Radon measures on IR.n. 

Sections 1.1 through 1.4 are a rapid recounting of abstract measure theory. In 
Section 1.5 we establish Vitali's and Besicovitch's Covering Theorems, the latter 
being the key for the Lebesgue-Besicovitch Differentiation Theorem for Radon 
measures in Sections 1.6 and 1.7. Section 1.8 provides a vector-valued version 
of Riesz's Representation Theorem. In Section 1.9 we study weak compactness 
for sequences of measures and functions. 

1.1 Measures and measurable functions 

1.1.1 Measures; Approximation by open and compact sets 

Although we intend later to work almost exclusively in IR.n, it is most convenient 
to start abstractly. 

Let X denote a set, and 2x the collection of subsets of X. 

DEFINITION A mapping J-t : 2x -> [0, oo] is called a measure on X if 

(i) J-t(f!J) = 0, and 

(ii) J-t(A) < "£C:: 1J-t(Ak) whenever A C Uk' 1Ak. 
Warning: Most texts call such a mapping 1-l an outer measure, reserving the 
name measure for 1-l restricted to the collection of J-t-measurable subsets of X 
(see below). We will see, however, that there are definite advantages to being 
able to measure even nonmeasurable sets. 

REMARK If g is a measure on X and A c B c X, then 

1-l_(A)::; J-t(B). I 
� 
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DEFINITION Let J-t be a measure on X and A C X. Then 1-l restricted to A, 
written 

1-l L A, 

is the measure defined by 

(J-t L A)(B) = J-t(A n B) for all B c X. 

DEFINITION A set A c X is J-t-measurable if for each set B c X, 

J-t(B) = J-t(B n A)+ J-t(B- A). 

"' 
REMARKS If J-t(A) = 0, then A is J-t-measurable. Clearly A is g-m�asura�!� 

�if�nl.Y if X- .-1_ is,g-mea_§�r��- Observe also that i�bset oJ 
.�..zJ.��-IL'!fl:YI-l���.@��A-measurable. I -

THEOREM 1 PROPERTIES OF MEASURABLE SETS 
Let {Ak}k' 1 be a sequence of wmeasurable sets. 

(i) The sets Uk' 1 Ak and ilk' 1 Ak are J-t-measurable. 

(ii) If the sets { Ak} k' 1 are disjoint, then 

00 

(iii) If A1 C . .. Ak C Ak+l . . . , then 

kl!_.�J-t(Ak) = 1-l (u Ak) . 
k=J 

(iv) If A1 ::J . . . Ak ::J Ak+I . . .  and J-t(AI) < oo, then 

kl!_.moo 
J-t(Ak) = 1-l ([\ Ak) · 

PROOF 
I. Since 

J-t(B) � J-t(B n A)+ J-t(B- A) 

for all A, B C IR.n, it suffices to show the opposite inequality in order to prove 
the set A is J-t-measurable. 
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2. For each set B C IR.n 

�J-(B) = �J-(B (l AI)+ �J-(B- AI) 

= 11(B n AI)+ �J-((B- AI) n Az) + �J-((B- A1)- Az) 
> 11(B n (AI U Az)) + 11(B- (AI U Az)), 

3 

and thus AI U Az is �J--measurable. By induction the union of fin itely man y 
11-measurable sets is 11-measurable. 

3. Sin ce 

X- (AI n Az) = (X - AI) U (X- Az), 

the in tersection of two, and thus of finitely many , wmeasurable sets is 
11-measurable . 

4. Assume now the sets {A,<} k 1 are disjoint, and write 

Then 

when ce 

It follow s that 

j 
Bi = U Ak (j= I,2, ... ). 

k=I 

�J-(BJ+I). �J-(Bj+I (l Ai+I) + �J-(BJ+I- Ai+I) 

= �J-(Ai+I) + �J-(Bi) (j = I, ... ); 

(j = l, . . . ) .  

� !J-(Ak) < /1 (P
I 
Ak) ' 

from which inequality assertion (ii) follow s. 
5. To prove (iii), we note from (ii) 

' 

k�� �J-(Ak) = �J-(AI) + � �J-(Ak+l - Ak) = /1 (P
I 
Ak) . 

6. Assertion (iv) follow s from (iii), since 

�J-(AI)- lim �J-(Ak ) = lim �J-(AI- Ak) = 11 (uoo (AI- Ak)) k-CXJ k-+CXJ k=I 

> 11(A1 ) - 11 (fl. Ak) . 
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7. Recall that if B is any subset of X, then each p,-measurable set is also 
p, L B-measurable. Since BJ - U1=I Ak is p,-measurable by step 2, for each 
B C X with p,(B) < oo w e  have 

11- ( B n pl Ak) + 11- ( B -pi Ak) 

This proves (i). I 

= (p, L B) (P
I 

Bk) + (p, L B) (n(X _ Bk)) 
= lim (p, L B)(Bk) + lim (p, L B)(X - Bk) 

k-+oo k_,.oo 

= p,(B). 

00 00 
X- n Ak = U (X- Ak)· 

k=I k=I 

DEFINITION A collection of subsets A C 2x is au-algebra provided 

(i) 0, X E A; 
(ii) A E A implies X - A E A; 

(iii) Ak E A (k = 1, . . .  ) implies Uk' 1 Ak E A. 

Thus the collection of all g-measurab!e subsets of X forms a u-a!gebra. 

DEFINITION A subset A c X is CJ-jinite with respect to p, if we can write 
A= Uk' 1 Bk . where Bk is p,-measurable and p,(Bk) < oo for k =  I, 2, . . . . 

DEFINITION The Borel CJ-algebra of IR.n is the smallest u-algebra of IR.n 
containing the open subsets of JR.". 

Next w e  introduce certain classes of measures that admit good approximations 
of various types. 

DEFINITIONS 

(i) A measure p, on X is regular if for each set A C X there exists a p,­
measurable set B such that A c B and p,(A) = p,(B). 

(ii) A measure p, on IR.n is called Borel if every Borel set is p,-measurable. 
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(iii) A measure p on IR.n is Borel regular if p is Borel and for each A C IR.n 
there exists a Borel set B such that A C Band p(A) = p(B). 

(iv) A measure p on JR.n is a Radon measure if pis Borel regular and p( K) < 
oo for each compact set K C IR.n. 

THEOREM 2 

Let p be a regular measure on X. If A1 C . . .  Ak C Ak+I, . .  , then 

REMARK The important point is that the sets { Ak}k' 1 need not be p-measur­
able here. I 

PROOF Since pis regular, there exist measurable sets { Ck}k' 1, with Ak C Ck 
and p(Ak) = p(Ck) for each k. Set B�c- nJ>kCJ . Then Ak c B�.:, each Bk 
is p-measurable, and p(Ak) = p(Bk )· Thus 

00 
• I 

We demonstrate next that if J-l is Borel regular, we can gen erate a Radon 
measure by restricting p to a measurable set of finite measure. 

THEOREM 3 
Let p be a Borel regular measure on IR.n. Suppose A C IR.n is p-measurable 
and p(A) < oo. Then p L A  is a Radon measure. 

' 
REMARK If A is a Borel set, then p L A is Borel regular, even if p(A) = oo. I 

I v(KJ "'f-(,qrli<),; p--\fl).:: w 
PROOF Let v = p L A. Clearly v(K) < oo for each compact K. Since every 
p-measurab!e set is v-measurab!e, v is a Borel measure. 
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Claim: v is Borel regular. 

Proof of Claim: Since 1-l is Borel regular, there exists a Borel set B such that 
A c B and J-t(A) = J-t(B) < oo. Then, since A is J-t-measurable, 

J-t(B-A)= J-t(B) -1-l(A) = 0. 

Choose C C IR.n . Then 

(1-l L B)(C) = J-t(C II B) 

= J-t(C n B n A)+ J-t((C n B)-A) 

< J-t(C n A)+ J-t(B- A) 
,,. 

= (J-t L A)(C). ' 

Thus 1-l L B = J-t L A, so w e  may as w ell assume A is a Borel set. 
Now let C c IR.n. We must show that there exists a Borel set D such that 

C c D and v(C) = v(D). Since 1-l is a Borel regular measure, there exists a 
Borel set E such that AnC c E and J-t(E) = J-t(AnC). Let D Eu (IR.n-A). 
Since A and E are Borel sets, so is D. Moreover, C C (AnC)U (IR.n-A) c D. 
Finally , since D II A = E II A, 

v(D) = J-t(D n A)= J-t(E n A)< J-t(E) = J-t(A n C)= v(C). I . 

We consider next the possibility of measure theoretically approximating by 
open, closed, or compact sets. 

LEMMA I 
Let 1-l be a Borel measure on IR.n and let B be a Borel set. 

(i) If J-t(B) < oo, there exists for each E > 0 a closed set C such that C C B 
and J-t(B-C) < t. 

(ii) If 1-l is a Radon measure, then there exists for each E > 0 an open set U 
such that B C U and J-t(U- B) < t. 

PROOF 
I. Let v _ 1-l L B. Since 1-l is Borel and 1-l(B) < oo, v is a finite Borel 

measure. Let 

:F {A C IR.n lA is J-t-measurable and for each E > 0 

there exists a closed set C C A such that v(A-C)< E}. 

Trivially, :F contains all closed sets.-
2. Claim #1: If {Ai}f"1 c :F, then A llf"1A; E :F. 
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Proof of Claim #/: Fix E > 0. Since Ai E :F, there exists a closed set 
Ci c Ai with v(Ai-Ci) < c/2i (i = 1,2, ... ). Let C- ilf1Ci. Then Cis 
closed and 

Thus A E :F. 

v(A-C)= v (n Ai-n ci) 

< v (p (Ai-Ci)) 
00 

< L v(Ai-Ci) < t. 
i=l 

3. Claim #2: If {Ai}f 1 c :F, then A Uf 1 Ai E :F. 

Proof of Claim #2: FixE > 0 and choose Ci as above. Since v(A) < oo, we 
have 

·' 00 
< L v(Ai - Ci) < t. 

i=l 

Consequently, there exists an integer m such that 

But u;rr 1Ci is closed, and so A E :F. 
4. Now, since every open subset of IR.n can be written as a countable union 

of closed sets, Claim #2 shows that :F contains aU open sets. Now consider 

9 {A E :F IJR.n- A E :F}. 

Trivially, if A E 9, then JR.n -A E 9. Note also that 9 contains all open sets. 
5. Claim #3: If {Ai}f1 C 9, then A= Uf1Ai E 9. 
Proof of Claim #3: By Claim #2, A E :F. Since also {IR.n -Ai}i 1 C :F, 

Claim #1 implies IR.n -A= ilf' 1 (IR.n- �) E :F. 
6. Thus 9 is a u-algebra containing the open sets and therefore also the Borel 

sets. In particular, B E 9 and hence given E > 0 there is a closed set C C B 
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such that 

�J-(B- C)= v(B- C) < c 

This establishes (i). 
7. Write Um U(O, m) , the open ball with center 0, radius m .  Then Um- B 

is a Borel set with �J-(Um - B) < oo, and so we can apply (i) to find a dosed 
set Cm C Um- B such that �J-((Um- Cm) - B) = �J-((Um - B)- Cm) < 
E/2m. Let u = u�=l(Um- Cm); u is open. Now B c IR.n-Cm, and thus 
Um (l B C Um - Cm. Consequently, 

00 

m=l 

Furthermore, 

00 

m=l 

00 
< L �J-((Um- Cm)- B) <E. I 

m=l 

THEOREM 4 APPROXIMATION BY OPEN AND COMPACT SETS 
Let 11 be a Radon measure on IR.n. Then 

(i) for each set A C IR.n , 

�J-(A) = inf{�J-(U) I A C U,U open}, 

and 

(ii) for each 11-measurable set A C IR.n, 

11(A) = sup{�J-(K) ! K C A, K compact}. 

REMARK Assertion (i) does not require A to be 11-measurable. I 

PROOF 
I. If �J-(A) = oo, (i) is obvious, and so let us suppose �J-(A) < oo. Assume 

first A is a Borel set. Fix E > 0. Then by Lemma 1, there exists an open set 
U :) A with 11(U- A) < E. Since 11(U) = �J-(A) + 11(U- A) < oo, (i) holds. 
Now, let A be an arbitrary set. Since 11 is Borel regular, there exists a Borel set 
B :) A with 11(A) = �J-(B). Then 

11(A) = �J-(B) = inf{�J-(U) I B c U, U open} 

> inf{�J-(V) / A C U, U open}. 

The reverse inequality is clear: assertion (i) is proved. 
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2. Now let A be p,-measurable, with p,(A) < oo. Set v - p, L A; v is a Radon 
measure according to Theorem 3. Fix E > 0. Applying (i) to v and n�n - A, 
we obtain an open set U with Rn - A  C U and v(U) < t. Let C _ Rn - U. 
Then C is closed and C c A. Moreover, / r · " 

p,(A- C)= v(Rn - C) = v(U) < c 

Thus 

0 < p,(A)- p,(C) < E, 

and so 

p,(A) = sup{p,(C) / C C A, C closed}. 

Now suppose that p,(A) = oo. Define Dk = {x / k- 1 < /x/ < k} . Then 
A = Uf 1 (Dk n A); so oo = p,(A) = L� 1 p,(A n Dk). Since p, is a Radon 
measure, p, (Dk n A) < oo. Then by the above, there exists a closed set Ck c 
Dk n A with p, (Ck )  > tt(Dk n A) - l/2k . Now Uf 1C1< c A and 

But Uk=1 Ck is closed for each n, whence in this case also we have assertion (*). 
Finally, set Em = B(O, m) , the closed ball with center 0, radius m .  Let C be 

closed, Cm = C (l Bm. Each set Cm is compact and p,( C) = limm---+oo p,( Cm). 
Hence for each p,-measurable set A, 

sup{p,(K) / K C A, K compact } = sup{p, (C) / C C A, C closed}. I 
We introduce next a simple and very useful way to verify that a measure is 
Borel. 

THEOREM 5 CARATHEODORY'S CRITERI ON 
Let J1 be a measure on Rn . If p,(A U B) = p(A) + p,(B) for all sets A, B c Rn 
with dist(A, B )  > 0, then p, is a BpreLme_a�ure. 

PROOF 
1. Suppose C C Rn is closed. We must show 

tt(A) > tt (A n C)+ tt(A- C), 

the opposite inequality following from subadditivity . 
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If p,(A) = oo, then (*) is obvious. Assume instead p,(A) < oo. Define 

Cn = {X E lll?.n I dist (x,C) < �} (n . 1,2 , ... ). 

Then dist(A - Cn, An C) > 1/n > 0. By hypothesis, therefore, 

p,(A - Cn) + p,(A n C)= p,((A - Cn) U (An C)) < .u(A). (**) 

2. Claim: limn---+oo p,(A- Cn) = p,(A- C). 
Proof of Claim: Set 

{ 1 . 1 } Rk = x E A I k + 1 < dist(x, C) < k (k=1, ... ). 

00 
p,(A - Cn) < p,(A- C) < p,(A- Cn) + L p,(Rk)· 

k=n 
If we can show I:� 1 p,(Rk) < oo, we will then have 

lim p,(A- Cn) < p,(A- C) n---+oo 
00 < nl!_.m00p,(A- Cn) + nl!_.m00 L p,(Rk) 

k=n 
= lim p,(A- Cn), n---+oo 

thereby establishing the claim. 
3. Now dist(R,:, Rj) > 0 if j > i + 2. Hence by induction we find 

and likewise 

Combining these results and letting m ----> oo, we discover 
00 
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4. We have 

p,(A-C)+ p,(A n C) = lim p,(A-Cn) + p,(A n C) 
n---+ oo 

< p,(A), 

according to (**), and thus C is p,-measurable. I 

1.1.2 Measurable functions 

We now extend the notion of measurability from sets to functions. 
Let X be a set and Y a topological space. Assume p, is a measure on X. 

II 

DEFINITION A function f : X --+ Y is called p,-measurable zf for each open 
U C Y, f-1 ( U) is p,-measurable. 

REMARK If f : X --+ Y is p,-measurable, then f-1 ( B) is p,-measurable for 
each Borel set B C Y. Indeed, {A C Y I f-1(A) is p,-measurable} IS a 
u-algebra containing the open sets and hence the Borel sets. I 
DEFINITION A function f : X --+ [ -oo, oo] is u-finite with respect to p, if f 
is p,-measurable and {xI f(x) =/= 0} is u-finite with respect top,. 

Measurable functions inherit the good properties of measurable sets. 

THEOREM 6 PROPERTIES OF MEASURABLE FUNCTIONS 
(i) If j,g: X--+ lR?. are p,-measurable, then so are f + g, fg, If!, min(!, g), 

and max(!, g). The function f / g is also p,-measurable, provided g =/= 0 
on X. 

(ii) If thefunctions fk: X--+ [-oo,oo] are p,-measurable (k = 1,2, . . .  ), 
then infk>1 fk, supk>1 fk, lim infk�oo fk, and lim supk-oc fk are also 

p,-measurable. 

PROOF 
1. In view of the remark, we easily check that f : X --+ [-oo, oo] is 

p,-measurable if and only if j-1[-oo,a) is p,-measurable for each a E lR, if 
and only if f-1 [ -oo, a] is p,-measurable for each a E JR. 

2. Suppose j, g : X --+ lR?. are p,-measurable. Then 

r, s rational 
r+8<a 

and so f + g is p,-measurable. Since 

(!2)-1 ( - oo, a) = r1 ( -oo, at)- r1 (-oo, -at], 
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for a > 0, P is p,-measurable. Consequently, 

is p,-measurable as well. Next observe that, if g( x) cl 0 for x E X, 

g-1(!,0) 
g-1(-oo,O) 
g-1 ( -oo, 0) U g-1 (!, oo) 

thus 1 I g and so also fIg are p,-measurable. 
3. Finally, 

if a< 0 
if a= 0 
if a > 0; 

J+ = fxu>o} = max(!, 0), r = -fX{f<O} = max (-f, 0) 

are p,-measurable, and consequently so are 

ltl = r +r, 

max(!, g) = (f- g)+ + g, 

min(!, g)= -(f- g)-+ g. 

4. Suppose next the functions fk : X ....... [ -oo, oo] (k 
measurable. Then 

and 

so that 

( )-1 00 

inf fk [-oo, a)= U !;1[-oo,a) k>1 - k=1 

(sup h) 
-1 

[-oo, a] = n !;1 [-oo, a], 
k>1 k=1 

inf fk, sup he are p,-measurable. k>! k>! 
We complete the proof by noting 

lim inf he = sup inf he , k-oo m>J k>m 

lim sup fk = inf sup fk. I 
k�oo m>1 k>m 

1 ,  2, . . .  ) are p,-

Next is a simple but useful way to decompose a nonnegative measurable 
function. 
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THEOREM 7 
Assume f : X ....... [0, oo] is I-t-measurable. Then there exist �-t-measurable sets 
{Ak}'k 1 in X such that 

PROOF Set 

A1 = {x E X  I f(x) > 1}, 

and inductively define for k = 2, 3, ... 

1 k-1 1 x E X  I f(x) > 
k + L --:-XA 

j=I J J 

Clearly, 

If f(x) = oo, then x E Ak for all k. On the other hand, if 0 < f(x) < oo, then 
for infinitely many n, x '}_ An. Hence for infinitely many n 

n-1 1 1 
0 < f(x)- L kXAk < 

n . I 
k=! 

1.2 Lusin's and Egoroff's Theorems 

THEOREM I 
Suppose K C JR?.n is con:.pact and f : K ....... lll?.m is continuous. Then there exists 
a continuous mapping f : JR?.n ....... lll?.m such that, 

f = f on K. 
REMARK Extension theorems preserving more of the structure of f will be 
presented in Sections 3. 1.1, 4.4, 5.4, and 6.5. I 

PROOF 
1. The assertion for m > 1 follows easily from the case m = 1, and so we 

may assume f : K ....... JR. 
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2. Let U = lll?.n - K. For x E U and s E K, set 

{ lx- sl } u8(x)=max 2-. ( K)
'O , 

diSt X, 

so that 
x �--+ u8(x) is continuous on U, 
0 < U8(x) < 1, 
u8(x) = 0 if lx- sl > 2dist(x, K). 

Now let { Sj }j 1 be a countable dense subset of K, and define 

00 

u(x) = LTjusi(x) for x E U. 
j=1 

Observe 0 < u(x) < 1 for x E U. Now set 

( )_2-kusk(x) Vk x = u(x) 

for x E U, k = 1, 2, .... The functions {vk}k' 1 form a partition of unity on 
U. Define 

if X E K 
if X E U. 

By the Weierstrass M-test, f is continuous on U. 
3. We must show 

!im !(x) = J(a) 
xEU 

for each a E K. Fix E > 0. There exists 6 > 0 such that 

for all sk such that Ia- ski < 6. Suppose x E U with lx-a! < 6/4. If 
Ia- Ski > 6, then 

6 
6 < Ia- Ski< Ia- xl + lx- ski< 4 

+ lx-ski, 

so that 

lx- ski > ! 6 > 2lx-al > 2 dist(x, K). 
Thus, vk(x) = 0 whenever lx-a!< 6/4 and Ia- ski> 6. Since 

00 
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if x E U, we calculate for lx-a! < 6/4, x E U, 

00 
1/(x)-f(a)l < L vk(x)lf(sk)-f(x)l < t. I 

k=1 
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We now show that a measurable function can be measure theoretically ap­
proximated by a continuous function. 

THEOREM 2 LUS1N'S THEOREM 
Let J-t be a Borel regular measure on JR?." and f : lll?.n ....... lRm be J-t-measurable. 
Assume A C lRn is J-t-measurable and J-t(A) < oo. FixE > 0. Then there ex ists 
a compact set K C A such that 

(i) J-t(A- K) < E, and 

(ii) f IK is continuous. 

PROOF For each positive integer i, let { BiJ} j 1 C lll?.m be disjoint Borel sets 
such that lll?.m = Uj1BiJ and diam Bij < 1/i . Define Aij = Anf-1 (BiJ)· 
Then AiJ is J-t-measurable and A = Uj 1 AiJ. 

Write v = 1-l L A; v is a Radon measure. Theorem 4 in Section 1. 1 implies 
the existence of a compact set Kij C AiJ with v(Aij-Kij) < �:jzi+J. Then 

00 00 
1-l A -U K;j = v A -U KiJ 

j=1 j=1 
00 00 

= v U AiJ - U KiJ 
J=1 j=l 
00 

< v U ( AiJ - KiJ) 
j=1 

E 
< -. .  

2' 

As limN -oo J-t(A -uf 1 Kij) = J-t(A- Uj 1 Kij ), there exists a number N( i) 
such that 

N(i) 
1-l A- U K;J < t:/2i. 

j=1 

Set Di = ufC:) KiJ; Di is compact. For each i and j, we fix bij E BiJ and 
then define 9i : Di ....... lll?.m by setting 9i(x) = biJ for x E Kij (j < N(i)). 
Since Ki!, . . .  , KiN(i) are compact, disjoint sets, and so are a positive distance 
apart, 9i is continuous. Furthermore, lf(x)-9i(x)l < 1/i for all x E Di. Set 
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K = nj 1Di: K is compact and 

00 
p,(A- K) < L tt(A- Di) <E. 

i=l 

Since lf(x)- gi(x)l < 1/i for each x E Di, we see gi -> f uniformly on K. 
Thus f IK is continuous, as required. I 
COROLLARY 1 
Let p, be a Borel regular measure on IRn and let f : IR.n -> �R_m be p,-measurable. 
Assume A C IR.n is p,-measurable and p,(A) < oo. FixE > 0. Then there exists 
a continuous function j: �R_n-> IR.m such that p,{x E A I ](x) f. f (x)} <E. 

PROOF By Lusin's Theorem there exists a compact set K C A such that 
p,(A - K) < E and f IK is continuous. Then by Theorem 1 there exists a 
continuous function f : JR_m -> IR.n such that J I K = f I K and 

p,{x E A I f(x) f. f(x)} < p,(A- K) <E. I 
REMARK Compare this with Whitney's Extension Theorem, Theorem 2 in Sec­
tion 5.6, which identifies conditions ensuring the existence of a C1 extension f. I 
NOTATION The expression "p, a.e." means "almost everywhere with respect 
tjle measure p,," that is, except possibly on a set A with p,(A) = 0. 

THEOREM 3 EGOROFF'S THEOREM 
Let p, be a measure on IR.n and suppose fk : IR.n -> !Rm ( k = 1 ,  2, . . .  ) are 

p,-measurable. Assume also A C IR.n is p,-measurable, with p,(A) < oo, and 
fk -> g p, a.e. on A. Then for each E > 0 there exists a p,-measurable set 
B C A such that 

(i) p,(A- B) < E, and 
(ii) !k -> g uniformly on B. 

PROOF Define Cij = Uf j{x llfk (x)- g(x)l > 2-
i } , (i,j = 1,2, . . .  ) . Then 

Ci,Ht c C;i for all i,j; and so, since p,(A) < oo, 

00 

Hence there exists an integer N( i) such that p,(A n ci,N(i)) < E/2i. 
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Let B = A -Uf' 1Ci,N(i)· Then 

00 
p, (A - B) <:Z::::>(AnCi,N(i)) <E. 

i= l 

Then for each i, x E B, and all n > N(i), l fn (x) - g(x) l < r'. Thus 
f n -> g uniformly on B. I 

1.3 Integrals and limit theorems 

Now we want to extend calculus to the measure theoretic setting. This section 
presents integration theory; differentiation theory is harder and will be set forth 
later in Section 1.6. 

NOTATION 

J+ = max(f, O), r = max (-j, O) ,  f = J+-r. 

Let p, be a measure on a set X. 

DEFJNJTJON A function g: X -> [-oo, oo] is called a simple function if the 
image of g is countable. 

DEFJNJTJON If g is a nonnegative, simple, p,-measurable function, we define 

DEFJNJTJON If g is a simple p,-measurable function and either J g+ dp, < oo 
or J g- dp, < oo, we call g a p,-integrable simple function and define 

Thus if g is a p,-integrable simple function, 

j g dp, = :z::::: yp, (g- l {y}) . 
-oc<u<oo 



I8 General Measure Theory 

DEFINITIONS Let f: X-> [ -oo, oo] . We define the upper integral 

j* f dp, = inf { J g dp, I g a p, -integrable simple function with g > f p, a.e.} 
and the lower integral 

1 f dp, =sup {j-g dp, I gap, -integrable simple function with g < f p, a.e.} . 

DEFINITION A p,-measurable function f : X -> [ -oo, oo] is called p,-integr­
able if J* f dp, = J,. f dp,, in which case we write 

Warning: Our use of the term "integrable" differs from most texts. For us, a 
function is "integrable" provided it has an integral, even if this integral equals 
+oo or -oo. 

REMARK Note that a nonnegative p,-measurable function is always p,-integrable. I 
We assume the reader to be familiar with all the usual properties of integrals. 

DEFINITIONS 

(i) A function f :X -> [ -oo, oo] is p,-summable if f  is p,-integrable and 

J 1!1 dp, < ()(). 

(ii) We say a function f : IRn -> [ -oo, oo] is locally p,-summable if f  IK is 
p,-summable for each compact set K C IRn. 

DEFINITION We say v is a signed measure on IRn if there exists a Radon 
measure p, on IRn and a locally p,-summable function f: IRn -> [ -oo, oo] such 
that 

v(K) = l f dp, 

for all compact sets K C ]Rn. 
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NOTATION 

(i) We write 

v=p,Lf 
provid ed ( *) hold s for a ll compa ct sets K. Note p, L A = p, L x A. 

(ii) We d en ote by 

the set of a ll p,-summa ble fun ction s  on X, and 

the set of a ll loca lly p,-summa ble fun ction s. 
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The followin g limit theorems a re amon g the most importan t a ssertion s  in a ll 
of ana lysis. 

THEOREM 1 FATOU'S LEMMA 
Let fk :X -> [0, oo] be p,-measurable (k = 1 ,  . . . ). Then 

J lim in f h dp, < lim in fj h dJ.L. k --+ OC> k --+ OC> 

PROOF Ta ke g = L_j 1 aj x Aj to be a n onn ega tive simple fun ction less than or 
equa l  to lim in fk�oofk, and suppose the p,-mea sura ble sets { A1 }j 1 a re d isjoin t  
and aj > 0 for j = 1 ,  . . . .  Fix 0 < t < 1 .  Then 

where 

Note 

Thus 

00 
AJ = U B1,k, 

k=l 

Bj,k = Aj n {xI fl(x) > taj for a lii> k}. 

A- ::J B k+l ::J B k J J' J, 

J fk dp, > � i/k dp, 

(k= 1 ,  . . .  ). 

> f 1 fk dp, > t f ajp,(Bj,k ) , 
j=l Bi,k j=l 
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and so 

lim in fj fk k-><:X) 
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00 

dp, > t :z::>j/k(Aj) 
j=l 

= t J gdp,. 

This estima te hold s for ea ch 0 < t < 1 and ea ch simple fun ction g less than or 
equa l  to lim in fk_,ocfk· Con sequen tly, 

lim in f j ik dp, > j lim in f !k dp, = j lim in f fk dp,. I k--+cc k-oo k--+cc 
"' 

THEOREM 2 MONOTONE CONVERGENCE THEOREM 
Let fk : X ----> [0, oo] be p,-measurable (k = 1, . . .  ), with f1 < . . . < fk < 
fk+l < . . . . Then 

J lim fk d tJ = lim j fk dp,. 
k--+x k--+cc 

PROOF Clea rly, 

(j=1, .. . ) , 

when ce 

lim j !k dp, < j lim fk dp,. 
k--+cc k--+cc 

The opposite in equa lity follows from Fa tou 's Lemma . I 

THEOREM 3 DOMINATED CONVERGENCE THEOREM 
Let g be p,-summable and f, {fk}k 1 be p,-measurable. Suppose lfkl < g and 
h ----> f p, a.e. as k----> oo. Then 

lim j lfk - fl dp, = 0. 
k->oc 

PROOF By Fa tou's Lemma , 

! 2g dp, = j limin f(2g -If- fkl) dp, < lim in f/ 2g -If- hi dp,, k ----t 00 k --+ cc 

when ce 
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THEOREM 4 VARIANT OF DOMINATED CONVERGENCE THEOREM 

2I 

Let g, {gk}k' 1 be p,-summable and f, {fk}k' 1 p,-measurable. Suppose lfkl < 
gk (k = 1, . . .  ), fk -+ f p, a.e., and 

lim j gk d p, = j g d p,. k ->cc 

Then 

lim j lfk - fl d p,  = 0. k ->cc 

PROOF Simila r to proof of Theorem 3. I 

It is ea sy to verify tha t  limk->oo J lfk- fl d p,  = 0 d oes not n ecessa rily imply 
fk -+ f p, a . e. But if we pa ss to an a ppropria te subsequen ce we d o  obta in a . e. 
con vergen ce. 

THEOREM 5 
Assume f, {fk }k' 1 are p,-summable and 

lim j lfk -!I d p, = 0. k ->cc 

Then there exists a subsequence {fk1 }j 1 such that 

p, a.e. 

PROOF We select a subsequen ce {fkJj 1 ofthe fun ction s {fk}k' 1 sa tisfyin g  

Fix E > 0. Then 

Hen ce 

00 

I: j 11kj - 11 d p,  < oo. 
j=1 

1 00 J < � 2: !fkj - fl d p,, 
J=t 
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for ea ch i = 1, . . . . In view of ( *) therefore, 

for ea ch E > 0. I 

General Measure Theory 

1.4 Product measures, Fubini's Theorem, Lebesgue measure 

Let X and Y be sets. 

DEFINITION Let Jk be a measure on X and v a measure on Y. We define the 
measure J1, x v : 2x x Y --+ [0, oo] by setting for each S C X x Y: 

(Jk x v) (S) = in f { � Jk(A;)v(B;)} , 

where the infimum is taken over all collections of Jl,-measurable sets A; C X 
and v-measurable sets B; C Y (i = 1, . . .  ) such that 

00 s c U(A; X B;) .  
i=l 

The measure J1, x v is called the product measure of J1, and v. 

THEOREM I FUBINI'S THEOREM 
Let Jk be a measure on X and v a measure on Y. 

(i) Then Jk x v is a regular measure on X x Y, even if Jk and v are not 
regular. 

(ii) If A C X is Jl,-measurable and B C Y is v-measurable, then A x B is 
(Jk x v)-measurable and (Jk x v)(A x B)= Ji,(A)v(B). 

(iii) If S C X x Y is !J-finite with respect to J1, x v, then Sy = { x I ( x, y) E S} 
is ji,-measurable for v a.e. y, Sx = {y I (x, y) E S} is v-measurable for 
J1, a.e. x, Ji,(Sy) is v-integrable, and v(Sx) is Jl,-integrable. Moreover, 

(Jk x v) (S) = [ t-L (Sy) dv(y) = fx v(Sx) dji, (x). 

(iv) If f is (Jk x v)-integrable and f is !J-finite with respect to 1-L x v (in 
particular, iff is (Jk x v)-�ummable), then the mapping 

y r> L f(x, y) dJk(x) is v-integrable, 
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the mapping 

and 

x � [ f(x,y) dv(y) is p,-integrable, 

LxY f d(p, x v) = [ [L f(x, y) dp,(x)] dv(y) 

= L [[ f(x,y) dv(y)] dp,(x). 
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REMARK We will stud y  in Section 3.4 the Coa rea Formula , which is a kind 
of "curvilin ea r" version of Fubin i's Theorem. I 
PROOF 

I. Let :F d en ote the collection of a ll sets S C X x Y for which the ma ppin g  

is t-L-in tegra ble for ea ch y E Y and the ma ppin g 

y r> L Xs(x, y) dp,(x) 

is v-in tegra ble. For S E :F we write 

Defin e 

p(S) = [ [L Xs(x,y) dp,(x)] dv(y). 

Po = {A x B I A p,-mea sura ble, B v-mea sura ble} , 

P1 = {Uj tSj I Sj E Po}, 
Pz = { nj t Sj I Sj E Pt}. 

Note Po C :F and 

p(A x B) = p,(A)v(B) (Ax B E Po). 

If At x Bt, A2 x Bz E P0, then 

(A1 x Bt) n (A2 x Bz) = (A1 n Az) x (B1 n Bz) E Po, 

and 

(At X Bl)- (Az X Bz) =((At- Az) X Bl) u ((At n Az) X (Bl- Bz)) 
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is a disjoint union of members of P0• It follows that each member of P1 is a 
countable disjoint union of members of Po and hence P1 C :F. 

2. Claim #1: For each S c X x Y, 

(JL x v) (S) = inf{p(R) I S  C R E P1}. 

Proof of Claim #1: First we note that if S C R = Uf 1 (A i x Bi), then 

Thus 

00 00 

p(R) < LP(Ai x Bi) = L JL(A;)v(B; ). 
i=l i= l 

inf {p(R) I S C R E Pi} < (JL x v) (S) .  

Moreover, there exists a disjoint sequence {A/ x B/}j 1 in Po such that 

oc 
R =  U (A/ X B/) . 

j=l 

Thus 
00 

p(R) = L JL(A/)v(B/) > (JL x v) (S). 
j=l 

3. Fix A x B E P0. Then 

(JL x v) (A x B) < JL(A)v(B) = p(A x B) < p(R) 

for all R E P1 such that A x B C R. Thus Claim #1  implies 

(JL x v)(A x B) . JL(A)v(B) . 

Next we must prove A x B is (JL x v )-measurable. So suppose T C X x Y 
and T c R E P1• Then R - (Ax B) and Rn (Ax B) are disjoint and belong 
to P1• Consequently, 

(JL x v) (T - (Ax B)) + (JL x v) (T n (Ax B)) 

< p(R - (Ax B)) + p(R n (Ax B)) 

= p(R), 

and so, according to Claim #1 ,  

(JL x v) (T - (Ax B)) + (JL x v) (T n (Ax B)) < (JL x v) (T) . 

Thus (A x B) is (JL x v)-measurable. This proves (ii). 
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4. Claim #2: For ea ch S C X x Y there is a set R E P2 such tha t  S C R 
and 

p(R) = (p, x v) (S) . 

Proof of Claim #2: If (p, x v) (S) = oo, set R =X x Y. If (p, x v) (S) < oc. 
then for ea ch j = 1, 2, . . .  there is a ccord in g  to Cla im #1 a set Rj E P1 such 
tha t S C Rj and 

Defin e 

1 
p ( Rj) < (p, X ll) ( S) + -; . 

J 

00 
R = n Rj E Pz. 

j=l 

Then R E F, and by the Domina ted Con vergen ce Theorem, 

k 
(p, X v) (S) < p(R) = lim p n Rj < (p, X v) (S). k->oo j=l 

5. From (ii) we see tha t  every member of P2 is (p, x v )-mea sura ble and thus 
(i) follows from Cla im #2. 

6. If S C X x Y and (p, x v) (S) = 0, then there is a set R E P2 such tha t  
S C Rand p(R) = 0; thus S E F and p(S) = 0. 

Now suppose tha t S C X x Y is (p, x v) -mea sura ble and (p, x v)(S) < oc. 
Then there is a R E Pz such tha t S C R and 

(p, x v) (R- S) = 0; 

hen ce 

Thus 

p,{x I (x, y) E S} = p,{x I (x, y) E R} 

for v a . e. y E Y, and 

(p, x v) (S) = p(R) = j p,{x I (x, y) E S} dv(y) .  

Assertion (iii) follows. 
7. Assertion (iv) red uces to (iii) when f = Xs· Iff > 0, is (p, x v ) -in tegra ble 

and is CT-fin ite with respect to p, x v, we use Theorem 7, Section 1.1.2, to write 

00 1 
f = L kxAk k=l 
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and n ote (iv) results for such an f from the Mon oton e Con vergen ce Theorem. 
Fina lly, for gen eral f we write 

and (iv) follows. I 

DEFINITION One-dimensional Lebesgue measure £1 on IR1 is defined by 

£'(A) = ;n f{� d hm C; I A C p C,,C, c II<} 
for all A C JR.-

DEFINITION We inductively define n-dimensional Lebesgue measure Ln on 
!Rn by 

Ln = Ln-1 x £1 = £1 X · · ·  X L1(n times) 

Equivalently Ln = Ln-k x Lk for each k E { 1, . . .  , n- 1 }. 

We assume the reader's familiarity with all the usual facts aboui Ln. 

NOTATION We will write "dx," "dy," etc. ra ther than "dLn" in in tegra ls ta ken 
with respect to Ln. We a lso write L1 (!Rn) for £1 (!Rn, Ln ), etc. 

1.5 Covering theorems 

We presen t in this section the funda men ta l coverin g  theorems of Vita li and 
of Besicovitch. Vita li's Coverin g  Theorem is ea sier and is most useful for 
in vesti�a tin g Ln on !Rn. Besicovitch's Coverin g  Theorem is much ha rd er to 
prove, but it is n ecessary for stud yin g  a rbitrary Rad on mea sures Jk on !Rn. The 
crucial geometric differen ce is tha t  Vita li's Coverin g  Theorem provid es a cover 
of en la rged ba lls, wherea s  Besicovitch 's Coverin g  Theorem yield s a cover out 
of the origina l ba lls, a t  the price of a certain (con trolled ) a moun t of overla p. 

These coverin g theorems will be employed throughout the rest of these n otes, 
the first and most importan t a pplica tion bein g to the differen tia tion theorems in 
Section 1.6. 

1.5.1 Vitali's Covering Theorem 

NOTATION If B is a closed ba ll in !Rn, we write B to d en ote the con cen tric 
closed ba ll with rad ius 5 times the rad ius of B. 
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DEFINITIONS 

(i) A collection :F of closed balls in IRn is a cover of a set A C IRn if 

Ac U B. 
BE:F 

(ii) :F is a fine cover of A if, in addition, 

in f { d ia m  B I x E B, B E F} = 0 

for each x E A. 

THEOREM I VITALI'S COVERING THEOREM 

Let :F be any collection of nondegenerate closed balls in IRn with 

sup{d ia m  B I BE F} < oo. 

Then there exists a countable family Q of r;lisjoint balls in :F such that 

PROOF 

U B c U B. 
BE:F BEQ 
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I. Write D = sup{d ia m B I B E F}. Set ;:1 = {B E :F I D/2i < 
d ia m  B < Dj2i-1}, (j = 1,2, ... ). We defin e Q1 c ;:1 a s  follows: 

(a) Let Q1 be an y ma xima l  d isjoin t  collection of ba lls in :F1. 

(b) Assumin g  Q1, Q2, ... , 9k-1 ha ve been selected , we choose Qk to be an y 
ma xima l  d isjoin t subcollection of 

k-l 
BE :Fk IBn B' = 0 for a ll B' E u Q j 

j=l 

Fina lly, defin e Q = Uj 1Q1. Clea rly Q is a collection of d isjoin t ba lls and 
Q c :F. 

2. Claim: For ea ch B E :F, there exists a bal l B' E Q so tha t B n B' f. 0 
� 

and B c B'. 

Proof of C !aim: Fix B E :F. There then exists an i�d ex j such tha t B E Fj. 
By the ma xima lity of Qj, there exists a ba ll B' E ut=1Qk with B n B' f. 0. 
But d ia m  B' > D j2i and d ia m  B < D j2i -l, so tha t  d ia m  B < 2 d ia m  B'. 
Thus B C B', a s  cla imed . I 
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A technica l consequence we will use la ter is this: 

COROLLARY 1 
Assume that :F is ajw_e_ cover of A by closed balls and 

sup{ d ia m  B I B E F} < oo. 

Then there exists a countable family Q of disjoint balls in :F such that for each 
finite subset { B 1, ... , Bm} C :F, we have 

m 
A-U Bk c U 

k=l BEQ-{B,, ... ,Bm} 

A 

B 

PROOF Choose Q a s  in the proof of the Vita li Coverin g Theorem and select 
{B1, • • •  ,Bm} C :F. If A C Uk' 1Bk, we a re d on e. Otherwise, let x E 
A -Uk' 1 Bk. Sin ce the ba lls in :Fa re closed and :F is a fin e cover, there exists 
BE :F with x E Band B n Bk = 0 (k = 1, ... , m) . But then , from the cla im 
in the proof a bove, there exists a ba ll B' E Q such tha t  B n B' f- 0 and B C B'. I 

Next we show we can mea sure theoretica lly "fill up" an a rbitra ry open set 
with coun ta bly man y d isjoin t closed ba lls. 

COROLLARY 2 
Let U c ]Rn be open, 8 > 0. There exists a countable collection Q of disjoint 
closed balls in U such that d ia m  B < 8 for all B E Q and 

c..n (u - U B) = 0. 
BE9 

PROOF 
I. Fix I - 1/5n < (} < 1. Assume first C (U) < oo. 
2. Claim: There exists a fin ite collection {Bi}f1\ of disjoin t closed ba lls in 

U such tha t d ia m  (Bi) < 8 (i = 1, .. .  ,M1), and 

Proof of C /aim: Let :F1 = { B I B C U, d ia m  B < 8}. By Theorem 1, there 
exists a coun ta ble d isjoin t fa mily Q1 c :F1 such tha t  

Uc U B. 
Bt=O, 
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Thus 

Hen ce 

so tha t 

C (U) < L C (B) 
BE9t 

= 5n c..n ( U B) . 
BE9t 

c..n (u � U B) < (1- 5� ) c..n(U) . 
BE9t 

Sin ce 91 is coun ta ble, there exist ba lls B1, • • •  , BM, in 91 sa tisfyin g(*) .  
3. Now let 

Mt 

Uz = U- U Bi , 
i=l 

Fz ={BIB C U2,d ia m B < 6}, 
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and , a s  a bove, find fin itely man y d isjoin t ba lls B M, + h . . . , B M2 in :F2 such tha t  

< 6C ( Uz ) 
< �C ( U). 

4. Con tin ue this process to obta in a coun ta ble collection of d isjoin t ba lls such 
tha t 

C (u-p Bi) < (Jk£n(U) (k = 1, . . .  ) . 

Sin ce (Jk -> 0, the corolla ry is proved if c..n(U) < oo. Should £n(U ) = oo, 
we a pply the a bove rea son in g to the sets 

Um = {x E U I m < lxl < m +1} (m=O,l, ... ). I 
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REMARK See Corolla ry 1 in the n ext section , which repla ces Ln in the pre­
ced in g proof by an a rbitra ry Rad on mea sure. I 

1.5.2 Besicovitch 's Covering Theorem 

If J1, is an a rbitra ry Rad on mea sure on IRn, there is n o  systema tic wa y to con trol Jk( B) in terms of Jk( B). In stud yin g  such a mea sure, Vita li's Coverin g Theorem 
is n ot useful; we n eed in stead a coverin g theorem tha t d oes n ot require us to 
en la rge ba lls. 

THEOREM 2 BESJCOVITCH'S COVERING THEOREM 

There exists a constant Nn, depending only on n, with the following property: 
If :F is any collection of nondegenerate closed balls in IRn with 

sup{d ia m  B I BE F} < oo 

and if A is the set of centers of balls in :F, then there exist Yl, . . . , 9 Nn C :F 
such that each Yi (i = 1, . . .  , Nn) is a countable collection of disjoint balls in 
:F and 

Nn 
A c U U B. 

i=l BE9; 

PROOF 
1. First suppose A is bound ed .  Write D = sup{ d ia m  B I B E F}. Choose 

an y ba ll B1 = B(a1,r1) E :F such tha t r1 > (3/4)D/2. Ind uctively choose 
B1, j > 2, a s  follows. Let Aj = A - u�-: Bi. If A1 = 0, stop and set 
J = j- 1. If A1 f. 0, choose B1 = B( a1, r1) E :F such tha t  aJ E A1 and 
r1 > 3/4 sup{r I B( a,r) E :F,a E A1}. If A1 f. 0 for a ll j, set J = oo. 

2. Claim #/: If j > i, then rj < (4/3h. 

Proof of Claim #]: Suppose j > i. Then a1 E Ai and so 

3. Claim #2: The ba lls {B( a1, r1/3)}f 1 a re d isjoin t. 

Proof of Claim #2: Let j > i. Then a1 f:_ Bi; hen ce 

lai- a1·1 > r· = - + - > - + - - r· > - + - . 
ri 2ri ri (2) (3 ) ri rj 

t 3 3 -3 3 4 J 3 3 
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4. Claim #3: If J = oo, then limj_,oo rj = 0. 
Proof of Claim #3: By Claim #2 the balls {B( aj,rj/3 )}j 1 are d isjoin t. 

Sin ce aj E A and A is bound ed , r j --+ 0. 
5. Claim #4: A c uf 1Bj. 
Proof of Claim #4: If J < oo, this is trivia l. Suppose J = oo. If a E A, 

there exists an r > 0 such tha t B( a, r) E :F. Then by Claim #3, there exists an 
rj with rj < (3/4)r, a con trad iction to the choice of rj if a rf_ ut11 Bi. 

6. Fix k > I and let I= {j I 1 < j < k, Bj n Bk f. 0}. We n eed to estima te 
the ca rd ina lity of I. Set K =In {j I rj < 3rk }· 

7. Claim #5: Card (K) < 20n. 
Proof of Claim #5: Let j E K. Then Bj n Bk f. 0 and Tj < 3rk. Choose 

an y x E B( aj,rJ/3 ). Then 

r· lx- akl < lx- ail+ lai- akl < ; + rj + rk 
4 

= 3 rj + rk < 4rk + rk = Srk, 

so tha t B(aj, rj/3) c B(ak, Srk)· Reca ll from Cla im #2 tha t  the ba lls B(ai, r;/3) 
are d isjoin t. Thus 

Con sequen tly, 

a(n)Snrkn = C(B( ak, Srk )) 
> L C(B(aj, ri )) 

jEK 
= 

L
a(n) Cif jEK 

8. We must n ow estima te Card (I- K). 

by Cla im #I 

Let i, j E I- K, with i =f. j. Then 1 < i, j < k, Bin Bk =f. 0, Bin Bk f. 0, 
ri > 3rk, rj > 3rk. For simplicity of n ota tion ,  we take (without loss of gen ­
era lity) ak = 0. Let 0 < (} < 1r be the an gle between the vectors ai and aj. 
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FIGURE 1.1 
Illustration of Claim #6. 

We intend to find a lower bound on 6, and to this end we first assemble some 
facts: 

Since i, j < k, 0 = ak rf_ Bi U Bj. Thus Ti < lai l  and Tj < l ai l ·  Since 
Bin Bk ::/- 0 and Bj n Bk ::/- 0, lai l  < Ti + Tk and laj l < Tj + Tk. Finally, 
without loss of generality we can take I ail < l ai 1 .  In summary, 

3rk < Ti < l ai l  < Ti + Tk 
3rk < Tj < l aj l < Tj + Tk 
l ai l < l ai l ·  

9. Claim #6a: If cos 6 > 5/6, then ai E Bj. 
Proof of Claim #6a: Suppose l ai - ai I > l ai I ; then the Law of Cosines gives 

cos (} =  
l ai l

2 
+ l aJ I

2 
- l ai - ai l

2 

2lai l l aJ I 

< l ad 
= 

l ai l  < ! < 
5 

. - 2lai l laJ I 2lai l - 2 6 
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l ai l 2 + la · l 2 - lai - a · l 2 cos 0 = J J 
2lai l laj l 

= l ai l  + ( laj l - lai - aj l ) ( laj l  + lai - aj l ) 
2laj l  2lai l l aj l 

< � + ( lai l - lai - aj l ) (21ai l ) 
- 2 2lai l lai l 

1 Tj + Tk - Tj 1 Tk 5 <
- + = - + - < - .  - 2 Ti 2 Ti - 6 

10. Claim #6b: If ai E Bj , then 

for 
8 E(O) = - (1 - cos O) . 
3 
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Proof of Claim #6b: Since ai E Bj , we must have i < j; hence aj f/. Bi and 
so lai - aj I > Ti. Thus 

0 < lai - ai l + lai l - lai l 
- lai l  
< l ai - ai l + lai l - lai l  . lai - aj l - lai l + lai l 
- lai l  lai - aj l  
_ lai - aj 12 - (laj I - lai l )2 

l ai l lai - ai l 
_ l ai l2 + laj l2 - 2la; l l aj l cos 0 - lai l2 - laj l2 + 2lai l lai l  

lai l lai - aj l  
2la; l (1 - cos O) 

lai - aj l  
< 2(ri + rk) (  1 - cos 0) 

11. Claim #6c: If ai E Bj . then cos 0 < 61/64. 
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Proof of Claim #6c: Since ai E Bj and aj rf_ Bi, we have Ti < l ai - aj l  < Tj . 
Since i < j, Tj < (4 /3 h .  Therefore, 

l ai - aj I + lai I - iaj I > Ti + Ti - Tj - Tk 
3 

Then, by Claim #6b, 

Hence cos (} < 61/64. 

> -T · - T · - Tk - 2 J J 
1 1 = -T · - Tk > -T · 2 J - 6 J 

1 
> - la · l ·  - 8 J 

12. We combine Claims #6a-c to obtain 

C /aim #6: For all i, j E I - K with i :f. j, let (} denote the angle between 
ai - ak and aj - ak . Then (} >  arccos 6 1 /64 = 6o > 0. 

13. Claim #7: There exists a constant Ln depending only on n such that 
Card (I - K) < Ln. 

Proof of Claim #7: First, fix To > 0 such that if x E 8B(O, 1 )  and y, z E 
B (x , To), then the angle between y and z is less than the constant 60 from Claim 
#6. Choose Ln so that 8 B ( 0, 1 )  can be covered by Ln balls with radius To and 
centers on 8B(O, 1 ) ,  but cannot be covered by Ln - 1 such balls. 

Then 8Bk can be covered by Ln balls of radius ToTk, with centers on 8Bk . By 
Claim #6, if  i, j E I- K with i :f. j ,  then the angle between a; - ak and aj - ak 
exceeds 60. Thus by the construction of To, the rays aj - ak and ai - ak cannot 
both go through the same ball on 8Bk. Consequently, Card (I - K) < Ln. 

14. Finally, set Mn = 20n + Ln + 1 . Then by Claims #5 and #7, 

Card (I) = Card (K) + Card (I - K) 
< 20n + Ln < Mn. 

15. We next define Qh . . . , 9Mn · 
First define !J : { 1 ,  2, . . .  } --+ { 1 ,  . . .  , Mn }  as follows: 

(a) Let rJ(i) = i for 1 < i < Mn · 
(b) For k > Mn inductively define rJ( k + 1 )  as follows. According to the 
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calculations above, 

so there exists l E { I ,  . . .  , Mn} such that Bk+ 1 n B1 = 0 for all j such 
that u(j) = l ( 1  < j < k). Set u(k + 1 )  = l. 

Now, let Yj = { Bi I u ( i) = j}, 1 < j < Mn. By the construction of u ( i), 
each Yj consists of disjoint balls from F. Moreover, each Bi is in some 91 , so 
that 

J Mn 
A c U Bi =  u u B. 

i= 1 i=1 BE\!; 

16. Next, we extend the result to general (unbounded) A. 
For l > 1, let Az = An{x I 3D(l- 1)  < lx l  < 3Dl} and set F1 = {B (a, r) E 

F I a E Az }. Then by step 15, there exist countable collections 9L . . .  , 9�n of 
disjoint closed balls in F1 such that 

Mn 
Az c U U B. 

i=1 BE91 
• 

Let 
00 

Yj = U 9J1- 1 for 1 < j < Mn, 
l= 1 
oc 

Yi+Mn = U YJ1 for 1 < j < Mn . 
1= 1  

Set Nn = 2Mn. I 
We now see as a consequence of Besicovitch 's Theorem that we can "fill up" 

an arbitrary open set with a countable collection of disjoint balls in such a way 
that the remainder has p,-measure zero. 

COROLLARY I 
Let p, be a Borel measure on IRn , and F any collection of nondegenerate closed 
balls. Let A denote the set of centers of the balls in F. Assume p,( A) < oo and 
inf{ r I B( a, r) E F} = 0 for each a E A. Then for each open set U C IRn , 
there exists a countable collection 9 of disjoint balls in F such that 

and 

p, ((A n U) - U B) = 0. 
BE9 
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REMARK The set A need not be p,-measurable here. 
with Corollary 2 of Vitali's Covering Theorem, above. 

PROOF Fix l - l /Nn < () < 1 .  

General Measure Theory 

Compare this assertion I 

I. Claim: There exists a finite collection { B1, . . . , B M1 } of disjoint closed 
balls in U such that 

Proof of Claim: Let F1 = {B I B E F, diam B < l ,  B c U}. By Theo­
rem 2, there exist families Q1 , • • •  , 9Nn of disjoint balls in F1 such that 

Nn 
A n u c U U B. 

i=l BE9i 

Thus 

p,(A n U) < �p, (A n un 
B

�
i 

B) . 

Consequently, there exists an integer j between l and Nn for which 

�t A n u n u B 
BE9; 

By Theorem 2 in Section l . l ,  there exist balls B� o  . . .  , BM1 E Qj such that 

But 

p,( A n U) = p, (A n U n p Bi) + p, (A n U - p Bi) , 

since uf'1\ Bi is p,-measurable, and hence ( *) holds. 
2. Now let u2 = u - uf'1\Bi, F2 = {B I B E F, diam B < l , B c U2}, 

and as above, find finitely many disjoint balls B M1 + � >  . . . , B M, in F2 such that 

< ()p,(A n U2) 

< ()2 p,(A n U). 
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3. Continue this process to obtain a countable collection of disjoint balls from 
F and within U such that 

J.L ((A n U) -p Bi) < (}kJ.L(A n U). 

Since (}k --+ 0 and J.L( A) < oo, the corollary is proved. I 

1.6 Differentiation of Radon measures 

We now utilize the covering theorems of the previous section to study the dif­
ferentiation of Radon measures on llln . 

1.6.1 Derivatives 

Let J.L and v be Radon measures on llln . 

DEFINITION For each point x E Jlln , define 

D/1- v(x) = 
lm supr-->0 !1-(B(x,r)) 

{ l" v(B(x,r)) 

+oo 

l. . f v(B(x,r)) tm m r-->0 !1-(B(x,r)) 
+oo 

if J.L(B (x, r)) > O for all r > 0 
if J.L(B(x, r))  = 0 for some r > 0, 

if J.L(B(x, r)) > O for all r > 0 
if J.L(B(x, r)) = O for some r > 0. 

DEFINITION If D�-'v(x) = D 11- v(x) < +oo, we say v is differentiable with 
respect to J.L at x and write 

D�-'v is the derivative of v with respect to J.L. We also call D�-'v the density of 
v with respect to J.L. 

Our goals are to study (a) when D�-'v exists and (b) when v can be recovered 
by integrating D �-' v.  

LEMMA 1 
Fix 0 < � < oo. Then 

(i) A C {x E llln I D 11-v(x) < �} implies v(A) < �J.L(A) , 
(ii) A C {x E llln I D�-'v(x) > �} implies v(A) > �J.L(A). 
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REMARK The set A need not be J-L- or v-measurable here. I 

PROOF We may assume J-L(!Rn ), v(!Rn ) < oo, since we could otherwise con­
sider J-L and v restricted to compact subsets of !Rn . 

Fix E > 0. Let U be open, A C U, where A satisfies the hypothesis of (i). Set 

F =  {B I B = B(a , r), a E A, B  C U, v(B) < (fr + t:)J-L(B) } .  

Then inf{r I B(a, r) E F} = 0 for each a E A, and so Corollary l in Sec­
tion 1 .5.2 provides us with a countable collection Q of disjoint balls in F such 
that 

v (A - U B) = 0. 
BEQ 

Then 

v(A) < L v(B) < (fr + �:) L J-L(B) < (fr + t:)J-L(U) . 
BEQ BEQ 

This estimate is valid for each open set U ::J A, so that Theorem 4 in Sec­
tion l . l  implies v(A) < (fr + t:)J-L(A). This proves (i). The proof of (ii) is 
similar. I 

THEOREM 1 
Let f-L and v be Radon measures on IRn. Then P �"v exists and is finite J-L a.e. 
Furthermore, D�"v is J-L-measurable. 

' 

PROOF We may assume v(IRn ), J-L(lRn ) < oo, as we could otherwise consider 
f-L and v restricted to compact subsets of IRn . 

1. Claim #I : D �"v exists and is finite f-L a.e. 

Proof of Claim #I : Let I =  {x I D�"v(x) = +oo}, and for all 0 < a < b, 
let R(a, b) = {x I D �"v(x) < a < b < D�"v(x) < oo}. Observe that for each 
fr > 0, I C {x I D�"v(x) > fr} .  Thus by Lemma l ,  

l 
J-L( I) < -v( I) . 

Q 

Send fr --+ oo to conclude J-L( I) = 0, and so D �"v is finite J-L a. e. 
Again using Lemma 1 ,  we see 

bJ-L(R(a, b)) < v(R(a, b) ) < aJ-L(R(a, b)) ,  
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whence J-L(R(a, b)) = 0, since b > a. Furthermore, 

{x I D 1-'v(x) < Dl-'v(x) < oo} = U R(a, b) , 

and consequently D�-'v exists and is finite J-L a.e. 
2. Claim #2 : For each x E llln and r > 0, 

a. , b rational 

lim sup J-L(B(y, r)) < J-L(B(x, r)) .  
y-+x 

A similar assertion holds for v. 
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Proof of Claim #2 : Choose Yk E llln with Yk ---+ x. Set h = XB( ) , Yk ! T  f = XB(x,r)" Then 

and so 

lim sup h < f 
k-+oc 

lim inf( 1 - h) > ( 1 - f). k-+oo 
Thus by Fatou's Lemma, 

that is, 

r ( 1 - f) dj.L < r lim inf( 1 - h) dj.L 
} B(x,2r) } B(x,2r) k-+oo 

< lim inf r c 1 - h)  dj.L, k-+oo } B(x,2r) 

J-L(B(x, 2r)) - J-L(B(x, r)) < lim inf(J-L(B(x, 2r)) - J-L(B(yk , r))) . k-+oo 

Now since J-L is a Radon measure, J-L(B(x, 2r)) < oo; the assertion follows. 
3. Claim #3: D�-'v is J-L-measurable. 

Proof of Claim #3: According to Claim #2, for all r > 0, the functions 
x �--+ J-L( B(x, r)) and x 1--+ v(B(x, r )) are upper semicontinuous and thus Borel 
measural;>le: Consequently, for every r > 0, 

' ( � 
fr (x) = { 

is J-L-measurable. But 

v(B(x,r)) 1-'(B(x,r)) 
+oo 

and so D 1-'v is J-L-measurable. I 

if J-L(B(x, r)) > 0 
if J-L(B(x, r)) = 0  

J-L- a.e. 
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1.6.2 Integration of derivatives; Lebesgue decomposition 

DEFINITION The measure v is absolutely continuous with respect to f-L, writ­
ten 

v « J-L, 

provided J-L(A) = 0 implies v(A) = O for all A C llln . 

DEFINITION The measures v and J-L are mutually singular, written 

v j_ j.L, 

if there exists a Borel subset B C llln such that 

J-L(lRn - B) = v( B) = 0. 

THEOREM 2 DIFFERENTIATION THEOREM FOR RADON MEASURES 
Let v, f-L be Radon measures on llln ,  with v << f-L· Then 

for all J-L-measurable sets A C llln . 

REMARK This is a version of the Radon-Nikodym Theorem. Observe we 
prove not only that v has a density with respect to J-L, but also that this density 
D�" v can be computed by "differentiating" v with respect to f-L· These assertions 
comprise in effect the Fundamental Theorem of Calculus for Radon measures 
on llln . I 

PROOF 
I. Let A be J-L-measurable. Then there exists a Borel set B with A C B, 

J-L(B - A) = 0. Thus v(B - A) = 0 and so A is v-measurable. Hence each 
J-L-measurable set is also v-measurable. 

2. Set 

Z = {x E llln I D�"v(x) = 0},  

I =  {x E lRn I D�"v(x) = +oo}; 

Z and I are J-L-measurable. By Theorem l ,  J-L(I) = 0 and so v(I) = 0. Also, 
Lemma I implies v(Z) < cxJ-L(Z) for all ex >  0; thus v(Z) = 0. Hence 

' 
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and 

v(I) = 0 = 1 Dl'v df-L. 

3. Now let A be J-L-measurable and fix l < t < oo. Define for each integer m 

Am = A n  {x E llln I tm < Dl'v(x) < tm+ l } . 
Then Am is J-L-, and so also v-, measurable. Moreover, 

00 

m=-oo 

and hence 

Consequently, 
00 

v(A) = L v(Am) 
m=-oo 

(by Lemma l )  
m 

m 

Similarly, 

v(A) = L v(Am) 
m 

(by Lemma l )  
m 

m 
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Thus l /t fA D�" v dJ-L < v(A) < t fA D�"v df-L for all 1 < t < oo. Send 
t ---+ t +. I 

THEOREM 3 LEBESGUE DECOMPOSITION THEOREM 
Let v, J-L be Radon measures on !Rn . 

(i) Then v = Vac + v5 , where Vac' v5 are Radon measures on llln with 

Vac « f-L and 

(ii) Furthermore, 

and 

and consequently 

v(A) = i D/1-v dJ-L + v5 (A) 

for each Borel set A C llln .  

J-L a.e. ,  

DEFINITION We call Vac the absolutely continuous part, and v5 the singular 
part, of v with respect to f-L· 

PROOF 
I. As before, we may as well assume J-L(!Rn ), v(llln )  < oo. 
2. Define 

£ = {A C llln I A Borel, J-L(!Rn - A) = 0},  

and choose Bk E £ such that, for k = 1 . . .  , 

v(Bk) < inf v(A) + k1 • 

AE£ 

00 
J-L(!Rn - B) < :L>C!Rn - Bk) = 0, 

we have B E £ , and so 

Define 

k=l 

v(B) = inf v(A). 
AE£ · 

Vac = V L B, 

V5 = V L (Jlln - B); 

these are Radon measures according to Theorem 3 in Section 1 . 1 .  
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3. Now suppose A C B, A is a Borel set, p,(A) = 0, but v(A) > 0. Then 
B - A E £ and v(B - A) < v(B), a contradiction to (*). Consequently, 
Vac � p,. On the other hand, p,(IRn - B) = 0, and thus v, ..l p,. 

4. Finally, fix � > 0 and set 

According to Lemma l ,  

�p, (C) < v, (C) = 0, 

and therefore D �" v, = 0 p, a. e. This implies 

D11-vac = D/1-v p, a.e. I 

1.7 Lebesgue points; Approximate continuity 

1.7. 1 Lebesgue-Besicovitch Differentiation Theorem 

NOTATION We denote the average of f over the set E with respect to p, by 

provided 0 < p,(E) < oo and the integral on the right is defined. 

THEOREM 1 LEBESGUE-BESICOVITCH DIFFERENTIATION THEOREM 
Let p, be a Radon measure on IRn and f E L{oc(IRn , p, ) .  Then 

for p, a.e. x E IRn. 

lim { f dp, = f(x) r-0 JB(x,r) 

PROOF For Borel B C ]Rn, define v± (B) = J3 j± dp,, and for arbitrary 
A C IRn , v±(A) = inf{v±(B) I A C B, B Borel}. Then v+ and v- are Radon 
measures, and so by Theorem 2 in Section 1 .6, J <l: ..:.:� �� 

and 
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for all p,-measurable A. Thus D �"v± = f± p, a. e. Consequently, 

lim { f dp, = lim 
(B
/ 

) )
[v+ (B(x, r)) - v- (B(x, r))] r-0 JB(x,r) r-0 p, x, r 

= D�"v+ (x) - D�"v- (x) 

= j+ (x) - r (x) = f(x) for �t a.e. x. I 
COROLLARY 1 
Let p, be a Radon measure on llln ,  l < p < oo, and f E Lfoc(llln ,  p,). Then 

for p, a.e. x. 

lim j I f - f (x) I P dp, = 0 r-O JB(x,r) 

DEFINITION A point x for which (*) holds is called a Lebesgue point of f 
with respect to p,. 

PROOF Let {ri}f 1 be a countable dense subset of JR. By Theorem l ,  

for p, a. e. x and i = l ,  2, . . . .  Thus there exists a set A C IRn such that p,( A) = 0, 
and x E IRn - A implies 

lim · { I f - ri i P  dp, = lf(x) - ri i P  r-o JB(x,r) 
for all i. Fix x E llln - A and E > 0. Choose r; such that l f (x) - r; I P < �:/2P . 
Then 

lim sup 1 I f - f(x) IP dp, 
r-0 JB(x,r) 

< 2p-l [lim sup 1 I f - r; I P dp, + 1 l f (x) - ri i P dp,] r-0 JB(x,r) JB(x,r) 
= 2p-l [ lf (x) - r; IP + l f (x) - ri iPJ < E. I 

For the case p, =en, this stronger assertion holds: 

COROLLARY 2 
If f E Lfoc for some 1 < p < oo, then 

lim f I f - f(x) IP dy = o for en a.e. x. , Bl{x} ]B 
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where the limit is taken over all closed balls B containing x as diam B ---+ 0. 

The point is thauhe balls need--net-be centered_at__x_ 

PROOF We show that for each sequence of closed balls {Bk}k' 1 with x E Bk 
and dk = diam Bk ---+ 0, 

1 I f - f (x) IP dy ---+ 0 
JBk 

as k ---+ oo, at each Lebesque point of f. Choose balls {Bk}k' 1 as above. Then 
Bk C B(x, dk) ,  and consequently, 

1 I f - f(x) IP dy < 2n f I f - f(x)I P dy. 
JBk JB(x,dk ) 

The right-hand side goes to zero if x is a Lebesque point. I 

COROLLARY 3 
Let E C llln be .en-measurable. Then 

and 

lim 
.cn (B(x, r) n E)

= 1 for .en a.e. X E E 
r-0 .Cn (B(x, r)) 

l. 
.cn(B(x, r) n E) 

1m --::--7--='-:----'---:-� = 0 for .en a.e. x E IRn - E. 
r-o .Cn (B(x, r) )  

PROOF Set f = X E '  J-L = .en in Theorem l .  I 
DEFINITION Let E C llln .  A point x E llln is a point of density 1 for E if 

lim .cn (B(x, r) n E) 
= l r-0 .Cn(B (x, r)) 

and a point of density 0 for E if 

lim 
C(B(x, r) n E)

= O . 
r-o .Cn (B(x, r)) 

REMARK We regard the set of points · of density l of E as comprising the 
measure theoretic interior of E; according to Corollary 3, .en a.e. point in an 
.en-measurable set E belongs to its measure theoretic interior. Similarly, the 
points of density 0 for E make up the measure theoretic exterior of E. In 
Section 5.8 we will define and investigate the measure theoretic boundary of 
certain sets E. See also Section 5 . 1 1 .  I 
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DEFINITION Assume j E L/oc(lRn ). Then 

j*(x) = { �mr_.ofB(x,r) f dy 

is the precise representative of f. 

if this limit exists 
otherwise 

REMARK Note that if j, g E Lfoc(llln ), with f = g en a.e., then f* = g* for 
all points X E llln . In view of Theorem l with f-L = en, limr->0 fB(x,r) f dy 
exists en a.e. In Chapters 4 and 5, we will prove that if J is a Sobolev or 
BV function, then f* = J, except possibly on a "very small" set of appropriate 
capacity or Hausdorff measure zero. 

Observe also that it is possible for the above limit to exist even if x is not a 
Lebesgue point of f; cf. Theorem 3 and Corollary l in Section 5.9. I 

1.7.2 Approximate limits, approximate continuity 

DEFINITION Let f : llln ---+ lllm . We say l E IRm is the approximate limit of 
f as y ---+ x, written 

if for each E > 0, 

ap lim f(y) = l , y->x 
lim 

en (B (x, r) n { l f - l l > �:}) 
= O r->0 en (B(x, r)) 

· 

So if l is the approximate limit of f at x, for each E > 0 the set { I f  - 1 1  > �:} 
has density zero at x. 

THEOREM 2 
An approximate limit is unique. 

PROOF Assume for each E > 0 that both 

and 

(**) 
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as r ---+ 
0. 

Then if 1 =/= 1', we set E = 1 1 - 1' 1 /3 and observe for each y E B (x,  r) 

3�: = 1 1 - 1' 1  < l f(y) - 1 1 + lf (y) - 1' 1 . 

Thus 

B(x, r) C { I f  - 1 1 > �:} U { I f  - 1' 1  > t:} . 

Therefore 

C(B(x, r)) < C (B(x, r) n { I f  - 1 1 > �:}) 

+C(B(x, r) n { l f(y) - 1' 1  > �:} ) ,  

a contradiction to (*), (**). I 
DEFINITION Let f : IRn ---+ JR. We say 1 is the approximate lim sup of f as 
y ---+ x, written 

ap lim sup f(y) = 1 ,  
y-x 

if 1 is the infimum of the real numbers t such that 

lim 
.cn(B(x, r) n {! > t} ) = 0. 

r-o .Cn(B(x, r)) 

Similarly, 1 is the approximate lim inf of f as y ---+ x, written 

ap lim inff(y) = 1 ,  y-x 

if 1 is the supremum of the real numbers t such that 

lim 
.cn(B(x, r) n {f < t} ) = 0. 

r-0 .Cn(B(x, r)) 

DEFINITION f : IRn ---+ IRm is approximately continuous at x E IRn if 

ap lim f(y) = f(x) .  y-x 

THEOREM 3 
Let f : IRn ---+ IRm be .en-measurable. Then f is approximately continuous .en 
a.e. 

REMARK Thus a measurable function is "practically continuous at practically 
every point." The converse is also true; see Federer [F, Section 2.9 . 1 3] . I 
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PROOF 
I. Claim: There exist disjoint, compact sets {Ki }i 1 C lR.n such that 

and for each i = l ,  2, . . .  

J IK, is continuous. 

Proof of Claim: For each positive integer m, set Bm = B(O, m ) . By Lusin's 
Theorem, there exists a compact set K1 C B1 such that .Cn (B1 - K1 )  < l and 
f IK1 is continuous. Assuming now Kt , . . .  , Km have been constructed, there 
exists a compact set 

such that 

m 
Km+t c Bm+ t - U Ki 

i=l 

C ( Bm+l - PI Ki) l 
< -­- m + 1 

and f IKm+l is continuous. 
2. For _en a.e. x E Ki, 

. .Cn (B(x, r) - Ki) 
hm = 0. 
r--0 ,Cn(B(x, r))  

Define A =  {x I for some i ,  x E Ki and (*) holds}; then .Cn(IRn - A) = 0. 
Let x E A, so that x E Ki and (*) holds for some fixed i. Fix E > 0. There exists 
s > 0 such that y E Ki and l x - Y l < s imply lf(x) - f(y) l < E. Then if 0 < 
r < s, B(x, r) n {y I lf (y) - f(x) I > E} C B( x, r) - Ki. In view of (*), we see 

ap lim f(y) = f(x). I 
Y-+X 

REMARK If f E L[oc (IR.n ) , the proof is much easier. Indeed, for each E > 0 

.cn(B(x, r) n { If - f(x) l > �:}) < ! ( I f _ f(x) l dy, .Cn (B(x, r))  E JB(x,r) 
and the right-hand side goes to zero for .en a.e. x. In particular a Lebesgue 
point is a point of approximate continuity. I 
REMARK In Section 6. 1 .3 we will define and discuss the related notion of 
approximate differentiability. I 
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1.8 Riesz Representation Theorem 

In these notes there will be two primary sources of measures to which we will ap­
ply the foregoing abstract theory: these are (a) Hausdorff measures, constructed 
in Chapter 2, and (b) R�ures characterizing certain .linear_functionals, 
generated as follows. 

THEOREM 1 RIESZ REPRESENTATION THEOREM 
Let L : Cc(IRn;  IRm ) --+ lR be a linenr_f.uuctional satisfying 

for each compact set K C IRn . Then there exists a Radon measure f-L on Rn 
and a J-L-measurable function 0' ; llln --+ lllm such that 

(i) IO' (x) l = 1 for J-L-a.e. x, and 
(ii) £(!) = In�n J • 0' dj.L 

for all f E Cc (IRn ; IRm ). 

DEFINITION We call J-L the variation measure, defined for each qp_en set 
V C JRn by 

PROOF 

J-L(V) = sup{L(f) I f  E Cc (llln ; lllm ) ,  I J I < l ,  spt(f) C V}.  

1. Define J-L on open sets V as above and then set 

J-L(A) = inf{J-L(V) I A C V open} 

for arbitrary A C Rn . 
2. Claim #1 : J-L is a measure. 

Proof of Claim #/: Let V, {Vi}i 1 be open subsets of llln ,  with V C Uf" 1 Vi. 
Choose g E Cc (llln ; lllm )  such that lgl < 1 and spt(g) C V. Since spt(g) is 
compact, there exists an index k such that spt(g) 'c uJ=1Vj. Let {(j }J= 1 be a 
finite sequence of smooth functions such that spt((j) C Vj for 1 < j < k and 
2:=;=1 (j = l on spt(g). Then g = 2:=7=1 g(j , and so 

k k 00 
I L(g) l  = L: L(g(j ) < 2..:: IL(g(j ) l < L: J-L( Vj ) . 

j=l j=l j=1 

Then, taking the supremum over g, we find J-L(V) < 2:='; 1 J-L(Vj ) . Now let 
{ Aj}  j 1 be arbitrary sets with A C Uj 1 Aj . Fix E > 0. Choose open sets Vj 
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such that A1 C Vj and J-L(Aj ) + Ej2i > J-L(Vj). Then 

00 00 
J-L(A) < J-L  U l'i < l::> (Vj) 

00 
j=l j=1 

< L:>(Aj) + E. j=l 
3. Claim #2 : J-L is a Radon measure. 

Proof of Claim #2 : Let U1 and U2 be open sets with dist(U1 , U2) > 0. Then 
J-L(U1 U U2) = J-L(U1 ) + J-L(U2) by definition of J-L. Hence if A 1 oA2 C llln and 
dist(A 1 ,  A2) > 0, then J-L(A1 U A2) = J-L(A1) + J-L(A2)· According to Carathe­
ordory's Criterion (Section 1 . 1 . 1), J-L is a Borel measure. Furthermore, by its 
definition, J-L is Borel regular; indeed, given A c IRn , there exist open sets Vk 
such that A c Vk and J-L(Vk) < J-L(A) + l /k for all k. Thus J-L(A) = J-L (nk' 1 Vk) . 
Finally, condition (*) implies J-L(K) < oo for all compact K. 

4. Now, let Ct (llln )  = {! E Cc (llln )  I f >  0}, and for f E Ct (llln ) ,  set 

>.. (!) sup{ IL (g) l l g E Cc (llln ; IRm ) , lgl < !} .  

Observe that for all f1 > h  E Ct (llln ) ,  it < h implies >.. (!1 ) < >..(h) . Also 
>..(cf) = c>..(f) for all c > 0, f E Ct (llln ). 

5. Claim #3: For all f1 > fz  E Ct (llln ), >..(!1 + h) =  >.. (ft )  + >..(h) . 
Proof of Claim #3: If gh g2 E Cc (llln ; lllm )  with lgt l < !1 and lg2 l < h, then 

lg 1 + g2 l < j1 + h We can furthermore assume L(g1 ) , L(g2) > 0. Therefore, 

)...(jl )  + A(h) < )...(j1 + h) . 

if !1 + h > 0 

if 11 + h = 0 

for i =  1 , 2. Then g1 o g2 E Cc (llln ;  lllm )  and g = g1 + g2 . Moreover, l gi l < J;, 
( i  = l ,  2), so that 

Consequently, 

>..(!1 + h) <  >..(!1 ) + >.. (h) . 
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6. Claim #4: >..(!) = fn�n f dj.L for all f E Ct (llln) .  

Proof of Claim #4: Let E > 0.  Choose 0 = t0 < t 1 < · · · < iN such that 
tN = 2 l l f l l u"' , 0 < ti - ti- l < E, and J-L(f-1 {ti } ) = 0 for i = l ,  . . .  , N. Set 
U1 = f- 1 ((tj_1 , tj ) ); Uj is open and J-L(Uj ) < oo. 

By Theorem 4 in Section l . l ,  there exist compact sets Kj such that K1 C Uj 
and J-L(Uj - K1 ) < t:/N, f = 1 , 2, . . . , N. Furthermore there exist functions 
gj E Cc (llln ; lllm )  with lgj l  < l ,  spt (gj ) C Uj, and IL(gj ) l > J-L(Uj) - t:/N. 
Note also that there exist functions h1 E Ct (llln )  such that spt (hi )  C Ui , 
0 < h1 < l ,  and hi =  l on the compact set K1 U spt (gj )· Then 

and 

>.. (hj) = sup{IL(g) l l  g E Cc (llln ; lllm ) , lg l < hj } 
< sup{ IL(g) l l  g E Cc (IRn ; lllm ) , l g l  < l ,  spt (g) C Uj} 
= J-L(Ui) ,  

whence J-L(U1 ) - t:/N < >.. (h1 )  < J-L(Uj)· 
Define 

N 
A = x I f(x) 1 - L:>1 (x) > 0 . , 

j=l 

A is open. Next, compute 

N 
= sup IL(g) l I g E Cc (llln ; IRm ) , lg l < f - f L hj 

j=l 
< sup{ IL(g) l I g E Cc(IRn ; lllm ) ,  l g l  < I I J I I L=XA } 
= I I J I I L= sup{L(g) I g E Cc (llln ; IRm), lg l < XA } 
= I I J I I L=J-L(A) 

N 
= I I J I I L=f-L U cuj - {hj = t } )  

j=l 
N 

< I I J I I L= L J-L(Uj - Kj ) < �:I If i l L= · 
j=l 
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Hence 

and 

Finally, since 

we have 

N 
>..(!) = )... i - {'f:J hj 

j=l 
N 

< �'llillu., + 'L >..Uhi ) 
j=l 
N 

< Ellillu., + L tjp,(Ui) 
j= l 

j= l 
N 

> "f)j-1 (p,(Uj ) - E/ N) 
j=l 
N 

> 'L tj- tJL(Uj) - tNE· 
j=l 

General Measure Theory 

N N 
L ti_1p,(Ui ) < 1 i dp, < L tip,(U1 ) ,  
j= l JRn j=l 

N 
I >.. (!) - j i dp, I < :�:)ti - tj- t )p,(Ui) + �' l l i l lu., + EtN 

j= l 
< EJL( spt (!)) + 3E I Ii i i L"" ·  

7. Claim #5 : There exists a p,-measurable function O" : IRn --+ IRm satisfy­
ing (ii). 

Proof of Claim #5: Fix e E IRm , l e i = 1 .  Define Ae (f) = L(fe) for 
i E Cc(IRn ). Then Ae is linear and 

l>..e (f)l = I L(fe) l 
< sup{ IL (g) l l g E Cc(IRn ; IRm ) , lgl < Ii i } 

= >..( liD = r I i i  dp,; 
}JRn 
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thus we can extend Ae to a bounded linear functional on £I (llln ; p,) . Hence 
there exists a-e E L00 (p,) such that 

Let e 1 ,  • • •  , em be the standard basis for lRm and define a- = L;j 1 a-e; e J .  
Then if f E Cc (IRn ; lllm ), we have 

m 
L(f) = L L( (f · e1 )e1 ) 

j=l 
m 

= L J (f · ej )a-e; dp, 
j= l 

= J f . (5 dp,. 

8. Claim #6: lo- 1 = l p, a.e. 
Proof of Claim #6: Let U C IRn be open, p,(U) < oo. By definition, 

p,(U) = sup {f ! · o- dp, l f E Cc (llln ; lllm ) ,  IJ I < 1 , spt (f) c U} . (**) 
Now take fk E Cc (IRn ; JRm)  such that lfk l < 1 ,  spt (fk) C U, and fk · a- -

lo- 1 p, a.e.; such functions exist by Corollary 1 in Section 1 .2. Then 

by (**). 
f lo- I dp, = lim j fk · a- dp, < p, (U) 
U k-+oo 

On the other hand, if f E Cc (IRn ; lllm) with I J I < 1 and spt (f) C U, then 

J f . (5 dp, < fu 1o- l  dp, . 

Consequently (**) implies 

p,(U) < fu 1o- l  dp,. 

Thus p, (U) = fu lo-1 dp, for all open U C llln ; hence lo-1 = 1 p, a.e. I 
An immediate and very useful application is the following characterization of 

nonnegative linear functionals. 

COROLLARY I 
Assume L : Cg" (IRn ) ---+ lR is linear and nonnegative, so that 

L(f) > 0 for all j E C� (llln ) , j > 0. 
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Then there exists a Radon measure f-L on llln such that 

PROOF Choose any compact set K c lll" ,  and select a smooth function ( such 
that ( has compact support, ( = 1 on K, 0 < ( < 1 . Then for any f E C�(IRn ) 
with spt (f) C K, set g = l lf l lu"' ( - f > 0. Therefore (*) implies 

0 < L(g) = l lf l lu"'L(() - L(f) , 

and so 
L(J) < CI IJ I I L= 

for C = L( (). L thus extends to a linear mapping from Cc (IRn ) into IR, sat­
isfying the hypothesis of the Riesz Representation Theorem. Hence there exist 
f-L, O" as above so that 

with O" = ±1 J-L a.e. But then (*) implies O" = 1 J-L a.e. I 

1.9 Weak convergence and compactness for Radon measures 

We introduce next a notion of weak convergence for measures. 

THEOREM 1 
Let f-L , f-Lk ( k = 1 , 2, . . .  ) be Radon measures on IRn.  The following three state­
ments are equivalent: 

(i) limk_,oo fn�n f dj.Lk = fn�n f dj.L for all f E Cc (IRn ) . 
(ii) lim supk_,oo J-Lk (K) < J-L(K) for each compact set K C IRn and J-L(U) < 

lim infk_.oo f-Lk (U) for each open set U C IRn . 
(iii) limk_,00 f-Lk (B) = J-L( B ) for each bounded Borel set B C llln with 

J-L (8B) = 0. 

DEFINITION lf(i) through (iii) hold, we say the measures f-Lk converge weakly 
to the measure f-L, written 
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PROOF 
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1. Assume (i) holds and fix E > 0. Let U C llln be open and choose a compact 
set K C U. Next, choose f E Cc (llln )  such that 0 < f < 1, spt (f) C U, 
f = 1 on K. Then 

Thus 

J-L( K) < { f df-L = lim { f dJ-Lk < lim inf f-Lk (U). J� k-= 1� k-= 

J-L(U) = sup{J-L(K) I K compact , K  C U} < liminfJ-Lk(U). k-= 
This proves the second part of (ii); the proof of the other part is similar. 

2. Suppose now (ii) holds, B C llln is a bounded Borel set, J-L(8B) = 0. Then 
J-L( B) = J-L( B0) < lim inf J-Lk ( W) k-= 

< lim sup J-Lk (B) k-= 
< J-L(B) = J-L(B). 

3. Finally, assume (iii) holds. Fix E > 0, f E C;;J- (llln ) . Let R > 0 be such that 
spt(f) C B(O, R) and J-L(8B(O, R)) = 0. Choose 0 = t0 < t1 < · · · < tN such 
that tN = 2I IJ I IL'"' •  0 < t; - t;- 1 < E, and J-L(f- 1 {t; } ) = 0 for i =  1 ,  . . .  , N. 
Set B; = f- 1 (t;- 1 , t; ] ;  then J-L(8B;) = 0 for i >  2. Now 

and 

N N 
L ti- tf..Lk (B; ) < 1 f dj.Lk < L t;J-Lk (B;) + ttJ-Lk (B(O, R)) 
i=2 JRn i=2 

N N 
L ti- IJ-L(B; ) < l

n 
J dj.L < L t;J-L( B; ) + t tJ-L(B(O, R) ) ; 

i=2 IR i=2 
so (iii) implies 

lim sup { fdJ-Lk - { f df-L < 2t:J-L(B(O, R)) . I 
k�oo }f*.n }f*.n 

The great advantage in studying the weak convergence of measures is that 
compactness is had relatively easily. 

THEOREM 2 WEAK COMPACTNESS FOR MEASURES 
Let {J-Ldk' 1 be a sequence of Radon measures on JRn satisfying 

sup f-Lk ( K) < oo for each compact set K C IRn . k 
Then there exists a subsequence {J-Lk; }j 1 and a Radon measure J-L such that 

f-Lk; � f-L. 
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PROOF 
1. Assume first 

2. Let {fk }k 1 be a countable dense subset of Cc(Rn ) . As (*) implies J f1 dp,j is bounded, we can find a subsequence {p,j }j 1 and a1 E R such that 
' . .  . - '' 'X: . . . \ · .! j !1 df-lJ ----> a1. 

Continuing, we choose a subsequence {p,j }j 1 of {p,J-1 }j 1 and ak E R such 
that 

Set v j = 1-l}; then 
j fk dvj ----> ak 

for all k > l . Define L(fk ) = ak , and note that L is linear and IL (fk ) i < 
llfkll v>OM by (*), for M =  supk P,k (Rn ). Thus L can be uniquely extended to 
a bounded linear functional L on Cc (Rn ) . Then according to the Riesz Repre­
sentation Theorem (Section 1.8 )  there exists a Radon measure 1-l on Rn such that 

L (f) = j f df-l 

for all f E Cc (Rn ) . 

3. Choose any f E Cc(Rn ). The denseness of {fk}k 1 implies the existence 
of a subsequence {fi }F 1 such that fi ----> f uniformly. Fix E > 0 and then 
choose i so large that 

E 
IIJ - Ji ll£00 < 4M · 

Next choose J so that for all j > J 

Then for j > J 

E < 2MIIf - /i i i Loo + 2 < E. 
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4. In the general case that (*) fails to hold, but 

sup fJk (K ) < oo 
k 

for each compact K C JRn , we apply the reasoning above to the measures 

f..L� = f..Lk L B(O, l) (k, l = l , 2, . . .  ) 

and use a diagonal argument. I 
Assume now that U C JRn is open, l < p < oo. 
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DEFlNlTlON A sequence {fk }k 1 in LP(U) converges weakly to f E LP(U),  
written 

provided 

in LP (U) , 

lim 1 fkg dx = 1 f g dx k->oo U U 

for each g E Lq(U) ,  where 1 /p + l jq = l ,  1 < q < oo. 

THEOREM 3 WEAK COMPACTNESS IN LP 
Suppose 1 < p < oo. Let {fk}k 1 be a sequence of functions in LP(U) satis­
fying 

Then there exists a subsequence {fk; }j 1 and a function f E LP (U) such that 

in LP (U) . 

REMARK This assertion is in general false for p = l .  I 

PROOF 
1. If U # lRn we extend each function fk to all of JRn by setting it equal to 

zero on lRn - U. This done, we may with no loss of generality assume U = JRn . 
Furthermore, we may as well suppose 

en a.e.; 
for we could otherwise apply the following analysis to r: and f k . 

2. Define the Radon measures 

(k = 1 , 2, . . .  ) . 
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Then for each compact set K C JRn 

and so 
sup /1k (K) < oo. k 

General Measure Theory 

Accordingly, we may apply Theorem 2 to find a Radon measure fJ on JRn and 
a subsequence fJk3 � fJ. 

3.  Claim #1 : fJ « en. 

Proof of Claim #] : Let A c ]Rn be bounded, cn (A) = 0. Fix E > 0 and 
choose an open, bounded set V :J A such that Ln (V) < c. Then 

Thus JJ(A) = 0. 

JJ(V) < lim infJJk · (V) 
J -+00 3 

lim inf r !kj dx 
J --oo Jv 

l 

< lim inf ( f ff dx) 1i C(V) 1-i 
J --oo Jv ' 

< C l- l  
E P . 

4. In view of Theorem 2 in Section 1 .6.2, there exists an L11oc function f 
satisfying 

JJ(A) = L f dx 

for all Borel sets A C JRn . 
5. Claim #2: f E LP(lRn ) . 
Proof of Claim #2: Let cp E Cc(lRn ). Then 

f cp f dx = f cp dfL }�n }�n 
= lim r cp dfLkj 

J � OO  }�n 
= lim r cpfk, dx 

J --"' OCl } R:n 

< sup l l !k i i LP I I 'P I I Lq k 
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Thus 

l l fi i LP = sup 
cpECc ('Rn ) 
I I'I' I I Lq < l 

6. Claim #3 : fk, � f in LP (JR.n ). 
Proof of Claim #3: As noted above, 

r cpf dx < 00. }'Rn 

r fk; cp dx -+ r fcp dx }'Rn }'Rn 
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for all cp E Cc (lRn ) . Given g E Lq (l�n ) , we fix E > 0 and then choose 
cp E Cc (lRn ) with 

Then 

and the last term is estimated by 



2 
-----..------------ - �·---

Hausdorff Measure 

We introduce next certain "lower dimensional" measures on !Rn , which allow 
us to measure certain "very small" subsets of !Rn . These are the Hausdorff 
measures 7-C, defined in terms of the diameters of various efficient coverings. 
The idea is that A is an "3-dimensional subset" of IR.n if 0 < 'H5(A) < oo, even 
if A i s  very complicated geometrically. 

Section 2. 1 provides the definitions and basic properties of Hausdorff mea­
sures. In Section 2.2 we prove n-dimensional Lebesgue and n-dimensional 
Hausdorff measure agree on !Rn . Density theorems for lower dimensional Haus­
dorff measures are established in Section 2.3. Section 2.4 records for later use 
some easy facts concerning the Hausdorff dimension of graphs and the sets 
where a sumrnable function is large. 

2. 1 Definitions and elementary properties; Hausdorff dimension 

DEFINITIONS 

(i) Let A C !Rn , 0 < 8 < oo, 0 < 6 < oo. Define 
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oo (d. c ) s oo 'H;\ (A) inf h a(8) Ia� j I A c }Jl cj , diam cj < 6 

where 

Here r(8) 
function. 

Jrs/2 a(8) = ( s ) r - + 1 2 

J000 e-xxs- l  dx , (0 < 8 < oo) , ts the usual gamma 
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(ii) For A and s as above , define 

'H5(A) = lim 'H;S (A) = sup 'H;\ (A ) .  
6-0 li >O 

We call 'H"' s-dimensional Hausdorff measure on IR" . 

REMARKS 
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(i) Our requiring 6 -+ 0 forces the coverings to "follow the local geometry" 
of the set A.  

(ii) Observe 

C(B (x, r)) = a(n)r
" 

for all balls B(x, r) c n:tn . We will see later in Chapter 3 that if s = k is 
an integer, 'Hk agrees with ordinary "k-dimensional surface area·· on nice 
sets; this is the reason we include the normalizing cons tam o ( s). in the 
definition. I 

THEOREM 1 
1{5 is a Borel regular measure (0 < s < oo) . 
Warning: 1{5 i s  not a Radon measure if 0 < s < n, since IR" i s  not a-finite 
with respect to 'H s . 

PROOF 
1. Claim #1 : 'Ht is a measure. 

Proof of Claim #1 : Choose {Ak }k 1 C JRn and suppose Ak 
diam Cj < 6; then { Cf } �k= I covers ur I Ak. Thus 

Taking infima we find 

00 < L 'H� (Ak) · 
k=l 

2. Claim #2: 'H5 is a measure. 

oo Ck ("" u - j=l j ,  
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Proof of Claim #2 : Select { Ak }k 1 c !Rn. Then 

00 00 

k=l k=l 

Let 6 ----> 0. 
3. Claim #3: 1-i" is a Borel measure. 

Hausdorff Measure 

Proof of Claim #3: Choose A, B C !Rn with dist(A, B) > 0. Select 0 < 6 < 1 /4 dist(A, B). Suppose A U  B c ur 1 Ck and diam Ck < 6. 
Write A - {Cj I cj n A "I 0}, and let B - {Cj I cj n B "I 0}. Then A c Uc; EAcj and B c Ucj EBCj , ci n Cj = 0 if ci E A, cj E B: Hence 

> 7tHA) + 7tH B) .  

Taking the infimum over all such sets {CJ }j 1 ,  we find 7t� (A U B) > 
7t� (A) + 7-{� (B) ,  provided 0 < 48 < dist(A, B) .  Letting 6 ----> 0, we obtain 
7-{5 (A U B) > 7t5 (A) + 7-{5 (B) .  Consequently, 

7t5(A U B) = 7t8 (A) + 7t8 (B) 

for all A, B C !Rn with dist(A, B) > 0. Hence Caratheodory 's Criterion, Sec­
tion 1 . 1 . 1 . , implies 7-{5 is a Borel measure. 

4. Claim #4: 7-{5 is a Borel regular measure. 

Proof of Claim#4: Note that diam C = diam C for all C; hence 

tam · 00 ( d' c ) s 00 
7t� (A) = inf I>�(s) 

2 
1 I A C U C1 , diam Cj < 6, Cj closed 

j=l j= l  

Choose A C !Rn such that 7-{8 (A) < oo; then 7tH A) < oo for all 6 > 0. For 
each k > 1 ,  choose closed sets {Cj}j 1 so that diam Cj < !jk, A C Uj 1 Cj , 
and 

00 (diam c; ) s 
s 

1 ha(s) 
2 

< 7-{l/k (A) + k . 
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so A c B. Furthermore, 

s 00 (diam Cj ) s 
5 I 'H1;k (B) < h a(s) 

2 
< 'H1;k (A) + �-
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Letting k --> oo, we discover 'H8(B) < 'H5(A). But A. = 3 .  and thus 
1-{5(A) = 1-{5(B) . I 
THEOREM 2 ELEMENTARY PROPERTIES OF HAUSDORFF .HEA. SCRE 
(i) 1-{0 is counting measure. 

(ii) 1-{1 = £1 on JR1 • 
(iii) 

(iv) 

(v) 

1-{5 = 0 on IRn for all s > n. 

'H5(.AA) = A51i'' (A) for all ).. > 0, A C IRn . 
'H5(L(A)) = 'H5(A) for each affine isometry L :  IRn - ::i.' . .  .:. 

PROOF 
1. Statements (iv) and (v) are easy. 

- ? n  - _ ,.  . 

2. First observe a(O) = 1 .  Thus obviously 7i0( {a}) = 1 for 2-L � ::: ?." , and 
(i) follows. 

3. Choose A C IR1 and 8 > 0. Then 
00 00 

L1 (A) = inf L diam cj I A c u Cj 
j= l  j= l  

00 00 
< inf L diam cj I A c u cj , diam cj < ,; 

j= l  j=l 

= H1 (A). 
On the other hand, set h 

diam (C1 n h) < 8 and 
[k8, (k + 1 )8] (k . . . 1 .  0. : . . .  ) .  Then 

Hence 

£1 (A) 

00 
L diam (C1 n h) < diam C1 . 

k=-00 

00 00 
inf L diam cj I A c u cj 

j=l j= l  

00 00 
> inf L L diam ( Cj n h) I A c U c.-

j= l k=-oo )· - .  - . 

> H1(A) . 
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Thus £1 = 'HJ for all 6 > 0, and so £1 = 'H 1 on IR1 •  

Hausdorff Measure 

4. Fix an integer m > l .  The unit cube Q in !Rn can be decomposed into m" 

cubes with side l jm and diameter n 1 12 jm. Therefore 

'Hfo_;m (Q) < I:C�e(8)(n
l
12jm)s = a(s)nsf2mn-s , 

i=l 

and the last term goes to zero as m ----> oo, if 8 > n. Hence 1{8 ( Q) = 0, and so 
H'(IR" )  = o. I 

A convenient way to verify that 1{8 vanishes on a set is this. 

LEMMA 1 
Suppose A C !Rn and 'H!i (A) = 0 for some 0 < 6 < oo. Then 'H8(A) = 0. 

PROOF The conclusion is obvious for 8 = 0, and so we may assume 8 > 0. 
Fix E > 0. There then exist sets { cj } j l such that A c Uj l cj, and 

In particular for each i, 

Hence 

f a(8) 
( diar; Ci ) s < E. 

J = l 

( ) 1 /s diam Ci < 2 
CK�8) 

= 6( c) . 

Since 8 (E) ----> 0 as E ---+ 0, we find 

'H8 (A) = O. I 

We want next to define the Hausdorff dimension of a subset of !Rn . 
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LEMMA 2 
Let A C JR." and 0 < 8 < t < oo. 

(i) If 1-C(A) < oo, then 'H1 (A) = 0. 
(ii) If 'H1 (A )  > 0, then 'H' (A) = +oo. 
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PROOF Let 7-{' (A) < oo and 6 > 0. Then there exist sets { CJ }�  1 such that 
diam C1 < 6, A c Uf 

1 
C1 and 

Then 

� n(8) ( dia� C; ) s < 'H% ( A) + 1 < 'H' (A )  + I .  

'H� (A) < f n(t) (dia� Cj ) t 

; = l  

= 
a(t) 2s-t � ( ) ( diam C1 ) ·' (d· · c· 1 . - ,. a(8) 0 a 8 2 wm J • 

; = l  

< n(t) 2s-t6t-s ('Hs (A) + 1 ) .  n(8) 
We send 6 � 0 to conclude 7-{1 (A) = 0. This proves assertion ( i ) . 
(ii) fo llows at once from (i). I Assertion 

DEFINITION The Hausdorff dimension of a set A C JR." is deji 11ed to be 

'Hctim(A) = inf{O < 8 < oo I 'H'' (A) = 0} .  

REMARK Observe 'Hctim (A) < n. Let 8 = 'Hctim (A).  Then 'H1 ( .-1 ) = 0 for 
all t > 8 and 7-{1 (A) = +oo for all t < 3; 7-{5 (A) may be any number 
between 0 and oo, inclusive. Furthermore, 1ictim(A) need not be an integer. 
Even if 'Hctim (A) = k is an integer and 0 < 'Hk(A) < oo, .-1 need not be a 
"k-dirnensional surface" in any sense; see Falconer [FA] or Federer [F] ' for 
examples of extremely complicated Cantor-like subsets A of :?.n . with 0 < 'Hk (A) < oo. I 

2.2 Isodiametric Inequality; 7-{n = L" 

Our goal in this section is to prove 7-{n = Ln on IR.n . This is nontrivial: C' is 
defined as the n-fold product of one-dimensional Lebesgue measure L 1 , whence 
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C = inf{L:� 1 .Cn (Qi) I Qi cubes, A C Uf 1 Qi } . On the other hand 'H"(A) 
is computed in terms of arbitrary coverings of small diameter. 

LEMMA 1 
Let f : !Rn --> [0, oo] be _en-measurable. Then the region "under the graph 
of f , "  

A =  { (x, y) I x E !Rn , y E IR, O < y < f(x) } , 

is _cn+1 -measurable. 

PROOF Let B = {x E !Rn I f(x) = oo} and C = {x E IR" I 0 < f(x) < oo}. 
In addition, define 

{ 
. . + l } 

Cjk = x E C I � < f(x) < J k 

so that C = Uj 0CJk· Finally, set 

(j = 0, . . .  ; k = I , . . .  ) , 

Dk = JQ ( Cjk x [o, i] ) U (B x [O, oo] ) ,  

00 (  [ j + l ] )  
Ek = 

j
� cjk X 0, k u (B X [0, oo] ) . 

Then Dk and Ek are _cn+1 -measurable and Dk c A c Ek. Write D = U'k 1 Dk 
and E = nr 1Ek. Then also D c A c E, with D and E both _cn+l _ 
measurable. Now 

_cn-l ( (E - D) n B(O, R) ) < _en+ I ((Ek - Dk ) n B(O, R)) < � C (B(O, R)) ,  

and the last term goes to zero as k --> oo. Thus, _cn+ I ( (E - D) n B(O , R)) = 0, 
and so _cn+ 1 (E - D) = 0. Hence _cn+1 (A - D) = 0, and consequently A is 
_en - 1 -measurable. I 
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a 

A 
c 

FIGURE 2.1 
Steiner symmetrization. 

NOTATION Fix a, b E  IR.n , I a I = l .  We define 

L't; = {b + ta I t E IR.}, the line through b in the direction a, 

Pa = { x E IR.n I x · a  = 0} , the plane through the origin 
perpendicular to a. 
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DEFINITION Choose a E IR.n with I a I = l ,  and let A C IR.n . We define the 
Steiner symmetrization of A with respect to the plane Pa to be the set 

u 

LEMMA 2 PROPERTIES OF STEINER SYMMETRIZATION 
(i) diam Sa (A) < diam A. 
(ii) If A is Ln-measurable, then so is Sa (A); and Ln (Sa(A))  = Ln(A) .  

PROOF 
1. Statement (i) is trivial if diam A = oo; assume therefore diam A < oo. 
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We may also suppose A closed. Fix E > 0 and select x .  y E Sa (A) such that 

diam Sa (A) < lx - Y l  + E .  
Write b x - (x · a)a and c _ y - (y · a)a; then b, c E P" . Set 

r = inf{ t I b + ta E A} ,  
s sup{t I b + ta E A} ,  
u inf{t l c + ta E A } , 

v = sup{ t I c + ta E A } .  
Without loss of generality, we may assume v - r > s - u .  Then 

1 1 2 (v - r) + 2 (s - u) v - r > 

1 1 2 (s - r) +  2 (v - u) 
> �'H1 (A n Lb) + �'H1 (A n L� ) . 

Now, l x · a l < 1/2 'H 1 (A n Lb ) , l y · a l < 1/2 'H1 (A n L � ) , and consequently, 

v - r > lx · al + IY · al > l x  · a - Y · a l . 

Therefore, 

(diam Sa (A) - c)2 < l x - y l 2 

= l b - cl2 + lx · a - y · a l 2  
< l b - c l2  + (v - r)2 
= l (b + ra) - (c + L'a ) l 2  
< (diam A)2, 

since A is closed and so b + ra, c + va E A. Thus diam Sa (A) - E < diam A. 
This establishes (i). 

2. As Ln is rotation invariant, we may assume a =  en = (0, . . .  , 0, l ) . Then 
Pa = Pen = ]Rn- l .  Since £1 = 7-{1 on IR1 , Fubini's Theorem implies the 
map f :  !Rn-l ___, IR defined by f(b) = 'H1 (A n Lb) is c- 1 -measurable and 
Ln (A) = f!Rn- •  f(b) db. Hence 

Sa (A) = { (b, y) I -�(b) < y < f;b) } - {(b, O) : L't, n A = 0} 
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is L:" -measurable by Lemma l ,  and 

C' (Sa(A)) = in-l J(b) db = C' (A) .  I 
REMARK In proving 7-{" = C' below, observe we only use statement (ii) 
above in the special case that a is a standard coordinate vector. Since 1-{n is 
obviously rotation invariant, we therefore in fact prove L:" is rotation invariant. 

THEOREM 1 ISODIAMETRIC INEQUALITY 
For all sets A C IR" , 

I 

REMARK This is interesting since it is not necessarily the case that A is con­
tained in a ball of diameter diam A. I 

PROOF If diam A = oo, this is trivial; let us therefore suppose diam A < oo. 
Let {e1 , . . . , en }  be the standard basis for IRn . Define A1 = Se, (A), A2 -
Se2 (AI ) ,  . . .  , An - Sen (An- 1 ) ·  Write A* = An . 

1. Claim #I : A* is symmetric with respect to the origin. 

Proof of Claim #I : Clearly A1 is symmetric with respect to Pe, .  Let 1 < k < n and suppose Ak is symmetric with respect to Pe, ,  . . .  , Pe• .  Clearly 
Ak+ 1 = SCk+• ( Ak) is symmetric with respect to Pe•+• . Fix 1 < j < k and let 
SJ : IR" --+ IR" be reflection through Pe; .  Let b E Pek+ , .  Since Sj ( Ak ) = Ak. 

consequently 

Thus SJ (Ak+ 1 )  = Ak+ ! ;  that is, Ak+ ! is symmetric with respect to Pe, · Thus A* = An is symmetric with respect to Pe, ,  . . . .  Pen and so with respect to the 
ongm. (diam A* ) n 

2. Claim #2 : C'(A*)  < a(n) 
2 
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Proof of Claim #2: Choose x E A*. Then -x E A* by Claim #1, and so 
diam A* > 2lx l .  Thus A* C B(O, diam A*/2) and consequently 

C(A* ) < C ( B ( 0, 
dia� A* ) )  = a(n) ( dia� A* ) n 

30 Claim #3: .cn (A) < a(n) (diam Af2t . 

Proof of Claim #3: A is .en-measurable, and thus Lemma 2 implies 

Hence 

THEOREM 2 

C((A)*) = C(A) ' diam (A)* < diam A. 

C (A) < C(A) = C ((A)* )  
- n 

< �(n) ( diam
2

(A)* ) u by Claim #2 

1-{n = _en on IR.n . 

1. Claim #1 : .Cn(A) < 1-in (A) for all A C !Rn . 

Proof of Claim #1: Fix 8 > 0. Cho0se sets { C; }j 1 �uch �hat A c Uj 1 C1 
and diam C1 < 8o Then by the Isodiametric Inequality, 

Taking infima, we find .Cn(A) < 1i;5(A), and thus .Cn(A) < 1-in (A)o 
2. Now, from the definition of _en as .C1 x 0 0 0 x .C1 , we see that for all A C IR.n 

and 8 > 0, 

Here and afterwards we consider only cubes paral lel to the coordinate axes 
in IR.n • 

3. Claim #2: 1-{n is absolutely continuous with respect to _en. 
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Proof of Claim #2: Set Cn = a (n) (  ynj2)n. Then for each cube Q c !Rn , 
a (n) Cim; Qr = CnC(Q) . 

Thus 
{ 00 (d' Q 

) 
n oo 

} 'H6(A) < inf k a (n) 1� i I Q; cubes, A C � Q; , diam- Q; < 6 

= CnC(A). 

Let 8 ----> 0. 
4. Claim #3: 'Hn(A) < _cn(A) for all A C !Rn . 
Proof of Claim #3: Fix 6 > 0, E > 0. We can select cubes { Q; }ro 1 such that 

A c ur 1 Q;, diam Q; < 8, and 
00 

L C(Q;) < C(A) + E. 
i= l 

By Corollary l in Section 1.5, for each i there exist disjoint closed balls 
{BUr 1 contained in Qi such that 

diam B� < 8, C (Q; - lJ B�) = Ln (Qi - lJ Bk) = 0. 
k=1 k= l 

By Claim #2, 7-{n (Q; - ur lBU = 0. Thus 

'H:\(A) < f'H6(Q;) = f'H6 (u B�) < ft'H6(Bk ) 
t- l t- l k-l  t-1 k=l 

< � � a (n) ci� B� r = � � C(B�) = � C (p1 Bk) 
00 

= l:C(Q; ) < C(A) + E. I 
i=l 

2.3 Densities 

We proved in Section 1.7 
lim 

_cn(B(x, r) n E) 
= { l 

r---->0 a (n)rn 0 
for _en a.e. x E E 
for _en a.e. x E !Rn - E, 
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provided E C JRn is _en-measurable. This section develops some analogous 
statements for lower dimensional Hausdorff measures. We assume throughout 
0 < 8 < n. 

THEOREM I 

Assume E C JRn , E is 1-{5-measurable, and 'H5 (E) < oo. Then 

. 1-{5 (B(x, r) n E) 
0 ltm = 

r-+0 a(8)r5 
for 'H5 a.e. x E JRn - E. 

PROOF Fix t > 0 and define 

{ n . 'H5(B(x , r) n E) } At = x E lR - E j ltm sup ( ) s > t . 
r-+0 a 8 r 

Now 1-{5 L E is a Radon measure, and so given E > 0, there exists a compact 
set K c E such that 

'H5(E - K) < E. 
Set U = JRn - K; U is open and At C U. Fix 6 > 0 and consider 

- {  'H5 (B(x, r) n E) } 
:F = B(x, r) I B(x, r) C U, O < r < 8, a(8)rs > t  · 

By the Vitali Covering Theorem, there exists a countable disjoint family of balls 
{ Bi}f 1 in :F such that 

00 

At c u Bi . 
i= l 

Write Bi = B(xi , ri)- Then 
00 ss 00 

'Hfoo (At) < L a(8) (5ri) 5 < T L 'H5 (Bi n E) 
i= l i=l 
ss ss ss < -'H8 (U n E) = -'H5(E - K) < -E 

- t t - t ' 

by (*). Let 8 ---> 0 to find 'H5 (At) < 55t- 1E. Thus 'H5(At) = 0 for each t > 0, 
and the theorem follows. I 
THEOREM 2 
Assume E C JRn , E is 1-{5-measurable, and 1-{5 (E) < oo. Then 

for 'H5 a.e. x E E. 

l < l. 'H5 (B(x, r) n E) < - 1m sup 1 
25 - r-+0 a(8)r5 -
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REMARK It is possible to have 

and 

l. 
'W(B(x, r) n E) 1 rm sup ( ) s < r-0 a 8 r 

l . . f 'W (B(x, r) n E) 
0 rm rn = r--+0 a(8)r8 

for 1-(S a.e. x E E, even if 0 < 'H8 (E) < oo. I 

REMARK H · 
1 Cl . #I 1 . 'H8 (B(x, r) n E) 

< l " '1-Js E . atm : rm sup ( ) _ tOr , c a. e. x E . 
r--+0 a 8 T8 

Proof of Claim #1 : Fix E > 0, t > l and define { . 'H8 (B(x , r) n E) } Bt = x E E I lim sup ( ) s > t . 
r--+0 a 8 r 

Since 'H8 L E is Radon, there exists an open set U containing B�, with 

Define 

:F = {B(x, r) l 

'H8 (U n E) < 'H8 (Bt) + E. 

'H8 (B (x, r) n E) } B(x, r) C U, 0 < r < 6, ( ) > t . a 8 r8 
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By Corollary 1 of the Vitali Covering Theorem in Section 1 .5 . 1 ,  there exists a 
countable disjoint family of balls {Bi }f1 in :F such that . 

m oo 
Bt c u Bi u u Bi 

i=l i=m+l 
for each m = 1 , 2 , . . . .  Write Bi = B(xi , ri ) .  Then 

m 00 

'Hfoo (Bt ) < L a(8)rf + L a(8) (5r; ) 8 
i=l i=m+l 
l m 5" oo 

< t L'H8(B; n E) + T L 'H8 (Bi n E) 
i=l i=m+I 

< !'H8 (U n E) +  s; 'Hs ( . lJ Bi n E) . 
'=m+l 

This estimate is valid for m = 1 , . . . ; thus our sending m to infinity yields the 
estimate 

' 

'Hf00 (Bt) < ! 'Hs (U n E) < ! ('H. (Bt) + c) ,  
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by (*)· Let 6 ----> 0 and then E ----> 0: 

Since 'H8(B1) < 'H8(E) < oo, this implies 'H8(Bt ) = 0 for each t > 1 . 
1-{8 (B(x r) n E) 1 

2. Claim #2: lim sup 00 ' > - for 'H8 a.e. x E E. 
r--+0 a( 8 )r8 - 28 

Proof of Claim #2 : For 8 > 0, 1 > T > 0, denote by E(8, T) the set of points 
x E E such that ( diam c) 8 

'H6 (C n E) < w(8) 2 
whenever C C !Rn , x E C, diam C < 6. Then if {Ci}i 1 are subsets of !Rn 
with diam ci < 6, E(6, T) c Uj"' lC;, ci n E(6, T) -# 0, we have 

00 
'H6(E(8, T)) < l: HHCi n E(6, T)) 

i= l 

00 
< L 'H6 (C; n E) 

i= l 

< T �a ( 8) ( dia� Ci r 
Hence 'H6 (E(8, T)) < T'H6 ( E( 8, T) ) , and so 'H6(E( 8, T)) = 0, since 0 < T < 1 
and 'H6(E(8, T)) < 'H6 (E) < 'H8 (E) < oo. In particular, 

Now if x E E and 

'H8 (E(6, 1 -· 8)) = 0. 

l. 'H�(B(x, r) n E) 1 
tm sup 

----""'--'----':-( ..:..) _:__..:.. 
< 28 , 

r--+0 a 8 r8 
there exists 6 > 0 such that 

'H� (B(x, r) n E) 
< 

1 - 8 

a(8)r8 - 2• 
for all 0 < r < 8. Thus if x E C and diam C < 8 - - ' 

'H6(C n E) = 'H� (C n E) 
< 'H�(B(x, diam C) n E) 

< ( 1 - 8)a(8) ( di� c) 8 
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by (**); consequently x E E(8, 1 - 8). But then 

{ ) } 00 . 7-f.S B x r  n E  1 x E E I hm sup oo ( ( ) � < ---; C U E( 1/k, 1 - 1/k) , 
r--+0 a( s r 2 

k=l 

and so (*) finishes the proof of Claim #2. 
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3. Since 'H8 (B(x, r) n E) > 'H� (B(x, r) n E), Claim #2 at once implies 
the lower estimate in the statement of the theorem. I 

2.4 Hausdorff measure and elementary properties of functions 

In this section we record for later use some simple properties relating the be­
havior of functions and Hausdorff measure. 

2.4.1 Hausdorff measure and Lipschitz mappings 

DEFINITIONS 

(i) A function f : !Rn ---> !Rm is called Lipschitz if there exists a constant C 
such that 

l f(x) - f(y) l < Clx - Yl for all x, y E !Rn . 

(" ") L' (f) _ { l f(x) - f(y) l 
I mm -1- } ll tp = sup 

l x _ Yl 
x, y E ID. , x -r y . 

THEOREM 1 
Let f : !Rn ---> !Rm be Lipschitz, A C !Rn , 0 < s < 00. Then 

'H8 (f(A)) < (Lip (f)) "'H8 (A). 

PROOF Fix 8 > 0 and choose sets { Ci} f'\ C !Rn such that diam Ci < 8, 
A C Uf"1Ci . Then diam f(Ci) < Lip (f) diam Ci < Lip (f)8 and f(A) c 
Uf" t f(Ci) .  Thus 

s ( � ( diam f ( ci ) ) s 'hup (f)o f(A)) < � a(s) 2 

< (Lip (!))"� a(s) ( dia� Ci ) s 
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Taking infima over all such sets { Ci }f" 1 '  we find 

Send {j ---+ 0 to finish the proof. I 

COROLLARY 1 

Hausdorff Measure 

Suppose n > k. Let P : JR.n -+ JR.k be the usual projection, A C JR.n , 0 < s < oo. 
Then 

1i8 (P(A)) < 1i8 (A). 

PROOF Lip (P) = 1 .  I 

2.4.2 Graphs of Lipschitz functions 

DEFINITION For f : JR.n ---+ JR.m, A C JR.n , write 

G(f; A) = { (x, f (x)) I X E A} C lR.n X JR.m = JR.n+m ; 

G(f; A) is the graph of f over A. 

THEOREM 2 
Assume f : JR.n ---+ JR.m , .cn(A) > 0. 

(i) Then 1ictim (G(f; A)) > n. 

(ii) If f is Lipschitz, 1ictim (G(f; A)) = n. 

REMARK We thus see the graph of a Lipschitz function f has the expected 
Hausdorff dimension. We will later discover from the Area Formula in Sec­
tion 3.3 that 7-{n (G(f; A)) can be computed according to the usual rules of 
calculus. I 

PROOF 
1. Let P :  JR.n+m ---+ JR.n be the pro jection. Then 'Hn (G(f; A)) > 'Hn (A) > 

0 and thus 1ictim(G(f; A)) > n. 

2. Let Q denote any cube in JR.n of side length 1 .  Subdivide Q into kn 
subcubes of side length 1 I k. Call these subcubes Q 1 , . . •  , Q kn . Note diam Qi = ..fii I k. Define 

(i = l ,  . . .  , m; j  = l ,  . . .  , kn) . 
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Since f is Lipschitz, 

. . Vn 
l bj - aj I < Lip (f)diam Qj = Lip (f) k . 

Next, Jet Cj _ Qj x IT;" 1 (a� , bj) . Then 

{ (x, f(x)) I x E Qj n A} c Cj 

and diam.. Cj < C /k. Since G(f; A n  Q) C uf 1 Cj, we have 
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Then, Jetting k _. :x:>, we find 'H.n ( G (!; A n Q)) < oo, and so 'H.ctim \ G ( j : ...!. n 
Q)) < n. This estimate is valid for each cube Q in JR_n of side length I .  and 
consequently 'H.ctim (G(f; A)) < n. I 

2.4.3 The set where a summable function is large 

If a function is locally summable, we can estimate the Hausdorff measure of 
the set where it is locally large. 

THEOREM 3 
Let f E Lfoc (JR.n ) , suppose 0 < s < n, and define 

Then 

As = {x E JR.n I lim sup � { I f  I dy > o} . 
r--+0 r J B(x,r) 

'H.8 (As) = 0. 

PROOF We may as well assume f E £1 (JR.n ) . By the Lebesgue-Besicovitch 
Differentiation Theorem (Section 1 .  7. 1)  

and thus 

Jim { lf l dy = lf (x)l , r--+O JB(x,r) 

Jim __!_ { lf l dy = 0 r--+0 rs } B(x,r) 
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for .en a.e. x, since 0 < s < n. Hence 

C (As) = 0. 

Now fix E > 0, 8 > 0, u > 0. As f is .cn-summable, there exists TJ > 0 such 
that 

Define 

C (U) < TJ implies L l f l dx < u. 

A� = {x E lR.n I lim sup � { I f I dy > E} ; 
r--+0 r J B(x,r) 

by the preceding 

C (A�) = 0. 

There thus exists an open subset U with U :J A�, .cn (U) < TJ. Set 

:F = {B(x, r) I x E A� , O  < r < 8, B (x, r) C U, { l f l dy > Er8 } . } B(x,r) 

By the Vitali Covering Theorem, there exist disjoint balls { B; } i' 1 in :F such 
that 

00 

A� c U fh 
i=l 

Hence, writing ri for the radius of Bi, we compute 

'Hfo0 (A�) < L:>�(s)(5ri )8 
i=l 

< a(s)SS { l f l dy 
E lu 

a(s)SS 
< (J. E 

Send 8 -+  0, and then u -+  0, to discover 

'H8 (A�) = O. I 
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----------------�------- -- �--

Area and C oarea Formulas 

In this chapter we study Lipschitz mappings 

and derive corresponding "change of variables" formulas. There are two essen­
tially different cases depending on the relative size of n, m. 

If m > n, the Area Formula asserts that the n-dimensional measure of f(A), 
counting multiplicity, can be calculated by integrating the appropriate Jacobian 
of f over A. 

If m < n, the Coarea Formula states that the integral of the n - m dimen­
sional measure of the level sets of f is computed by integrating the Jacobian. 
This assertion is a far-reaching generalization of Fubini 's Theorem. (The word 
"coarea" is pronounced, and sometimes spelled, "co-area.") 

We begin in Section 3. 1 with a detailed study of the differentiability properties 
of Lipschitz functions and prove Rademacher's Theorem. In Section 3.2 we 
discuss linear maps from JR.n to JR.m and introduce Jacobians. The Area Formula 
is proved in Section 3.3, the Coarea Formula in Section 3.4. 

3.1 Lipschitz functions, Rademacher's Theorem 

3.1.1 Lipschitz functions 

We recall and extend slightly some terminology from Section 2.4. 1 .  

DEFINITION 

(i) Let A C JR.n . A function f : A --+ JR.m is called Lipschitz provided 

lf (x) - f(y) l < Clx - Yl 
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for some constant C and all x, y E A. The smallest constant C such that 
(*) holds for all x, y is denoted 

. _ { lf (x) - f(y) l } L1p (f) = sup 
l x _ Yl 

I x, y E A, x ::J y . 

(ii) A function f : A ....... JR.m is called locally Lipschitz if for each compact 
K C A, there exists a constant CK such that 

lf (x) - f(y) l < CK ix - Yl 

for all x, y E K. 

THEOREM 1 EXTENSION OF LIPSCHITZ FUNCTIONS 
Assume A c JR.n , and let f : A ....... JR.m be Lipschitz. There exists a Lipschitz 
function f : JR.n ---+ JR.m such that 

(i) f = f on A. 
(ii) Lip (/) < .fiii Lip (!). 

PROOF 
1. First assume f : A ....... JR. Define 

/(x) - inf {! (a) + Lip (f) lx - a i } .  aEA 

If b E  A, then we have f(b) = f(b). This follows since for all a E A, 

f(a) + Lip (f) l b - al > f(b) ,  

whereas obviously /(b) < f(b). If x, y E JR.n , then 

/(x) < inf {!(a) + Lip (f) ( IY - al + lx - yl ) }  
aEA 

= f(y) + Lip (f) lx - y l ,  

and similarly 

f(y) < f(x) + Lip (f) lx - Yl · 
2. In the general case f :  A ....... JR.m, f = (!1 , • . .  , fm), define J = (JI , . . . , Jm) 

Then 
m 

lf(x) - f(y) l2 = L lf' (x) - Ji(y) l2 < m(Lip (f)/ lx - Yl2• I 
i= l 

REMARK Kirszbraun's Theorem (Federer [F, Section 2. 1 0.43]) asserts that there 
in fact exists an extension J with Lip (/) = Lip (!). I 
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3.1.2 Rademacher's Theorem 

We next prove Rademacher 's remarkable theorem that a Lipschitz function is 
differentiable .en a.e. This is surprising since the inequality 

lf(x) - f(y) l < Lip(f) lx - Yl 

apparently says nothing about the possibility of locally approximating f by a 
linear map. 

DEFINITION The function f : JR.n --+ JR.m is differentiable at x E JR.n if there 
exists a linear mapping 

such that 

lim 
y�x 

lf(y) - f(x) - L(x - Y) l 
= 

0 
l x - Yl ' 

or, equivalently, 

f(y) = f(x) + L(y - x) + o( IY - x i )  as y --+ x. 

NOTATION If such a linear mapping L exists, it is clearly unique, and we write 

Df(x) 

for L. We call D f ( x) the derivative of f at x. 

THEOREM 2 RADEMACHER'S THEOREM 
Let f : JR.n --+ JR.m be a locally Lipschitz function. Then f is differentiable .en 
a.e .. 

PROOF 
I. We may assume m = 1 .  Since differentiability is a local property, we may 

as well also suppose f is Lipschitz. 
2. Fix any v _ E  JR.n with I v i = 1 ,  and define . 

Dvf(x) = lim f(x + tv) - f(x) 
t�o t 

provided this limit exists. 
3. Claim #1 : Dvf(x) exists for .en a.e. x. 
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Proof of Claim # 1 :  Since f is continuous, 

- . f(x + tv) - f(x) 
Dvf(x) = hm sup t t--+0 

= lim sup k ..... oo O<lt l<l /k 
t ralional 

f(x + tv) - f(x) 
t 

is Borel measurable, as is 

Thus 

D f( ) = !· . f f(x + tv) - f(x) 
_ v x _ 1m m t 

. 
t--+0 

Av = {x E JR.n I Dvf(x) does not exist} 

= {x E lRn I D vf(x) < Dvf(x) } 

is Borel measurable. 
Now, for each x, v E JR.n , with I v i = 1 ,  define lp : JR. ---+ JR. by 

l{J (t) = f(x + tv) (t E JR.). 

Then lfJ is Lipschitz, thus absolutely continuous, and thus differentiable [} a.e. 
Hence 

for each line L parallel to v. Fubini's Theorem then implies 

C(Av) = 0. 

4. As a consequence of Claim #1, we see 

- ( 8f 8! ) grad f(x) = Bx1 
(x) , . . . , Bxn 

(x) 

exists for .en a.e. x. 
5. Claim #2: Dvf(x) = v · grad f(x) for .en a.e. x. 

Proof of C /aim #2: Let ( E C.;"' (JR.n ) . Then 

Let t = I /  k for k = 1 ,  . . .  in the above equality and note 

f(x + kV) - f(x) 
1 < Lip (f) lv l = Lip (!) . 
k 
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Thus the Dominated Convergence Theorem implies 

{ 
Dvf(x)((x) dx = -

{ 
f(x)Dv((x) dx }Rn }Rn 

n 1 8( 
= - L v; f(x)-8 . (x) dx 

i=l Rn X, 

n { 8j 
= � v; }Rn 8Xi 

(x)((x) dx 

= r (v . grad f(x))((x ) dx, }Rn 
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where we used Fubini's Theorem and the absolute continuity of f on lines. The 
above equality holding for each ( E Cc(lRn ) implies Dvf = v · grad f .en a.e. 

6. Now choose {vk }k' 1 to be a countable, dense subset of 8B (O, 1 ) . Set 

Ak = {x E lRn I Dvk f(x), grad f(x) exist and Dv, f(x) = Vk · grad f(x)} 

for k = 1 ,  2, . . . , and define 
00 

Observe 

C(JR.n - A) = 0. 

7. Claim #3: f is differentiable at each point x E A. 

Proof of Claim #3: Fix any x E A. Choose v E 8B (O, 1 ) , t E R t =J 0, and 
write 

_ f(x + tv) - f(x) 
Q(x, v, t) =  t - v · grad f(x) . 

Then if v' E 8B(O, 1 ) , we have 
. .  , 

f(x + tv) - f(x + tv') IQ(x, v, t) - Q(x, v' , t) l < I t I +  I (  v - v' ) · grad f(x) l 

< Lip (f) lv - v' l + !grad f(x) l lv - v' l 

< (v'n+ 1 )Lip (f) lv - v' l · 

Now fix E >  0, and choose N so large that if v E 8B(O, 1 ) ,  then 

E 
' v - vk l < for some k E { l ,  . . .  , N} . (**) 

- 2( y'n + I )Lip (f) · 
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Now 

lim Q(x, Vk , t) = 0 t�o (k = I ,  . . .  , N) ,  

and thus there exists 8 > 0 so that 

E IQ(x, Vk, t) l < 
2 

for all 0 < l t l < 8, k = I , . . . , N. 

Consequently, for each v E 8B (0, I ) ,  there exists k E { I ,  . . .  , N} such that 

IQ(x, v, t) l < IQ (x, vk l t) l + IQ(x, v, t) - Q(x, vk , t) l < E 

if 0 < I t I < 8, according to (*) through (* * *). Note the same o > 0 works for 
all v E 8B (O, 1 ) . 

Now choose any y E JR.n , y =J x. Write v = (y- x)f ly-xl ,  so that y = x+tv, 
t = lx - Y l · Then 

f(y) - f(x) - grad f(x) · (y - x) = f(x + tv) - f(x) - tv · grad f(x) 

= o(t) 

= o( lx - Y l ) ,  as y ---+ x .  

Hence f is differentiable at x, with 

Df(x) = grad f(x) . I 
REMARK See Theorem 2 in Section 6.2 for another proof of Rademacher's 
Theorem and Theorem 1 in Section 6.2 for a generalization. In Section 6.4 we 
prove Aleksandrov's Theorem, stating that a convex function is twice differen­
tiable a.e. I 

We next record a technical lemma for use later. 

COROLLARY I 
(i) Let f : JR.n ---+ JR.m be locally Lipschitz, and 

Z = {x E JR.n I f(x) = 0}.  

Then D f(x) = 0 for .en a.e. x E Z. 
( ii) Let f, g : JR.n ---+ JR.n be locally Lipschitz, and 

Then 

Y = {x E JR.,... I g(f(x)) = x}. 

Dg(f(x))Df(x) = I  for .en a.e. x E Y. 
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PROOF 
I. We may assume m = I in assertion (i). 
2. Choose x E Z so that D f(x) exists, and 

. .cn(Z n B(x, r)) 
hm = I · 
r�o .Cn(B(x, r)) ' 

_cn a_e_ x E Z will do. Then 
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f(y) = Df(x) · (y - x) + o(ly - x l )  as y ---+ x  (**) 
Assume Df(x) = a =J 0, and set 

S = { v E 8B(O, I )  I a · v > � Ia I } . 
For each v E S and t > 0, set y = x + tv in (**): 

f(x + tv) a · tv + o( l tvl) 

> t la l  
+ o(t) as t ---+ 0. 2 

Hence there exists t0 > 0 such that 

f(x + tv) > 0 for 0 < t < t0 , v E S, 

a contradiction to (*). This proves assertion (i). 
3. To prove assertion (ii), first define 

dmn Df = {x I  Df(x) exists } .. 

dmn Dg = {x I  Dg(x) exists } .  

Let 

X =  Y n dmn Df n r1 (dmn Dg). 

Then 
Y � X C (JR.n - dmn D f) U g(JR.n - dmn Dg). 

This follows since 

implies 

f(x) E JR.n - dmn Dg, 

and so 

x = g(f(x)) E g(JR.n - dmn Dg) . 
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According to (* * *) and Rademacher 's Theorem, 

C (Y - X) = 0. 

Now if x E X, Dg(f(x)) and Df(x) exist, and so 

Dg(f(x))Df(x) = D(g o f) (x) 

exists. Since (g o f) ( x) - x --:- 0 on Y, assertion (i) implies 

D(g o f) = I .en a.e. on Y. I 

3.2 Linear maps and Jacobians 

We next review some basic linear algebra. Our goal thereafter will be to define 
the Jacobian of a map f : JR.n -+ JR.m . 

3.2.1 Linear maps 

DEFINITIONS 

(i) A linear map 0 : JR.n -+ JR.m is orthogonal if (Ox) · ( Oy) = x · y for all X, Y E JR.n . 
(ii) A linear map S : JR.n ---+ JR.n is symmetric if x · (Sy) = (Sx) · y for all X, y E JR.n . 

(iii) A linear map D : JR.n -+ JR.n is diagonal if there exist d1 , • • •  , dn E JR. such 
that Dx = (d1xh . . .  , dnxn) for all x E JR.n . 

(iv) Let A : JR.n -+ JR.m be linear. The adjoint of A is the linear map A* : 
JR.m -+ JR.n defined by x · (A*y) = (Ax) · y for all x E JR.n , y E JR.m . 

First we recall some routine facts from linear algebra. 

THEOREM 1 

(i) A** = A. 
(ii) (A o B)* = B* o A* .  

(iii) 0* = o- 1 l/ 0 : JR.n -+ JR.n is orthogonal. 
(iv) S* = S if S : JR.n -+ JR.n is symmetric. 
(v) If S : JR.n -+ JR.n is symmetric, there exists an orthogonal map 0 : JR.n -+ 

lR.n and a diagonal map D : JR.n -+ JR.n such that 

s = o o D o  o- 1 . 
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(vi) If 0 : JR.n ---+ JR.m is orthogonal, then n < m and 

0* o 0 = I 

O o  0* = I 

THEOREM 2 POLAR DECOMPOSITION 
Let L : JR.n -+ JR.m be a linear mapping. 
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(i) If n < m, there exists a symmetric map S : JR.n -+ JR.n and an orthogonal 
map 0 : JR.n -+ JR.m such that 

L = 0 o S. 

(ii) If n > m, there exists a symmetric map S : JR.m -+ JR.m and an orthogonal 
map 0 : JR.m -+ JR.n such that 

L = S o 0*. 

PROOF 
1. First suppose n < m. Consider C = L* o L : JR.n ---+ JR.n . Now 

and also 

(Cx) · y = (L* o Lx) · y = Lx · Ly 

= x · L* o Ly 

= X . Cy 

(Cx) · x = Lx · Lx > 0. 

Thus C is symmetric, nonnegative definite. Hence there exist J.LI , • • •  , J.Ln > 0 
and an orthogonal basis {xk }k=I of JR.n such that 

(k = l , . . .  , n) . 

Write J.Lk = >-L Ak > 0 (k = 1 ,  . . .  , n) . 

2. Claim: There exists an orthonormal set { zk }k=I in JR.m such that 

' 

·. ; ,: -. . f - � . 
Proof of Claim: If Ak =J 0, define 

(k =- � ,  . . .  , n) . 
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Thus the set { Zk I Ak =J 0} is orthonormal. If Ak = 0, define Zk to be any 
unit vector such that { zk }k=I is orthonormal. 

3. Now define 

and 

0 : JR.n ---+ JR.m by Oxk = Zk 

Then 0 o Sxk = AkOXk = Akzk = Lxb and so 

L = 0 o S. 

(k = l , . . .  , n) .  

The mapping S is clearly symmetric, and 0 is orthogonal since 

Oxk · Oxz = Zk · zz = 8kl · 

4. Assertion (ii) follows from our applying (i) to L* : JR.m ---+ JR.n . I 
DEFINITION Assume L : JR.n ---+ JR.m is linear. 

(i) If n < m, we write L = 0 o S as above, and we define the Jacobian of 
L to be 

[L] = I det Sl . 

(ii) If n > m, we write L = S o  0* as above, and we define the Jacobian of 
L to be 

[L] = l det S I .  

REMARKS 

(i) It follows from Theorem 3 below that the definition of [L] is independent 
of the particular choices of 0 and S. 

-
(ii) Clearly, 

' . 
[L] = [L*] . I . ':.: ' . 

THEOREM 3 
(i) lf n < m, 

[Lf = det(L* o L) . 

(ii) lf n > m, 

[L]2 = det(L o L*) . 
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PROOF 
1. Assume n < m and write 

L = 0 o S, L* = S* o 0* = S o 0*; 

then 

L* o L = S o 0* o 0 o S = S2, 

since 0 is orthogonal, and thus 0* o 0 = I. Hence 

det(L* o L) = (det S/ = [Lf. 

2. The proof of (ii) is similar. I 
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Theorem 3 provides us with a useful method for computing [L] , which we 
augment with the Binet-Cauchy formula below. 

DEFINITIONS 

(i) If n < m, we define 

A ( m, n) = { ,\ : { I ,  . . .  , n} -+ { I ,  . . .  , m} I ,\ is increasing} .  

(ii) For each ,\ E A(m, n) , we define P>. : JR.m -+ JR.n by 

P>. (XI , . . .  , Xm) = (X>.( l ) •  . . .  , X>.(n) ). 

REMARK For each .\ E A( m, n), there exists an n-dimensional subspace 

S>. = Span{e>.(I ) > - · · • e>.(n) } C JR.m 

such that P>. is the projection of JR.m onto S >. ·  I 

THEOREM 4 BINET-CAUCHY FORMULA 
Assume n < m and L : JR.n -+ JR.m is linear. Then ' .. 

[Lf = L (det(P>. o L))2 • 
>.EA(m,n) 

REMARK 

(i) Thus to calculate [Lf, we compute the sums of the squares of the deter­
minants of each (n x n)-submatrix of the (m x n)-matrix representing L 
(with respect to the standard bases of JR.n and JR.m ). 

(ii) In view of Lemma 1 in Section 3.3. 1 ,  this is a kind of higher dimensional 
version of the Pythagorean Theorem. I 
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' 

FIGURE 3.1 
The square of the 1-tn-measure of A equals the sum of the squares of the 
rtn-measure of the projections of A onto the coordinate planes. 

PROOF 
1. Identifying linear maps with their matrices with respect to the standard 

bases of JR.n and JR.m, we write 

so that 

2. Then 

m 
Uij = L lkilkj 

k=l 
(i, j = I ,  . . . , n). 

n 
[Lf = det A = L sgn (cr) II ai,a(i) • 

aEE i=l 

E denoting the set of all permutations of { 1 ,  . . .  , n} . Thus 

n m 
[Lf = L sgn (cr) IT L lkilka(i) 

aEE i=I k=l 
n 

= L sgn (cr) L II l<p(i)il<p(i)a(i) , 
aEE <pE� i=l 

' . , , ' 

<I> denoting the set of all one-to-one mappings of { I ,  . . .  , n} into { 1 ,  . . .  , m}. 
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3. For each lp E <I>, we can uniquely write lp 
,\ E A( m, n ). Consequently, 

,\ o B, where B E E and 

n 
[L]2 = L sgn (cr) L L IT l>.oiJ(i))>.oiJ(i) ,a(i) 

aEE >.EA(m,n) IJEE i=l 

n 
= L sgn (cr) L L IT l>.(i ) ,IJ- I (i) l>.(i) ,aoiJ- I ( i )  

aEE >.EA(m,n) IJEE i=l 

n 
L L L sgn (cr) IT l>.(i) ,IJ(i) l>.(i),aoiJ(i )  

>.EA(m,n) IJEE aEE i=l 

n 
L L L sgn (B)sgn (p) IT l>.(i),IJ(i ) l>.(i),p(i) 

>.EA(m,n) pEE IJEE i=l 

(where we set p = cr o B) 

3.2.2 Jacobians 

L (L sgn (B) IT l >.(i) ,IJ(i)) 
2 

>.EA(m,n) IJEE i=l 

L (det(P>. o L))2. I 
>.EA(m,n) 

Now let f : JR.n --+ JR.m be Lipschitz. By Rademacher's Theorem, f is differ­
entiable .en a.e., and therefore Df (x) exists and can be regarded as a linear 
mapping from JR.n into JR.m for _en a. e. x E JR.n . 

NOTATION If f : JR.n --+ JR.m, f = (! 1 , . • .  , fm) , we write the gradient matrix 

.;;" ;• 8jl 
'lit\-·, .... ,• ... - 8x1 . " , .. 

Df = 

8jm 

8x1 

DEFINITION The Jacobian of f is 

0 0 0 

0 0 0 

Jf(x) = [Df(x)] 

8! 1 

8xn 
0 0 

8jm 

8xn mxn 

(.en a.e. x ). 
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3.3 The Area Formula 

Throughout this section, we assume 

n < m. 

3.3.1 Preliminaries 

LEMMA 1 
Suppose L : lRn ---+ JR.m is linear, n < m. Then 

1in(L(A)) = [L]C (A) 

for all A C JR.n . 

PROOF 
I. Write L = 0 o S as in Section 3 .1 ;  [L] = I det Sl. 
2. If [L] = 0, then dim S(JR.n ) < n - 1 and so dim L(JR.n ) < n - 1 . Conse­

quently, 1in(L(JR.n )) = 0. 
3. If [L] > 0, then ; 

1in (L(B(x, r)) .!._ C(O* o L(B(x, r)) _ t:,n(O* o O o S(B(x, r)) 
£n (B(x, r)) t:,n (B(x, r)) t:,n(B(x, r)) 

C(S(B(x, r)) C(S(B(O, 1)) 
£n(B(x, r)) a (n) 

= I detSI = [L] . 

4. Define v(A) = 1in(L(A)) for all A c JR.n . Then v is a Radon measure, 
v « t:,n, and 

. v(B(x, r)) Dcnv(x) = hm 
( ( )) 

= [L] . r�o t:,n B x, r 
Thus for all Borel sets B C JR.n , Theorem 2 in Section 1.6.2 implies 

Since v and t:,n are Radon measures, the same formula holds for all sets A c JR.n . 

Henceforth we assume f : JR.n ---+ JR.m is Lipschitz. 

LEMMA 2 
Let A C JR.n be t:,n-measurable. Then 

(i) f(A) is 1in-measurable, 

(i1) the mapping y t--t 1i0(A n f-1  {y}) is 1in-measurable on JR.m , and 

I 
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REMARK The mapping y f--+ 7i0(Anj-1 {y}) is called the multiplicity function. I 

PROOF 
1. We may assume with no Joss of generality that A is bounded. 
2. By Theorem 5 in Section 1 . 1 . 1 ,  there exist compact sets K; c A such that 

C(K;) > C(A) - � 
t 

( i = I ,  2, . . .  ) . 
As .cn (A) < oo and A is .en-measurable, .cn (A - K;) < 1 /i .  Since f is 
continuous, f ( K;) is compact and thus 7-ln -measurable. Hence f ( Uf 1 K;) -:­Uf J(K;) is 1-ln-measurable. Furthermore, 

7-ln (f(A) - f (p K;) )  < 7-ln (1 (A - p K;) )  

< (Lip (f))nt:,n (A - p K;) = 0. 

Thus f(A) is 1-ln-measurable: this proves (i). 
3. Let 

Bk = { Q I Q = (at , bd X . . .  X (an , bnJ ,  

c· c ·  + 1 } a; = � , b; = ' k , c; integers, i = 1 , 2, . . .  , n , 

and note 

Now 

and 

Thus 

9k = L X f(AnQ) is 7-ln-measurable by (i) , QE8k 

9k (Y) = number of cubes Q E Bk such that r1 {y} n (A n Q) ::J 0. 

as k ---+ oo 

for each y E JR.m, and so y f--+ 'H0 (A n f-1 {y}) is 7-ln-measurab!e. 
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4. By the Monotone Convergence Theorem, 

{ 7t0(A n r1 {y}) d?-ln = lim { 9k d?-ln 
}JRm k-+00 }TR_m 

LEMMA 3 

= lim L 7-ln(f (A n Q)) k�oo QEB, 

= (Lip (f)tC(A) . I 

Let t >  I and B = {x I  Df(x) exists, Jf(x) > 0} .  Then there is a countable 
collection { Ek } k' 1 of Borel subsets of JR.n such that 

(i) B = Uf 1 Ek; 
(ii) f IE, is one-to-one (k = 1 ,  2, . . .  ); and 

(iii) for each k = I ,  2, . . .  , there exists a symmetric automorphism Tk : JR.n -+ 
JR.n such that 

PROOF 
1. Fix E > 0 so that 

1 
- + E < 1 < t - E. 
t 

Let C be a countable dense subset of B and let S be a countable dense subset 
of symmetric automorphisms of JR.n . 

2. Then, for each c E C, T E S, and i = 1 ,  2, . . .  , define E(c, T, i) to be the 
set of all b E B n B ( c, 1 /  i) satisfying 

for all v E JR.n and 

( � + E) ITv l < IDf(b)vl < (t - E) ITv l 

lf(a) - f(b) - Df(b) · (a - b) l < EIT(a - b) l (**) 
for all a E B(b, 2/i) . Note that E(c, T, i) is a Borel set since Df is Borel 
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measurable. From (*) and (**) follows the estimate 

I 
t iT( a - b) l < If(  a) - f(b) l < tiT( a - b) l (* * *) 

for b E E (c, T, i), a E B(b, 2/i). 
3. Claim: If b E  E(c, T, i) , then 

( ! + Er l det TI < Jf(b) < (t - E)n l det TI . 
Proof of Claim: Write D f(b) = L = 0 o S, as above; 

Jf(b) = [Df(b)] = l det SI . 

By (*), 

C + E) ITvl < I (O o S)vl = ISvl < (t - E) ITv l 

for v E JR.n, and so 

Thus 

(S o r-1) (B(o, 1 ) )  c B(o, t - E); 

whence 

I det(S 0 r- 1 ) la(n) s; .cn (B(O, t - E)) = a (n) (t - Et, 

and hence 

The proof of the other inequality is similar. 
4. Relabel the countable collection {E(c, T, i) I c E  C, T E S, i = 1 , 2, . . .  } 

as,{Ek}r 1 •  Select any b E  B, write Df(b) = 0 o S as above, and choose 
T- E S such that 

Now select i E { I , 2, . . .  } and c E C so that l b - cl < l/i, 
E 

lf(a) - f(b) - Df(b) · (a - b) l < Lip (T-l ) 
I a - bl < EIT(a - b) I 

for all a E B(b, 2/i). Then b E E(c, T, i). As this conclusion holds for all 
b E  B, statement (i) is proved. 
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5. Next choose any set Ek, which is of the fonn E(c, T, i) for some c E C, 
T E S, i = 1 , 2, . . . .  Let n = T. According to (* * *), 

1 
t iTk (a - b) l < lf (a) - f(b) l < t ln (a - b) l  

for all b E Ek, a E B(b, 2/i). As Ek C B( c, 1 /i) C B(b, 2/i), we thus have 

I 
t ln(a - b) l < l f(a) - f(b)l < t ln (a - b) l (* ***) 

for all a, b E Ek; hence f I Ek is one-to-one. 
6. Finally, notice ( * * * *) implies 

whereas the claim provides the estimate 

t -n l detn l < J f l ek < tn l detnl . 

Assertion (iii) is proved. I 
3.3.2 Proof of the Area Formula 

THEOREM 1 AREA FORMULA 
Let f : Rn -+ Rm be Lipschitz, n < m. Then for each .en-measurable subset 
A c Rn , 

PROOF 
1. In view of Rademacher's Theorem, we may as well assume Df(x) and 

Jf(x) exist for all x E A. We may also suppose .cn (A) < oo. 
2. Case 1.  A C {Jf > 0}. Fix t > 1 and choose Borel sets {Ek}k' 1 as in 

Lemma 3. We may assume the sets {Ek}f 1 are disjoint. Define Bk as in the 
proof of Lemma 2. Set 

Then the sets Fj are disjoint and A =  UfJ=1Fj. 
3. Claim #1 : 

00 

ki!_.� .2: 'lin(!( Fj)) = lm 'lio(A n r1 {y}) d'lin. 
t,J= 1 

Proof of Claim #1: Let 
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A 
'- o;:Y 

f(A) 

FIGURE 3.2 
The Area Formula. 

so that gk (Y) is the number of the sets {Fj} such that Fj n f- 1 {y} =/= 0. 
Then gk (Y) I 'H0(A n j- 1 {y}) as k -+  oo. Apply the Monotone Convergence 
Theorem. 

4. Note 

and 

by Lemma 3. Thus 

c2n'Hn(f (Fj)) < cnC(Tj (Fj)) 
= cn l de(fi iC(Fj) 

< / Jf dx 
}p3 

' 

< tn l det Tj i.Cn (Fj ) 
= tnC(TJ(Fj) ) 
< t2n'Hn(f(Fj)) , 

where we repeatedly used Lemmas 1 and 3. Now sum on i and j: 
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Now let k ---> oo and recall Claim #1: 

c2n { rt0(A n r1 {y}) drtn < { Jf dx lR= lA 

Finally, send t ---> I + .  
5. Case 2 .  A C { J f = 0}. Fix �: > 0. We factor f = p o g, where 

g(x ) = (f(x ) , a) for x E Rn , 

and 

p(y, z) = y for y E Rm , z E Rn 

6. Claim #2: There exists a constant C such that 

0 < Jg (x) < C�: 

for x E A. 

Proof of Claim #2: Write g = (!1 , . • .  , fm , EXt ,  . . .  , Exn ); then 

Dg(x ) = ( D�y) ) . 
(n+m) xn 

Since J f( x )2 equals the sum of the squares of the ( n x n )-subdeterminants of 
D f ( x) according to the Binet-Cauchy formula, we see 

Jg(x)2 = sum of squares of (n x n)-subdeterminants of Dg(x ) > �:2n > 0. 

Furthermore, since ID  fl < Lip (f) < oo, we may employ the Binet -Cauchy 
Formula to compute 

J (x)2 = Jf(x)2 + { �urn o� squares of terms each } < C�:2 g mvolvmg at least one E 
for each x E A. 

7. Since p : Rm x Rn ...... Rm is a projection, we can compute, using Case 1 
above, 

Hn (f(A)) < Hn(g(A)) 

< { H0(A n g-1 {y, z}) drtn (y, z) 
}R_n+rn 

= i Jg(x) dx 
< �:CC (A). 
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Let �: -+  0 to conclude 'H.n(f(A)) = 0, and thus 

since spt 7i0 (A n j- t {y}) c f(A). But then 

{ 7i0 (A n r 
1 
{ y}) d'H.n = 0 = j J f dx. 

}Rn A 

99 

8. In the general case, write A = At UA2 with At C {J f > 0},  Az C { J f = 
0}, and apply Cases 1 and 2 above. I , 

3.3.3 Change of variables formula 

THEOREM 2 
Let f : Rn -+ Rm be Lipschitz, n < m. Then for each .cn-summable function 
g :  JRn -+ R, 

r g(x)Jf(x) dx = r }Rn }Rm 
REMARK Using the Area Formula, we see f- t {y} is at most countable for 
'lin a.e. y E Rm . I 

PROOF 
1. Case 1 .  g > 0. According to Theorem 7 in Section 1 . 1 .2 we can write 

for appropriate .en -measurable sets {A }i' 1 •  Then the Monotone Convergence 
Theorem implies 
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2. Case 2. g is any .cn-summable function. Write g = g+ - g - and apply 
Case 1 .  I 

3.3.4 Applications 

A. Length of a curve (n = 1 ,  m > 1 ). 
one-to-one. Write 

so that 

Jf = IDf l = Ii i 

For -oo < a <  b < oo, define the curve 

Assume f : R -+ Rm is Lipschitz and 

• 1 . 
D f = (f ' . . .  ' fm) '  

C = f([a, b] ) C Rm . 

a R 

FIGURE 3.3 
Length of a curve. 

c 

f 

b 
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Then 

H1 (C) = "length" of C = 1b I i i dt. 

101 

B. Surface area of a graph (n > 1 ,  m = n + 1 ). Assume g : Rn -+ R is 
Lipschitz and define f : Rn -+ ]Rn+l by 

Then 

so that 

Df = 

f(x) = (x, g(x) ) .  

1 

0 
8g 

. . . 

. . . 

0 

I 
8g 

( J !)2 = sum of squares of ( n x n )-subdetenninants 

= 1 + IDgl2 · 
For each open set U C Rn , define the graph of g over U, 

Then 

G = G(g; U) - {(x, g(x)) I X E U} C ]Rn+l . 

Hn (G) = "surface area" of G = f ( 1 + IDgl2) !  dx . lu · 

C. Surface area of a parametric hypersurface (n > 1, m = n + 1 ) . Sup­
pose f : Rn -+ JRn+l is Lipschitz and one-to-one. Write 

so that 

Df = 

J = u�, . . .  , r+l ) ,  

• . 

• • •  
(n+l) xn 

(J Jf = sum of squares of (n x n) -subdetenninants 

n+l [ >:>(jl Jk-l jk+ l Jn+l ) ] 2 == �  u , . . . , ' , . . . , 
k=l 8(xl , . . .  , Xn ) 
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f 

FIGURE 3.4 
Surface area of a graph. 

For each open set U C Rn , write 

Then 

S = J(U) C ]Rn+l . 

Hn ( S) = "surface area" of S 

Area and Coarea Formulcls 

D. Submanifolds. Let M c Rm be a Lipschitz, n-dimensional embedded sub­
manifold. Suppose that U C Rn and f : U -+ M is a chart for M. Let 
A c f(U), A Borel, B = J-1 (A). Define 

Then 

of of g · · = - · ­'J - OXi OXj 
g = det( (9ij )) .  

( 1  < i, j < n) , 
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f 

FIGURE 3.5 
Surface area of a parametric hypersurface. 

FIGURE 3.6 
Volume of a submanifold. 

and so 

Thus 

f 

l 
Jf = 9 2 •  

Hn(A) == "volume" of A in M = h gi d:; 

103 
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3.4 The Coarea Formula 

Throughout this section we assume 

n > m. 

3.4.1 Preliminaries 

LEMMA 1 

Suppose L :  Rn -+ Rm is linear, n > m, and A c Rn is en-measurable. Then 

(i) the mapping y ....... rtn-m(A n L -t {y}) is em-measurable and 

(ii) fiR= Hn-m(A n L- 1 {y}) dy = [L�en (A) . 

PROOF 
1. Case 1 .  dim L(Rn )  < m. 
Then A n  L-1 {y} = 0 and consequently Hn-m(A n L-1 {y}) = 0 for em 

a.e. y E Rn. Also, if we write L = S o 0* as in the Polar Decomposition 
Theorem (Section 3.2. 1 ), we have L(Rn ) = S(Rm ). Thus dim S(Rm ) < m and 
hence [Lll = I det Sl = 0. 

2. Case 2. L = P = orthogonal projection of Rn onto Rm. 
Then for each y E Rm , p- 1 {y} is an (n - m)-dimensional affine subspace 

of Rn , a translate of p- l {0}. By Fubini's Theorem, 

y ....... Hn-m (A n p- 1 {y}) is em-measurable 

and 

3. Case 3. L :  Rn -+ Rm , dim L(Rn ) = m. 
Using the Polar Decomposition Theorem, we can write 

L = S o O* 

where 

S : Rm -+ Rm is symmetric, 

0 : Rm -+ Rn is orthogonal, 

[L� = I det Sl  > 0. 
4. Claim: 0* = P o Q, where P is the orthogonal projection of Rn onto Rm 

and Q : JRn -+ Rn is orthogonal. 
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Proof of Claim: Let Q be any orthogonal map of Rn onto Rn such that 

for all x E Rm . Note 

for all x E Rm . Thus 0 = Q* o P* and hence 0* = P o Q. 
5. L - 1  {0} is an ( n-m )-dimensional subspace of JRn and L -1 {y} is a translate 

of L -1 {0} for each y E Rm . Thus by Fubini's Theorem, y ,_. rtn-m(A n 
L - 1  {y}) is .em -measurable, and we may calculate 

C(A) = C(Q(A)) 

= { Hn-m(Q(A) n P- 1 {y}) dy 
}[l_m 

Now set z = Sy to compute using Theorem 2 in Section 3.3 .3 

I det Sl C(A) = { Hn-m(A n Q-1 0 p-1 0 s-1 { z}) dz. 
}[l_m 

But L = S o 0* = S o P  o Q, and so 

[L�C(A) = { Hn-m(A n L -1 { z}) dz. I 
}[l_m 

Henceforth we assume f : JRn -+ Rm is Lipschitz. 

LEMMA 2 
Let A C Rn be .en-measurable, n > m. Then 

(i) f(A) is .em-measurable, 

(ii) A n f-1 {y} is Hn-m measurable for .em a.e. y, 
(iii) the mapping y �----> Hn-m(A n r1{y}) is .em-measurable, and 

(iv) JR= Hn-m(A n f- 1 {y}) dy < (a(n - m)a(m))/a(n)(Lip f)m.cn(A). 

PROOF 
1. Statement (i) is proved exactly like the corresponding statement of Lemma 2 

in Section 3.3 . 1 .  
2. For each j = 1 ,  2 ,  . . . , there exist closed balls {B/};x' 1 such that 

. BJ 1 
diam i < --;- , 

. J 
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and 

Define 
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· iliam B1 
( . ) n-m 

gf = a(n - m) 2 ' Xf(Bi ) "  

By (i), gf is .em-measurable. Note also for all y E Rm, 

00 

rt�1t(A n r1 {y}) < � g{ (y). 
i= l 

Thus, using Fatou 's Lemma and the lsodiametric Inequality (Section 2.2), we 
compute 

Thus 

= {* lim rt�1-:
m(A n r 1 {y}) dy 

}R,.rn J--+ 00 J 

00 

< f lim inf� g{ dy 
JR."' J --+ OO  i=l 

00 

< lim inf� f gf dy 
J--+ 00 . }JR.rn t= l 

oo ( · ) n-m diam B1 · 
= lim inf"' a(n - m) ' .cm(f(Bl ) )  

J---+ 00 6 2 i= l 

< lim inff a(n - m) 
(

diam B{
) n-m 

a(m) 
(

diam f(B{ )
) m 

J ---+00 2 2 i= l 

< a(n - m)a(m) 
(Lip f)m lim inffC(B{) a(n) J ---+oo . t=l 

< a(n -
a
��a(m) (Lip f)mC(A). 

{* 7-ln-m (A n rl {y}) dy < a(n - m)a(m) (Lip f)m.Cn(A) . (*) }Rm a(n) 
This will prove (iv) once we establish (iii). 
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3. Case 1 :  A compact. 
Fix t > 0, and for each positive integer i, let Ui consist of all points y E Rm 

for which there exist finitely many open sets 81 , . . .  , 51 such that 

A n f- 1 {y} c U�=1 Si , 

diam Sj < � (j = 1 , 2, . . . , l ) ,  
l t ( d" S ) n-m I tam · 

H a(n - m) 2 1 
< t + i . 

4. c /aim # 1 :  ui is open. 

Proof of C/aim #1: Assume y E Ui, A n j- 1 {y} c u;=1 Sj ,  as above. Then, 
since f is continuous and A is compact, 

l 
A n r 1 { z} c U Si 

j=1 

for all z sufficiently close to y. 
5. Claim #2 . 

00 
{y I Hn-m(A n /-1 {y}) < t} = n ui 

i= 1 

and hence is a Borel set. 

Proof of Claim #2: If Hn-m(A n /-1 {y} )  < t, then for each 8 > 0, 

Given i, choose 8 E (0, I /i). Then there exist sets { Si }j 1 such that 

00 
A n r 1 {y} c U Si > 

j=l 

diam Sj < 8 < � ,  
t � (diam S · ) n-m 1 � a(n - m) 2 1 

< t + "7 • 
. 1 

t 
J= 

We may assume the Si are open. Since A n f- 1  {y} is compact, a finite 
subcollection {S1 , · · · > St }  covers A n j- 1 {y}, and hence y E ui. Thus 

00 
{y I Hn-m(A n r1 {y}) < t} c n ui. 

i=1 
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On the other hand, if y E n)"' 1 U;, then for each i, 

and so 

Thus 
00 

1 
H�;;m (A n rt {y}) < t +  i '  

n U; c {y I Hn-m(A n r1 {y}) < t} . i= l 
6. According to Claim #2, for compact A the mapping 

y ....... 7-{n-m(A n r t {y}) 

is a Borel function. 
7. Case 2:  A open. 
There exist compact sets K1 C K2 C · · · C A such that 

00 

Thus, for each y E Rm, 

7-{n-m (A n f-l {y}) = .Jim 7-{n-m(Ki n rt {y}) , 
t--+00 

and hence the mapping 

is Borel measurable. 
8. Case 3 . .Cn(A) < oo. 
There exist open sets Vi :::> Vi :::> • • • :::> A such that 

.lim .Cn(Vi - A) = 0, C(Vi ) < oo. t--+ 00 
Now 

and thus by (*), 

li� sup {* IHn-m(Vi n rl {y}) - 7-{n-m(A n rl {y}) I dy 
t--+00 }JR.rn 

< lim sup 
a(n - m)a(m) (Lip f)mC(Vi - A) = 0. 

i--+oo a(n) 
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Consequently, 

12m a.e., and so according to Case 2, 

is 12m-measurable. In addition, we see Hn-m((Vi - A) n f- 1 {y}) -+ 0 err 
a.e. and so A n  J- 1  {y} is Hn-m measurable for em a. e. y. 

9. Case 4. en(A) = oo. 
Write A as a union of an increasing sequence of bounded en-measurable set: 

and apply Case 3 to prove 

and 

A n  f- 1 {y} is Hn-m measurable for em a.e. y, 

is em-measurable. 
This proves (ii) and (iii), and (iv) follows from (*)· I 

REMARK A proof similar to that of (iv) shows 

{* Hk(A n r1 {y}) dH1 < a(k)a(l) (Lip ntrtk+1 (A) JR= a(k + l ) 

for each A C Rm; see Federer [F, Sections 2. 10.25 and 2. 10.26]. I 

LEMMA 3 
Let t > 1 ,  assume h : Rn -+ Rn is Lipschitz, and set 

B = {x I  Dh(x) exists, Jh(x) > 0} . 

Then there exists a countable collection { Dk}k' 1 of Borel subsets of Rn such 
that 

(i) en (B - Uk' 1 Dk) = 0; 
(ii) h lvk is one-to-one for k = 1 ,  2, . . . ; and 

(iii) for each k = 1 ,  2, . . .  , there exists a symmetric automorphism Sk : Rn -+ 
Rn such that 
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PROOF 
1. Apply Lemma 3 of Section 3.3. 1 with h in place of f to find Borel sets 

{ Ek} k' 1 and symmetric automorphisms Tk : Rn -+ Rn such that 

00 

k=1 
(b) h I Ek is one-to-one, 

(c) 
Lip ((h IEk ) o T;;1 ) < t, Lip (Tk o (h l ek )-1 ) < t 

( k = 1 ,  2, . . .  ) . 

According to (c), (h I Ek )- 1  is Lipschitz and thus by Theorem 1 in Section 3. 1 . 1 , 
there exists a Lipschitz mapping hk : Rn -+ Rn such that hk = (h l ek )- 1  
on h(Ek )· 

2. Claim #1 : Jhk > 0 .en a.e. on h(Ek). 
Proof of Claim #1: Since hk o h(x) = x for x E Eb Corollary I in Sec­

tion 3 . 1 .2 implies 

Dhk (h(x)) o Dh(x) = I 

and so 

Jhk (h(x) )Jh(x) = 1 .en a.e. on Ek. 

In view of (c), this implies Jhk (h(x)) > 0 for Ln a.e. x E Ek, and the claim 
follows since h is Lipschitz. 

3. Now apply Lemma 3 of Section 3.3 . 1  to hk: there exist Borel sets { Fnj 1 
and symmetric automorphisms {Rj}j 1 such that 

(d) 

(e) 

(f) 

Set 

00 

C h(Ek ) - U Fik 
j=l 

hk IFk is one-to-one; 
J 

- o· - ' 

cnl det Rj l < Jhk IF� < tn l det Rj l (k = 1 ,  2, . . . ) . 
3 

Dk 
= E n h- 1 (Fk) Sk = (Rk)- 1  ] - k J ' ] - J (k = 1 ,  2, . . . ) . 

4. Claim #2: .en ( B - Uk,j=1Dj) = 0. 
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Proof of Claim #2 : Note 

00 00 

j=l j=l 
00 

= Ek - U Dj . 

Thus, by (d), 

Now recall (a). 

00 

.en Ek - U Dj = 0 j= l 

5. Clearly (b) implies h l vk is one-to-one . 
3 

6. Claim #3 : For k ,  j = I ,  2, . . .  , we have 

Proof of Claim #3: 

by (f); similarly, 

Furthermore, as noted above, 

Jhk (h(x) )Jh(x) = 1 

Thus (f) implies 

j=l 

(k = I , . . .  ) . 

.en a. e. on Dj . 
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3.4.2 Proof of the Coarea Formula 

THEOREM 1 COAREA FORMULA 

I 

Let f : Rn -+ Rm be Lipschitz, n > m. Then for each .en-measurable set 
A c Rn, 

REMARKS 

(i) Observe that the Coarea Formula is a kind of "curvilinear" generalization 
of Fu bini's Theorem. 

(ii) Applying the Coarea Formula to A =  {Jf = 0} , we discover 

for .em a.e. y E Rm . This is a weak variant of the Morse-Sard Theorem, 
which asserts 

{Jf = o} n r1 {y} = 0  
for .em a. e. y, provided f E Ck (Rn ; Rm ) for 

k = 1 + n - m. 

Observe, however, ( *) only requires that f be Lipschitz. I 

FIGURE 3.7 
The Coarea Formula. 

f(A) y 
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PROOF 
I. In view of Lemma 2, we may assume that Df(x), and thus Jj(x), exist 

for all x E A and that .cn(A) < oo. 
2. Case 1. A C {Jf > 0}. 
For each ). E A(n , n - m) , write 

J = q o h>, ,  

where 

q .. Tfllm X mm-m -+ Tfll m ,  ( z) - y lN.. JN.. lN.. q y, = 

and P>, is the projection defined in Section 3.2. 1 .  Set 

A>, = {x E A I det Dh>, f= 0} 
= {x E A I P>, i (Df{x)] - • (o) is injective}. 

Now A = U>-EA(n,n-m)A>,; therefore we may as well for simplicity assume 
A =  A>, for some ). E A(n, n - m) 

3. Fix t > 1 and apply Lemma 3 to h = h>, to obtain disjoint Borel sets 
{Dk}f 1 and symmetric automorphisms {Sk}f 1 satisfying assertions (i)-(iii) 
in Lemma 3. Set Gk = A n Dk. 

4. Claim #] : t -n[q 0 Sk] < J f IGk < tn[q 0 skn· 
Proof of Claim #1 : Since f = q o h, we have .en a. e. 

where C = D(Sf: 1 o h). 
By Lemma 3, 

Now write 

DJ = q o Dh 
= q o sk o s-,; 1 o Dh 
= q o Sk o D(Sf: 1 o h) 
= q o sk o c, 

Df = S o 0* 

q o Sk == T o P* 

for symmetric S, T : lRm -+ Rm and orthogonal 0, P : Rm -+ Rn. 
We have then 

S o 0* = T o P* o C. 
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Consequently, 

S = T o P* o C o 0. 

As G k C A C { J f > 0}, det S -1- 0 and so det T -1- 0. 
Thus, if v E JRm , 

IT- I o Sv l = IP* o C o  Ov l 
< IC o Ovl 
< t iOvl by (*) 

= t lv l . 
Therefore 

(T-I o S)(B(O, 1 )) C B(O, t) , 
and so 

Jf = l det SI < tn l det TI = tn[q o SkTI · 
Similarly, if v E JRm , we have from (**) 

Thus 

IS- I 0 Tvl = IO* 0 c- I 0 Pvl 
< IC- I  o Pvl 
< tiPvl by (*) 

= tlv l .  

5. Now calculate: 

t-Jn+m f Hn-m(Gk n r i {y}) dy 
}[l_m 

= c3n+m { Hn-m(h- I (h(Gk) n q- I {y}) )  dy 
J,U{m 

< c2n { Hn-m(S";; I (h(Gk) n q- I {y}) ) dy 
J,U{m 

= t-2n f Hn-m(s; I o h( Gk) n (q o Sk) - I {y}) dy 
J,U{m 

= c2n [q o SkTIC(Si:I o h(Gk)) 
< t-n [q o SkTIC(Gk) 

< 1 Jf dx Gk 

(by Lemma 1 )  
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Since 

< tn [q o Sk]C(Gk) 
< t2n [q o Sk]C(Si: 1 o h(Gk)) 

= t2n f Hn-m(S;; 1 o h(Gk) n (q o Sk)- 1 {y}) dy Iutm 
< t3n-m f Hn-m(h- 1  (h(Gk) n q- 1  {y} ) ) dy 

}[?_m 

= t3n-m f Hn-m(Gk n r1 {y}) dy. 
}[?_m 

I 

.en (A - LJ G k) = 0, 
k= 1 

we can sum on k, use Lemma 2, and let t _. 1 + to conclude 

6. Case 2. A C {Jf = 0}. 
Fix �: > 0 and define 

g : Rn x ]Rm _. ]Rm ,  g(x, y) = f(x) + ty 

Then 

and 

7. Observe 

Dg = (Df, d)mx (n+m) •  

�:m < Jg = [Dg] = [Dg*] < Cc 

= f Hn-m(A n r1 {y - �:w}) dy for all w E  Rm 
}[?_m 
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8. Claim #2: Fix y E !Rm , w E  !Rm , and set B = A  X B(O, 1 )  C JRn+m. Then 

if w ¢ B(0, 1 ) 
if w E  B(O, 1 ) .  

Proof of Claim #2: We have (x, z) E B n g- 1 {y}  n p- 1 { w} if and only if 

if and only if 

if and only if 

x E A, z E B(O, 1 ) , j(x) + EZ = y, z = w; 

x E A, z = w E  B(O, 1 ) ,  f(x) = y - cw; 

w E  B(O, 1 ) ,  (x, z) E (A n r1 {y - cw}) X {w} . 

9. Now use Claim #2 to continue the calculation from step 7 :  

= / 
) 

{ { Hn-m(B n g- 1 {y} n p- 1 {w}) dw dy 
a m  }Rm }Rm 

< a(n

(
-�) f Hn(B n g-1 {y}) dy (by the Remark after Lemm 

a n  }Rm 

= a(n - m) 1 J d d 
( ) 

g X Z 
a n  8 

a(n - m)a(m) < C (A) sup J g 
a(n) B 

< CC(A)c. 

Let E -. 0 to obtain 
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10. In the general case we write A :::: A1 U A2 where A1 C { J f > 0}, 
A2 C { J f == 0}, and apply Cases 1 and 2 above. I 
3.4.3 Change of variables formula 

THEOREM 2 l Let f : !Rn ..... !Rm be Ltpschitz, n > m. Then for each t:n-summable function 
g : JRn _, JR. 

and 

g I J - ' {y} is 1{n-m summable for t:m a.e. y 

r g(x)J f(x) dx == r [ r g d1in-m] dy. 
}Rn }Rm lj-l {y} 

REMARK For each y E !Rm , j-1 {y} is closed and thus 7in-m_measurable. I 
-

PROOF 
1. Case 1 . g > 0. 
Write g = I:;"' 1 (1 /i)xA, for appropriate .en-measurable sets {A; }i' 1 ; this is 

possible owing to Theorem 7 in Section 1 . 1 .2. Then the Monotone Convergence 
Theorem implies 

2. Case 2. g is any .cn-summable function. Write g = g+ - g- and use 
Case 1 .  I 
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3.4.4 Applications 

A. Polar coordinates. 

PROPOSITION I 
Let g : !Rn -+ lR be £n-summable. Then 

Area and Coarea Formulas 

f g dx = (""" ( f g dHn- 1) dr. 
}Rn 1o 1 8B(O,r) 

In particular, we see 

d ( f d ) { dHn-1 
dr 1 B(O,r) 

g X = 
1 8B(O,r) 

g 

for £1 a.e. r > 0. 

PROOF Set f(x) = l x l ;  then 
X Df(x) = �· Jf(x) = 1 (x f= 0) .  

B. Level sets. 

PROPOSITION 2 
Assume f : !Rn -+ lR is Lipschitz. Then 

I 

l
n 

IDJI dx = J: Hn- 1 ({! = t}) dt. 

PROOF Jf = IDfl .  I 

REMARK Compare this with the Coarea Formula for BV functions proved in 
Section 5.5. I 

PROPOSITION 3 
Let f : !Rn -+ lR be Lipschitz, with 

ess inf iDJI > 0. 

Suppose also g : !Rn ...... lR is £n-summable. Then 

f 9 dx = f'XJ ( { I 
9 

I 
dHn- 1) ds. 

1u>t} 1t 1u=s} Df 
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In particular, we see -

for .C1 a.e. t. 

- g dx = - d1in- I d 
(1 ) 1 g 

dt {f>t} {f=t} IDJ I  
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PROOF As above, J f = I D f I· Write Et = {! > t} and use Theorem 2 to 
calculate 



4 
Sobolev Functions 

In this chapter we study Sobolev functions on IR" , functions whose weak first par­
tial derivatives belong to some £P space. The various Sobolev spaces have good 
completeness and compactness properties and consequently are often proper 
settings for the applications of functional analysis to, for instance, linear and 
nonlinear PDE theory. 

Now, as we will see, by definition, integration-by-parts is valid for Sobolev 
functions. It is, however, far less obvious to what extent the other rules of 
calculus are valid. We intend to investigate this general question, with particular 
emphasis on pointwise properties of Sobolev functions. 

Section 4.1  provides basic definitions. In Section 4.2 we derive various ways 
of approximating Sobolev functions by smooth functions. Section 4.3 interprets 
boundary values of Sobolev functions using traces, and Section 4.4 discusses 
extending such functions off Lipschitz domains. We prove the fundamental 
Sobolev-type inequalities in Section 4.5, an immediate application of which 
is the compactness theorem in Section 4.6. The key to understanding fine 
properties of Sobolev functions is capacity, introduced in Section 4.7 and utilized 
in Sections 4.8 and 4.9. 

4.1 Definitions and elementary properties 

Throughout this chapter, let U denote an open subset of IR" . 

DEFINITION Assume f E Lfoc(U), I < i < n. We say g; E L11oc(U) is the 
weak partial derivative of f with respect to Xi in U if 

for all <p E C� (U) . 

120 

1 o<.p 1 f-, - dx = - g;cp dx 
u OX; u 
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NOTATION It is easy to check that the weak partial derivative with respect to 
:r ;, if  i t  exists, is uniquely defined C' a.e. We write 

and 

i:JI - = IJ 
') • I 

( .r, 
(i  = l ,  . . .  , n) 

- ( i:JI of ) 
u I = --:--)- . , . . . , a-:-- , ( .t 1 X" 

provided the weak derivat ives ()I I ax I , . . .  , a I I OXn exist. 

DEFINITIONS Let I < p < oo. 

(i) The function f belongs to the Sobolev space 

W1 •1' ( U) 
if f  E £!'( U) and the weak partial derivatives 8 f fox; exist and belong 
to U' (U) . i = l ,  . . .  , n. 

(ii) The function I belongs 10 wi�'(U) if f  E WI .11 (V) for each O[Jel! set v cc u. 
(iii) We say I is a Sobolev function iff E w,�'(U) for some I < p < 00. 

REMARK Note carefully: if f is a Sobolev function, then by definition the 
integration-by-parts formula 1 o<.p J of f-a ' 

dx = - a . 1.{! dx 
u x, u x, 

is valid for all 'P E C,� ( U), i = I ,  . . .  n. I 

NOTATION If f E W1 ·P(U), define 

l l f l lw . . •(u) = (fu if i P + I Dfi P  dx) l/p 

for I < p < oo, and 

l l f l lw• .oo(u) = ess sup( lf l + I Dfl ). u 

DEFINITION We say 
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provided 

and 

provided 

l l fk - f l lw• · •· (Ul -+ 0, 

fk -+ f . Wl .t' (U) tn Joe 

Sobolev Functions 

l lh - f l lw . . •• (V) -+ O for each V C C  U. 

4.2 Approximation 

4.2.1 Approximation by smooth functions 

NOTATION (i) If E > 0, we write u. = {X E u I dist(x, oU) > E }. 
(ii) Define the coo -function TJ : !Rn -+ lR as follows: 

TJ(X) = 

the constant c adjusted so 

Next define 

Tl• is the standard mollifier. 
(iii) If f E Lfoc(U), define 

that is, 

0 

r TJ(X) dx = 1 .  
}JRn 

if lx l > l ,  

( E > 0, X E JRn ); 

r = Tl· * J; 

f' (x) = i TJ,(x - y)f(y) dy (x E U, ). 

Mollification provides us with a systematic technique for approximating Sobo 
lev functions by C00 functions. 
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THEOREM I 
(i) For each £ > 0, f' E C"" (U, ) . 
(ii) If I E  C(U), then 

uniformly on compact subsets of U. 
(iii) If f E Ll'oc ( U) for some I < p < oo, then 

f' ...., f in L('oc(U) . 
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(iv) Furthermore, f' (x) -> f(x) if x is a Lebesgue point of 1: in particular, 

r ..... J 

(v) If I E W1:,;;' (U) for some I < p < oo, then 

ar of -a = rh * -a X; Xi 
(i = l ,  . . . , n ) 

on U,. 
(vi) In particular, if f E w,:,;;'(U) for some I < p < oo, then 

r ..... f in w,:,:(u). 

PROOF 
I. Fix any point x E U,, choose I < i < n, and write e; to denote the ith 

coordinate vector (0, . . . , I ,  . . . , 0). Then for I hi small enough, x + he; E U,, 
and we may compute 

f' (X + he�) - f' (X) = E

� l � [ 1J (X + h:; - Y ) _ 1J (X � Y) ]  I (y) dy 

= 
E
� 1v � [ 1J e + h:; - y ) - 1J e � y ) J f(y) dy 

for some V CC U. The difference quotient converges as h ->  0 to 

1 01] (X - Y) _ n 01], ( ) - - - E - x - y 
E OX; E OX; 

for each y E V. Furthermore, the absolute value of the integrand is bounded by 

� I ID11I Iu"' lf l E L 1 (V). 
E 

Hence the Dominated Convergence Theorem implies 

ar (x) = lim 
J' (x + he; ) - f' (x) 

ox; h�o h 
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exists and equals 

r O�T/< (x - y) f(y) dy. 1u x; 
A similar argument demonstrates that the partial derivatives of f' of all orders 
exist and are continuous at each point of U, ; this proves (i). 

2. Given V CC U, we choose V c W C U. Then for x E V, 
I J ( T - y) J f'(x) = --;;- TJ · J(y) dy = 1/(z )f(.r - cz) dz. 

E B(x,<) 0 B(O, I )  

Thus, since JB(O, I ) TJ(z) dz = I , 

l f' (x) - f(x)l < r TJ(z ) lf(x - cz) - f(x) l dz. 
1 B(O, l ) 

If J is uniformly continuous on w, we conclude from this estimate that !' _. ! 
uniformly on V. Assertion (ii) follows. 

3. Assume 1 < p < oo and f E Lfoc(U). Then for V CC J,F CC U, x E V, 
and E > 0 small enough, we calculate in case l < p < oo 

l f' (x) l  < J TJ(z ) 1 - f; TJ(z)" /; lf(x - cz) l  dz 
B(O, I )  

1 1 

< ( r TJ(z) dz) 
I
- ;;  ( r TJ(z ) i f(x - cz) IP dz) ;; 

1 B(O, 1 ) 1 B(O, I )  
I 

= ( r TJ(z) lf(x - cz) I P  dz) ;; 
1s(o, I ) 

Hence for 1 < p < oo we find 

l l f' (x) I P  dx < r TJ(z) (l i f(x - cz) IP dx) dz 
V 18(0, 1 )  V 

for E > 0 small enough. 

< fw i f(y) I P  dy (*) 

Now fix b > 0. Since f E LP(W) ,  there exists g E C(W) such that 

This implies, according to estimate ( *), 
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Consequently, 

provided E > 0 is small enough, owing to assertion (ii). Assertion ( i ii) i s  proved. 
4. To prove (iv), let us suppose f E L/oe (U) and x E U is a Lebesgue point 

of f. Then, by the calculation above, we see 

lf' (x) - f(x) l < � j 17 (:r - y )  if(y) - f(x) i dy E /J(r.<) ( 

< a(n) I I7JI Iu"' fu( .:.<) I f - f(x) l  dy 

= o( l ) as c ---> 0. 

5. Now assume f E W1�' (U) for some I < p < oo. Consequently, as 
computed above, 

ar J a 
-0 (x) = 8

17' (x - y)f(y) dy X; U X ; 1 01], = - -a (x - y)f(y) dy 
u Yi 1 of 

= 1J, (x - y) -0 (y) dy 
u Yi 

of 
= 11• * -a (x) 

X; 

for x E U,. This establishes assertion (v), and (vi) follows at once from (iii). 
I 

THEOREM 2 LOCAL APPROXIMATION BY SMOOTH FUNCTIONS 
Assume f E W1 ·P(U) for some I < p < oo. Then there exists a sequence 
Udk' I c W1·P(U) n C00 (U) such that 

fk _. f in W1 'P(U). 

Note that we do not assert fk E C00 (U): see Theorem 3 below. 

PROOF 
I. Fix E > 0 and define 

uk = {x E u I dist(x , iJU) > �} n u(O, k) 

Uo = 0. 

( k = 1 ,  2, . . .  ) ' 
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Set 

( k = I , 2, . . .  ) , 

and let { (.,} k' 1 be a sequence of smooth functions such that 

(1.: :::: 1 , 2 , . . .  ) , 

For each k = I , 2, . . . , f(k E W1•1' (U), with spt (f(k } c Vk; hence there exists 

Ek > 0 such that 

spt (ry,. * (f(k )) C Vk 
(i I TJ • •  * (f(k ) - f(k 1 1' dx) t < 2

c
k 

1 

(fu 1 TJ • •  * (D(f(k }) - D(f(k } IP dx) v < 2
Ek • 

Define 
00 

t. = I:  TJ •• * (f(k )· 
k= l 

In some neighborhood of each point x E U, there are only finitely many nonzero 
terms in this sum; hence 

2. Since 

and 

J, E C00(U). 

00 

00 l 

l l f, - f i i L•(U) < � (fu 1TJ •• * (f(k ) - f(d dx) " < E 
00 l 

I IDf, - Dfi i L•(U) < � (i ITJ •• * (D(f(k} ) - D(f(k) IP dx) " < E. 

Consequently f, E W1•P(U) and 

J, ..... f in W1•P(U) as E ..... 0. I 
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u 

X 
• v(y) 

Q(x,r) 

FIGURE 4.1 
A Lipschitz boundary. 

Our intention next is to approximate a Sobolev function by functions smooth 
all the way up to the boundary. This necessitates some hypothesis on the 
geometric behavior of au. 

DEFINITION We say au is Lipschitz if for each point x E aU . there exist 
r > 0 and a Lipschitz mapping "( : JRn- l  ----> lR such that - upon rotating and 
relabeling the coordinate axes tf necessary - we have 

u n Q(x, r) = {Y I 'Y(YI , . . .  , Yn- d < Yn} n Q(x, r ) , 

where Q(x, r) = {y I I Y; - x; l < r, i = 1 ,  . . .  , n}. 

In other words, near X, au is the graph of a Lipschitz function. 

REMARK By Rademacher's Theorem, Section 3 . 1 .2, the outer unit normal v(x) 
to u exists for fin-]  a.e. X E au. I 

THEOREM 3 GWBAL APPROXIMATION BY SMOOTH FUNCTIONS 
Assume U is bounded, au Lipschitz. Then if f E W1•P(U) for some 1 < p < oo, 
there exists a sequence Udk" I c W1·P(U) n C00(U) such that h ----> f in 
WI ,p(U). 

PROOF 
I. For X E au, take r > 0 and "( : JRn-l  -+ lR as in the definition above. 

Also write Q = Q(x, r), Q' = Q(x, r/2). 
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FIGURE 4.2 

• 
B(y E,E) y 

Q' 

The small ball B(y" , c) lies in U n Q. 

Sobolev Functions 

2. Suppose first f vanishes near aQ' n U. For y E u n Q'' E > 0 and a > 0, 
we define 

Observe B (y' , c) c U n Q for all c sufficiently small, provided a is large 
enough, say a = Lip ( 1) + 2. See Figure 4.2. 

We define 

J, (y) = 0� i TJ (;) f(y' - z) dz 

for y E U n Q'. 

= � r TJ (y - w + aen) !(tc) dw E }B(y',<) E 

3. As in the proof of Theorem 1,  we check 

f, E C00 (U n Q') 

and 

J, --+ J in W1·P(U n Q') .  

Furthermore, since f = 0 near aQ' n U, we have J, = 0 near aQ' n U for 
sufficiently small c > 0; we can thus extend f, to be 0 on U - Q' . 

4. Since au is compact, we can cover au with finitely many cubes Q; = 

Q(x; , r;/2) (i = 1 ,  2, . . .  , N), as above. Let { (; }f' 0 be a sequence of smooth 
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functions such that 

and set 

0 < (; < I ,  

O < (o < l , 
N 
L(i = I 
i=O 

f' = f(; 
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spt (; C Q: (i = I , . . .  , N) 

spt (n C U 

on U 

( i = 0, I ,  2, . . . , N) .  

Fix b > 0. Construct as in  step 3 functions g' = (Ji), E C00 ( U) satisfying 

spt (gi ) c U n Q; 

. . I 
o 

l lg' - /' I W'·"(UnQ , )  < 2N 

for i == I ,  . . .  , N. Mollify J0 as in the proof of Theorem 2 to produce g0 E 
Cc;" ( U) such that 

Finally, set 

and compute 

o o I o 
l l g - f I WI .J• (U ) < 2 . 

N 
g = L9i E C00(U) 

i=O 

N 

l l g - fl l w' ·• (Ul < 1 19° - ll l w' ·•(U) + L l lgi - tl l w . .  •(UnQi )  < b. I 

4.2.2 Product and chain rules 

i=l 

In view of Section 4.2. 1 we can approximate Sobolev functions by smooth 
functions, and consequently we can now verify that many of the usual calculus 
rules hold for weak derivatives. 

Assume 1 < p < oo, 

THEOREM 4 
(i) (Product rule) If f, g  E W1·P (U) n L00(U), then 

fg E W1·P(U) n L00(U) and 

o(fg) _ of 1 ag 
a - a g + a X; X; X; 

_en a.e. ( i = I ,  2, . , . , n ) . 
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(ii) (Chain rule) If f E W1 •�'(U) and F E  C1 (1R). F' E L'x'(IR). F(O) = 0, 
then F(f) E W1 •1' (U) and 

oF(!) = F' (f ) �� 
OX; OX; [" a.e. (i = I ,  . . .  , n) . 

(If C' (U) < oo. the condition F(O) = 0 is unnecessary.) 
(iii) If f  E W1•1' (U), then j+ . J-, lfl E W1 •1' (U) and 

Df+ = { 

Dlfl = 

Df 
0 

0 
-Df 

Df 
0 

-Df 

C' a.e. on {! > 0} 
[" a.e. on {f < 0} 

C' a.e. on {f > 0} 
C' a.e. on {f < 0} 

.C' a.e. on {f > 0} 
[n a.e. on {f = 0} 
[n a.e. on {f < 0} .  

(iv) Df = 0 [_n a.e. on {f = 0} .  

REMARK Assertion (iv) generalizes Corollary l(i) in Section 3 . 1 .2. If F is 
only Lipschitz, the chain rule is valid but more subtle. I 

PROOF 
I. To establish (i), choose <p E C� (U) with spt (;p) c V CC U. Let 

f' = r7< * f, g• = r7< * g as in Section 4.2. 1 .  Then 

1 o<p 1 o<p fg-0 . = Jg-0 . dx 
u x, v x, 

according to Theorem L 

= lim f'g' ;£.- dx 1 a 
f--+0 v OX; 1 (ar a · ) = - lim -a g' + r ag <P dx 

<--+0 V X; X; 1 ( Of ag ) = - -g + f- ';) dx 
v OXi OX; 
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2. To prove (ii), choose <.p, V,  and f' as above. Then 

F(f) ;£.- dx = F(f) ;£.- dx 1 a 1 a 
u rJx, v ox; 

= lim F(f' )  ;£.- dx 1 a 
t-0 v ax; 

1 of' = - lim F'(f' ) -, - <P  dx 
,_o v ox; 

= - { F'(J)
0
�f <.p dx lv X; 

= - 1 F'(f) a
of '-P dx, 

u x,  

where again we have repeatedly used Theorem I .  
3. Fix E > 0 and define 

F, (r ) = (r + � i - E 
{ 2 2 ) I if r > 0 

if r < 0. 
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Then F, E C1 (!R), F: E L00(1R.), and so assertion (i i) implies for <.p E C� (U ) 

1 o<.p /, , of F, (f)-
0 

dx = - F, (f)-0 . '-P dx. 
u x, u x, 

Now let E ..... 0 to find 

1 + o<.p J at f - dx = - -<.p dx. 
u ox; Un{J>O} ox; 

This proves the first part of (iii); the other assertions follow from the formulas 

r = (-f)+ , I J I = t+ + r. 

4. Assertion (iv) follows at once from (iii), since 

DJ = Dt+ - Dr.  1 

4.2.3 W1•00 and Lipschitz functions 

THEOREM 5 
Let f : U -+ R Then f is locally Lipschitz in U if and only if 
f E W1�00 (U). 
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PROOF 
I. First suppose f is locally Lipschitz. Fix I < i < n. Then for each 

VccWccU, pick 0 < h < dist (V, oW), and define 

Now 

" ( ) _ f(x + he; ) - f(x) 9· X -' -
h 

(x E V). 

sup lg;' l < Lip (f lw ) < oo, 
h>O 

so that according to Theorem 3 in Section 1 .9 there is a sequence hj ---> 0 and 
a function g; E L:O ( U) such that 

g:'; � g; weakly in Lfoc (U) 

for all 1 < p < oo. But if <p E C� (V), we have 

1 f(x) <p(x + hei ) - <p(x) dx = - 1 g:' (x )<p(x + he; ) dx. 
u h u 

We set h = hj and let j ---> oo: 

1 o<p 1 f-
0 

dx = - g;<p dx. 
U X; U 

Hence 9i is the weak partial derivative of f with respect to x; ( i = l ,  . . .  n) , 
and thus f E W1�00 ( U). 

2. Conversely, suppose f E W1�00 (U). Let BccU be any closed ball con­
tained in U. Then by Theorem I we know 

for Eo sufficiently small, where J< = TJ< * f is the usual mollification. Since J< 
is coo, we have 

f' (x) - J' (y) = l Df'(y + t(x - y)) dt · (x - y) 

for x, y E B, whence 

i f' (x) - J' (y) l < Clx - Yl, 

the constant C independent of E .  Thus 

l f (x ) - f(y) l < Clx - Yl (x, y E B). 

Hence f Is is Lipschitz for each ball BccU, and so f is locally Lipschitz 
in U. I 
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4.3 Traces 

THEOREM I 
Assume U is hounded, au is Lipschitz. I < p < oo. 

(i) There exists a bounded linear opera/or 

such that 
Tf = J on au 

for all f E W 1 ·�' (U) n C(U). 
(ii) Furthermore, for all <.p E C1 (1R"; IR" ) and f E W1 •�'(U), 

1 f div <.p dx = - 1 Df · <.p dx + { (<.p · v) Tf d?t"- 1 , u u lou 
v denoting the unit oilier normal to au. 
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DEFINITION The function T f, which is uniquely defined up to sets of?t"-1 L 
au measure zero, is called the trace of f on au. We interpret T f as the 
"boundary values" of f on au. 

REMARK We will see in Section 5.3 that for 71n- l a.e. point x E aU, 

and so 

PROOF 

lim 1 If - Tf(x) l  dy = 0, r-o Js(x,r)nU 

Tf(x) = lim 1 f dy. I r-o JB(x,r)nU 

I. Assume first f E C1 (U). Since au is Lipschitz, we can for any point 
x E aU find r > 0 and a Lipschitz function 1 : JRn- 1 --> lR such that - upon 
rotat ing and relabeling the coordinate axes if necessary -

U n Q(x, r) = {y i i(Y� o . . .  , Yn-d < Yn} n Q(x, r ) . 

Write Q = Q(x, r ) and suppose temporarily f = 0 on U - Q. Observe 

11"-1 a.e. on Q n au. 

2. Fix E > 0, set 

(t E !R), 



134 Sobolev Functions 

and compute 

1 f], (f) d?t"- '  = r f3. (!) d1t"- '  au JQn8u 
< Cl f3, (f) (-c,. · v) d1t'H Qn8U 

1 a 
= -c -a (f3, (! ) )  dy QnU y,. 

(by the Gauss-Green Theorem; cf. Section 5.8) 

< cl lfJ. 'Ul i iDJI dy Qnu 
< C fu iDfi dy, 

since 1!3.' 1 < 1 . Now let E ----> 0 to discover 

r 1!1 d?tn-] < c r IDfl dy. lau lu 

by (*) 

3. We have establ ished (**) under the assumption that f = 0 on U - Q for 
some cube Q = Q(x, r) , X E au. In the general case, we can cover au by 
a finite number of such cubes and use a partition of unity as in the proof of 
Theorem 3 in Section 4.2. 1 to obtain 

r I I I  d?tn- l  < c r IDf l  + II I  dy lau lu 
for all f E C1 (U) . For I < p < oo, we apply estimate (* * *) with l f iP 
replacing lf l  to obtain 

lar I J IP d?tn- l  < C i IDf l l f l p- l  + I JIP dy 

< c fu 1Df iP + IJ IP dy 

for all f E C1 (U) . 
4. Thus if we define 

Tf = f lau 
for f E C1 (U), we see from (* * * *) and Theorem 3 in Section 4.2. 1 that T 
uniquely extends to a bounded linear operator from WLP(U) to LP(aU; 11"- 1 ). 
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Clearly, 

Tl = l luu 

for all I E W1 ·'' ( U) n C( U). This proves assertion (i); assertion ( i i )  follows by 
a routine approximation argument from the Gauss-Green Theorem. I 

4.4 Extensions 

THEOREM I 

Assume (} is bounded, aU Lipschitz, I < p < oo . Let U C C  V. There exL1·ts a 
bounded linear operator 

E : W 1 •71 (U) -+ W1 •11 (1R" ) 

such that 

Ef = f on U 

and 

spt (Ef) C V 

for all f E W1 •P(U). 

DEFINITION Ef is called an extension of I to !Rn . 

PROOF 
I. First we introduce some notation: 

(a) Given x = (x 1 , • • •  , xn) E !Rn , let us write x = (x' , xn ) for x' 
(x 1 ,  . . .  , Xn- l )  E !Rn- l ,  Xn E lit S imi larly, we write y = (y' , Yn) .  

(b) Given x E !Rn , and r, h > 0, define the open cylinder 

C(x, r, h) = {Y E !Rn 
l l v' - x ' l < r, 1-Y-:-=-- xn l  < h }. 

Since au is Lipschitz, for each x E au there exist - upon rotating and 
relabel ing the coordinate axes if necessary - r, h > 0 and a Lipschitz function 
1 : !Rn - I -+ IR such that 

I h 
max I I(Y ) - xn l  < 4 ,  

l x' - y' l <r 
(} n C(x, r, h) = {Y I Ix' - y' l < r, ,(y' ) < Yn < Xn + h } ,  
C(x, r, h) C V. 
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c 

FIGURE 4.3 

u+ 

X 

c' u-

Sobolev Functions 

u 

A region u+ above, and a region u- below, a Lipschitz boundary. 

2. Fix X E au and with r, h, 'Y as above, write 

C = C(x, r, h), C' = C(x, r /2, h/2) 

u+ = C' n u, u- = C' - u. 

3. Let f E C1 (U) and suppose for the moment spt (f) c C' n U. Set 

+ -+ f (y) = f(y) if y E U , 

r (y) = f(y', 2"((y') - Yn ) if y E U . 

Note r = j+ = f on au n C'. 
4. Claim #1 : l l f- l l w' .P(U- )  < Cl lf l lw' ·P(U) "  

Proof of Claim #1: Let <p E C� (U- ) and let bk}k" 1 be a sequence of C00 
functions such that 

'Yk > 'Y 
'Yk ...... 'Y 
D'Yk ____. D'Y 
supk I ID'Yk i i L"" < oo. 

uniformly rn-1 1.., a.e., 
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Then, for I < i < n - I ,  

1 r arp dy 
u - fJy; 

= 1 f(y1, 2'Y(Y1) - y,) �)<p dy u- dy; 1 I I 
()._p 

= lim f(y ,  2"fdY ) - y, ) -:-) dy k-oo u - ( y; 
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1 (f) f I I ) f) f ( I ( I) ) f}"fk I ) = - lim -a (y , 2"tdY )-y, +2-a y , 2"fk y -y" -a (y ) rp dy k-oo u- Yi Yn Y; 1 ( f)f I I) f}j I ( I) ) f}"f ( 1 ) = - -a (y , 2"f(Y - Yn ) + 2-
f) 

(y , 2"( y - Yn a-:- y )  rp dy. u- y, Yn y, 
Similarly, 

Now recall 

and thus 

{ r �'P dy = { 
f)
f) f (y1 , 2"t(Y1 )  - y, )<p dy. lu- uy" lu- Yn 

1 I DJ(y1, 2"f(Y1) - Yn) lp dy < cj I DJ IP dy < 00 u- u 
by the change of variables formula (Theorem 2 in Section 3.3.3). 

5. Define 

Ef = f = 
on u+ 
on U 
on IR" - (U+ U U-), 

and note f is continuous on IR" . 
6. Claim #2: E(!) E W1•P(IR" ), spt (E(!)) c C1 c V, and 

I I E(!) I I w• .P(!Rn ) < Cl lf l l w• .P(U) ' 

Proof of Claim #2: Let rp E C� ( C1). For 1 < i < n 

t- dy = r - dy + r - dy 1 -
arp 1 arp 1 arp 

C' ay; u+ ay; u- ay; 

1 ar 1 at-
= - 'P dy - 'P dy u+ ay; u- ay; 

+ { (T(f+) - T(r ))rpv; d'H.n- 1 lau 
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by Theorem 1 in Section 4.3. But T(! + )  = T(f - )  = f lm;, and so the last 
term vanishes. 

This calculation and Claim #1 complete the proof in case f is C 1 ,  with support 
in C' n U. 

7. Now assume f E C 1 ( U), but drop the restriction on its support. Since aU 
is compact, we can cover aU with finitely many cylinders (\ = C(x�.. ,  rk , hk) (k = 1 ,  . . .  , N) for which assertions analogous to the foregoing hold. Let 
{ (.,} t' 0 be a partition of unity as in the proof of Theorem 3 in Section 4.2. 1 ,  
define E( (kf) ( k = 1 ,  2, . . .  , N) as above and set 

N 
Ef = L E((�.,J ) + (of. k=i 

8. Finally, if f E W1 >1'(U), we approximate f by functions fk E W1·�'(U) n 
C1 ( U) and set 

Ef = lim Efk. I k-oo 

4.5 Sobolev inequalities 

4.5.1 Gagliard�Nirenberg-Sobolev inequality 

We prove next that if f E W 1 ,p (!Rn ) for some l < p < n, then in fact f lies in 
LP* (IRn ) . 

DEFINITION For 1 < p < n, define 

np 
p* = ; n - p  

p* is called the Sobolev conjugate ofp. Note ljp* = l jp - l jn. 

THEOREM 1 GAGLIARDO-NIRENBERG-SOBOLEV INEQUALITY 
Assume 1 < p < n. There exists a constant C1 , depending only on p and n, 
such that 

(ln lf l �'' dx) ' /p' < C1 (ln IDJ I �' dx) ' 1P 

for all f E W1 •�'(1Rn ) .  
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PROOF 
I. According to Theorem 2 in Section 4.2. 1 ,  we may as well assume f E C) (IR" ) . Then for l < i < n, 

and so 

Thus 

!.r, at f(xJ , . . .  , x ; ,  . . .  , .r, )  = � (x1 , • • •  , t ; ,  . . . , x,) dt , 
- oo UXz 

1 / (x) l < J: I Df(x l , . . .  , l ; ,  . . . , x, ) l  dt; 

n _J_ 
1 /(x) l ·;:_, < II ( roo 

I Df(x� , . . .  , t; ,  . . . , x!l ) l  rlt; ) oo - l 
i = l  } -oo 

Integrate with respect to x1 : 

Next integrate with respect to x2 to find 

We continue and eventually discover 

n 00 00 n�l r If( dx < II ( r . . . ! ID ! I dxl . . .  dl; . . . dxn) }Rn · 1 1-oo -oo •= 



140 Sobolev Functions 

This immediately gives 
I (l .. I f( dx) i' < .L I [) ! I  dx, 

and so proves the theorem for p = 1 .  
2. If 1 < p < n, set g = l f i "Y with 1 > 0 as selected below. Applying (*) to 

g we find n-1 ( { 1 / 1 -;?::T dx) n- < 1 { 1 / 1 -y- I I D/ 1  dx }R,t }R,a 
!'..::.! l 

< 1 (1, 1 !(,-'!" dx) " (1n IDJ IP dx) " 

Choose 1 so that 

Then 
"fn 

= ( 'Y - l ) 
p 

n - l p - l 

Thus 

and so 

where C depends only on n and p. I 

4.5.2 Poincare's inequality on balls 

np * 
= p . 

n - p  

We next derive a local version of the preceding inequality. 

LEMMA 1 
For each l < p < oo there exists a constant C, depending only on n and p, 
such that 

r l f (y) - f(z) I P  dy < Crn+p-l r IDf(y) IP i y - zl l-n dy 1 B(x,r) 1 B(x,r) 

for all B(x, r) C !Rn , f E C1 (B(x, r)), and z E B(x. r) .  
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PROOF 
If y, z E ll(x, r), then 

1 1 d 1 1 f(y) - f(z) = 0 dJ(z + t(y - z)) dt = 0 Df(z + t(y - z ) )  dt · (.11 - z ) ,  

and so 

1 / (y) - f(z) l l' < IY - zl 1' [ I Df(z + t (y - z) ) l l' dt. 

Thus, for s > 0, 

r lf(y) - f(z) I P d'H."-1 (y) 
1 EJ(x,r)n8EJ(z,s) 

< s�' 1 1 r I Df(z + t(y - z)) ll' d'H."- 1 (y) dt 
0 1 EJ(x,r)n8EJ(z,.<) 

< sP1 1 
n� l r IDf(w) I P d'H."- 1 (w) dt t 1 EJ(x,r)n8EJ(z,ts) 

= sn+p- l 1 l r IDf(w) I P iw - z l l-n d'H."- 1 (w) dt 
0 1 EJ(x,r)n8EJ(z,ts) 

= s"+p-Z r I Df(w) I P iw - z l l -n dw. 
1 EJ(x,r)nEJ(z,s) 

Hence Proposition l in Section 3.4.4 implies 

r l f(y) - f(z) I P dy < Crn+p-l r IDf(w) I P iw - zl l-n dw. I 
1 EJ(x,r) 1 EJ(x,r) 

' 

THEOREM 2 POINCARE'S INEQUALITY 
For each l < p < n there exists a constant C2, depending only on p and n. 

such that 

1 I f - (f)x,r l p" dy < Czr 1 I DJ I P dy ( 
) 1/p" 

( 
) 1/p 

JEJ(x,r) JEJ(x,r) 

for all B(x, r) C IR" , f E W1•P(U(x, r)). 

Recall (f)x,r = fEJ(x,r) f dy. 
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PROOF 
1. In view of Theorem 2 in Section 4.2. 1 we may assume f E C1 ( B( x, r) ) . 
We recall Lemma I to compute 

1 I f - (/).r. , r l �' dy = 1 I f f(y) - f(z) dzll' dy JB(x,•·) JB(,;,,·) B(x,r) 
< i i l f (y) - f(z)ll' dz du B(x,r) B(x,r ) 
< C i r1'- 1  J I Df(z) l l' l y - z l 1 -" dz dy 

B(x,r) B(x,r) 
< Cr�' j I Dfl 1' dz. 

B(x,r) 

2. Claim: There exists a constant C = C(n, p) such that 

I I 

(1 l g i P. dy) P* < C (rP 1 I DgiP dy + 1 lg iP dy) p 
JB(x,r) JB(x,r) JB(x,r) 

for all g E W1·P (U(x, r)). 

Proof of Claim: First observe that, upon replacing g(y) by ( l /r)g(ry) if 
necessary, we may assume r = l .  Similarly we may suppose x = 0. We next 
employ Theorem l in Section 4.4 to extend g to g E Wi .P(IR" )  satisfying 

Then Theorem 1 implies 

according to (**). 

I 

< c ( r IDgiP + lg iP dv) " 
, j B(O, l ) 

3. We use (*) and the claim with g = f - (f)x.r to complete the proof of the 
theorem. I 



4.5 Sobolev inequalities 143 

4.5.3 Morrey's inequality 

DEFINITION Let 0 < o: < l .  A function f : IR" ___. IR is Holder continuous 
with exponent o: provided 

sup 
L !I E :R. " 

rio!! 

1 / (:r) - f(u) l 
I I 

< 
00 .  .r - !I " 

THEOREM 3 MORREY'S INEQUAUTY 
(i) For each n < p < oo there exists a constant C1 • depending only on p and 

n ,  such that 

( ) 
I /I' 

l f(y) - f(z) l < C3r i(.r.,> ) I D/ 11' dw 

for all B(x, r) c IR" . f E W1 •1'(U(x, r)) , and C' a.e. y. z E U(x, r) . 
(ii) In particular, iff E W1 ·�' (IR" ) , then the limit 

lim (f)x,r = f* (x) r-0 
exists for all x E IR" . and f* is Holder continuous with exponent l - njp. 

REMARK See Section 4.2.3 for the case p = oo. I 

PROOF 
1. First assume f is C1 and recall Lemma l w ith p = l to calculate 

l f (y) - f(z) l  

< j l f(y) - f(w) l + lf(w) - f(z) l dw JB(x,r) 

< c r I DJ(w) I ( IY - wl l-n + l z - wl 1-") dw 
1 B(x,r) 

.e.=-!. l 

< c ( r ( ly-wl 1-"+ l z-wl 1-n);;S dw) 
p 
( r IDJII' dw)

p 

1 B(x,r) 1 B(x.r) 
I 

< Cr(n-(n-l l;;S) 7  ( r IDJ IP dw)
p 

1 B(x,r) 
.L 

= Cr1-; ( { I Dflv dw) 
p 

1 B(x,r) 
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2. By approximation, we see that if f E W1 ·�'(U(x, r)) , the same estimate 
holds for £" a.e. y, z E U(x, r). This proves (i). 

3. Now suppose f E W1•�'(1Rn ) . Then for £" a.e. :1: , y we can apply the 
estimate of (i) with 7' = l x - Yl to obtain 

I 

1 / (y) - /(x) l  < Clx - yl 1 - ; (l(.�:.•·) I Df l �' dw)
;; 

Thus f is equal C' a.e. to a Holder-continuous function f. Clearly f* 
= f 

everywhere in !Rn , I 

4.6 Compactness 

THEOREM 1 
Assume u is bounded, au is Lipschitz, l < p < n .  Suppose Udk' I IS a 
sequence in W1 •�'(U) satisfying 

Then there exists a subsequence {/kJj 1 and a function f E WLP(U) such 
that 

for each l < q < p*. 

PROOF 
1. Fix a bounded open set V such that U CC \ - and extend each fk to 

jk E W1•�'(1Rn ) , spt (]k) C V, with 

- -

2. Let fie = 1J• * fk be the usual mollification, as described in Section 4.2 . 1 .  
3. Claim #] :  1 1 ]/c - hi i LP(!Rn ) < Ct, uniformly in k. 



4.6 Compactness 145 

Proof of Claim #1: First suppose the functions fk are smooth, and calculate 

Thus 

1 /k (.r) - /k (x) l  < I 1J( :: ) I /k (x - a) - fk(x) l d:: 
• / 1 (0, 1 )  

I 1
1 

d -
- '1( :: ) 1  -1 fk (x - ta) dt l dz 

. /J (O, I )  ll r t  

< f I 11 (::) t I D/k (x - d::) l dt dz . 
. /J(O. l )  1o 

1 1 /Z - fkW' ' " < Ctl' r 1J(z) 11 ( r I D/k (x - dz) l l' dx) dt dz 
LJ (IR ) 18(0, 1 )  0 11R" < Ct�'l lf I l l' - k W'· '' (IRn ) < Ct�' by (*l ·  

The general case follows by approximation. 
4. Claim #2 : For each t > 0, the sequence {/k }k' 1 is bounded and equicon­

tinuous on !Rn . 

Proof of Claim #2: We calculate 

and 

l fk (x) l < { 1J, (x - y) lik(Y) I dy 
1 B(x,<) 

I Dfk (x) l < r I D1J, (X - Y) l l fk (Y) I dy 
1 B(x,<) < C -n- 1  

- t • 

5. Claim #3: For each {j > 0 there exists a subsequence {fk1 }j 1 C {fk }k' 1 
such that 

lim sup l l fk, - !k1 I I LP(U) < b. t,J-00 

Proof of Claim #3: Recalling Claim #1, we choose t > 0 so small that 
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Next we use Claim #2 and the Arzela-Ascoli Theorem to find a subsequence 

ukj }j I which converges uniformly on IR" . Then 

- -< 1 1 /kj - h.:, I I L ,.(IR" ) 
< l l fkj - ft i l v•(IR" )  + l lfkj - fk. I I L,. (IR" ) + l l fk, - h; I I L,. (IR" ) 

2b - -
< 3 + 1 1 /,t - fk. I I LP(!Rn ) 
< {j  

for i , j  large enough. 
6. We use a diagonal argument and Claim #3 with {j = l ,  l /2, l /4, etc. to 

obtain a subsequence, also denoted {/ki }j 1 , converging to f in LP(U) . We 
observe also for 1 < q < p*, 

where 1/q = 0/p + ( 1 - 0)/p* and hence 0 > 0. Since Udk' 1 is bounded in 
• LP (U), we see 

lim l l fki - JI I L• (U) = 0 
J -00 

for each 1 < q < p* . Since p > 1 , it follows from Theorem 3 in Section 1 .9 
that f E W1•P (U) . I 
REMARK The compactness assertion is false for q = p*. In case p = 1, the 
above argument shows that there is a subsequence {hJj 1 and f E L1 • (U) 
such that 

for each 1 < q < 1 *. It follows from Theorem l in Section 5.2 that f E BV(U). I 

4.7 Capacity 

We next introduce capacity as a way to study certain "small" subsets of !Rn . 
We will later see that in fact capacity is precisely suited for characterizing the 
fine properties of Sobolev functions. For this section, fix l < p < n. 
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4.7. l Definitions and elementary properties 

DEFINITION 1\1' = { !  : IR" -+ IR I f > 0, f E LP' (IR" ) , D f E U' (IR" ; IR" ) } . 

DEFINITION If A C IR" . set 

Capp (A ) = inr {l .. I Df l1' dx I f E J<P, A c {f > t }" } . 
We call Capp(A ) the p-capacity of A. 

REMARK 
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(i) Note carefully the requirement that A lie in the interior of the set { f > I }. 
(ii) Using regularizat ion, we see 

for each compact set I< C !Rn . 
(iii) Clearly, A c B implies 

LEMMA I 
(i) If f E J(P for some 1 < p < n, there exists a sequence Udk' 1 C 

W 1 ,p (!Rn ) such that 

and 

as k ->  oo. 
(ii) If f E J<P, then 

where C1 is the constant from Theorem 1 in Section 4.5.1. 
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PROOF Select ( E C,� (!Rn )  so that 

0 < ( < l ,  ( = l on 8(0, 1 )  

spt(() C 8(0, 2) ,  ID(I < 2 .  

For each k = l ,  2 ,  . . .  , set (k(x) = ((x/ k). 
Given f E KP, write fk = f(k . Then fk E W1 •�' (!R" ), 

and 

< 2P- 1  IDfiP dy + - IJ I P dy {1 
2P 1 } [Rrt -B(O,k) kP B(O,Zk)-B(O,k) 

< c r IDJIP dy + 4P ( r I t i p· dy
) 1 - � 

j!Rrt -B(O,k) }IRn -B(O,k) 

This proves assertion (i). Assertion (ii) follows from (i) and Theorem l in 
Section 4.5 . 1 . I 
LEMMA 2 
(i) Assume j, g E KP . Then 

and 

h = max{!, g} E KP 

Dh = { Df Ln a.e. on {f  > g} 
Dg Ln a.e. on {f < g} .  

An analogous assertion holds for min{!, g } .  
(ii) If f E KP and t > 0, 

h = min{f, t }  E KP . 

(iii) Given a sequence {fk }f 1 C KP, define 

g = sup h 1 <k <oc 
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and 

It = sup I Dfk l ·  
I �k<oo 

!f it E U' (IR" ) ,  then g E /(1' and I Dg l  < h C' a.e. 

PROOF 
I .  To prove (i) we note 

h = max{f, g} = f + (g - n+ . 
Hence Theorem 4 in  Section 4.2.2 impl ies 

Dh = { �� a.e. on {f > g}  
a.e. on {f < g} 

Thus Dh E V' (IR" ) . Since 0 < h < f + g, we have h E  u· (IR" ) as well. 
2 . The proof of (ii) is similar; we need only observe 

0 < h = min{f, t }  < f, 
and so h E u · (IR" ) . 

3. To prove (iii) let us set 

91 = sup fk · 
l <k<I 

Using assertion (i) we see 91 E KP and 

I DYL l < sup I Dfk l < h. 1 <k<I 
Since 91 -> g monotonically, we have 

I I YI I  LP• (!Rn ) = ��� I I YL I I  LP• (!Rn ) 
< Cl l���f i i DgL I I LP(IRn ) 
< C1 l l hi i £P(!Rn ) ' 

Thus g E u· (!Rn ) . Now, for each <p E C� (!Rn ; !Rn ) , 

by Lemma l 

r g div <p dy = lim r 91 div 'P dy }Rn l-+oo }JRn 
= - lim { <p • Dg1 dy l-+oo }ran 
< r l<fJ ih dy. }[Rn 
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It follows that the linear functional L defined by 

L(�t?) = r g div 1p dy jR" 
has a unique extension [, to C, (IR" ;  IR" ) such that 

Sobolev Functions 

for 4? E Cc (IR" ; IR" ) .  We apply Theorem l in Section 1 .8 and note the measure 
J.L constructed there sati sties 

J.L(A) < i h dy 

for any Lebesgue measurable set A C !Rn . It follows that 

L(<p) = r 'P .  k dy }'J{n 
where k E LP(!Rn ;  !Rn ) and l k l  < h Ln a.e. Thus g E f<.'P and I Dgl = lk l  < h 
Ln a.e. I 

THEOREM I 
Capp is a measure on IRn . 

Warning: CapP is not a Borel measure. In fact, if A c IR" and 0 < Capp(A) < 
oo, then A is not CapP -measurable. Remember also that what we call a measure 
in these notes is usually called an "outer measure" in other texts. 

PROOF Assume A c u� I Ak, 2:,� I Capp(Ak) < 00 .  Fix € > 0. For each 
k = l , . . .  , choose fk E KP so that 

and 

1n IDfk i P  dx < Capp(A..} + 
2
f
k . 

Define g = sup1<k <oo fk · Then A C {g > 1 }0, g E KP by Lemma 2, and 

r I DgiP dx < r sup I Dfk i P  dx }'J{n }'J{n I <k<oc 

00 
< L Capp(Ak) + L 

k= l 
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Thus 
""" 

CapP(A) < L Capp (A!.:) + L I 
1.-= 1 

THEOREM 2 PROPERTIES OF CAPACITY 
Assume A, B C IR" . 

(i) Capp(A) = inf{Capp(U) I U open, A C U} .  
(ii) Capp(.X.A) = .X."-t'Capp(A) (.X. > 0). 

(iit) Capp ( L( A)) = Capp (A) for each affine isometry L : !Rn ---> !Rn . 
(iv) Capp(B(x, r)) = r"-PCapP(B(O, 1 ) ). 
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(v) Capp(A) < C'H"-t'(A) for some constant C depending only on p and n. 

(vi) .C" (A) < CCapp(A)nfn-p for some constant C depending only on p 
and n. 

(vii) Capp(A U B) + Capp(A n B) <  Capp(A) + Capp(B) .  
(viii) If A1  c . . .  Ak c Ak+ l . . .  , then 

(ix) If A 1  :) . . .  Ak :) Ak+I . . .  are compact, then 

REMARK Assertion (ix) may be false if the sets { Ak }%" 1 are not compact. 
See Theorem 3 in Section 4.7.2 for an improvement of (v). I 

PROOF 
1. Clearly CapP(A) < inf{CapP(U) I U open, U :) ·A} .  On the other hand, 

for each € > 0, there exists f E KP such that A c {f > 1 }  0 = U and 

But then 

and so statement (i) holds. 
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2. Fix E > 0 and choose f E /(1' as above. Let g(1: ) = f(x/ A) .  Then 
g E /(1', .\A C {g > 1 } " and 

r I Dg l �' dx = .x_n-]! r I D/ 11' dx. }!Rn }!Rn 
Thus Capp(.X.A) < .X."-1' (Capp(A) + t). The other inequal ity is simi lar, and so 
(i i) is verified. 

3. Assertion (iii) is clear. 
4. Statement (iv) is a consequence of (i i ) , ( i i i ) .  
5. To prove (v), fix {j > 0 and suppose 

00 

A C U B(:rk, Tk) 
k=l 

where 2rk < 6, (k = ! , . . .  ) . Then 
00 00 

k=l k= l 

Hence 

Capp(A) < C'H"-P (A). 
6. Choose E > 0, f E KP as in part l of the proof. Then by Lemma l 

Consequently, 

this is (vi). 

( ) I /p* C(A) 1 1p* < ln JP* dx 

< C1 (ln I Dfi P d:r) l /p 
< C1 (Capp(A) + €) 1 1P. 

7. Fix E > 0, select f E KP as above, and choose also g E KP so that 

B C {g > 1 }0 ,  

Then 

max{f, g}, min{f, g} E J{P 
and 

I D(max{f, g} ) I P + ID (min{f, g} ) IP = ID  f i P -i- IDg iP L" a.e. , 
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according to Lemma 2. Furthermore, 

A u  f3 c {max{f, g} > 1 }0 , 

A n  13 c {min{!, g} > 1 }0 •  

Thus 

Capp (A u B) + Capp (A  n /3) < 1 .. I D(max{ !, g}  w + I  D(min{f, g} ) 1 1' d:z: 
= / I DJIP + I Dgl1' dx 

1�.'1 

and assertion (vii) is proved. 
8. We will prove statement (vi i i )  for the case 1 < p < n only; see Federer 

and Ziemer [FZ] for p = l .  Assume limk-oo Capp(Ak) < oo and t > 0. Then 
for each k = 1 ,  2, . . .  , choose fk E f(P such that 

and 

Define 

hrn = max{!k I 1 < k < m }, 

and notice from Lemma 2 that hrn = max( hm- 1 ,  fm) E /(P, 

We compute 

Am- I C {x I min(hm- I , fm) > qo.  

r I Dhm l p  dx + Capp(Am- d < }'J{n 

Consequently, 

r IDhmi Pdx - r I Dhm- I I p dx < Capp(Am) - Capp(Am- d + � ' hn hn 2 
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from which it follows by adding that 

r I Dh,. IP dx < Cap (Am) + E 
}Rn p ( m = l , 2, . . .  ) . 

Set f = limm-oo hm. Then u� I Ak c {x I f(:z:) > I } ". Furthermore, 

I I J I I LP' (Rn ) = ,!�00 l l hm l l u•' (R" ) 
< Gl lim inf i iDhm l l u• (IR" ) m-oo 
< C [ lim Capp (Am) + E] l/p m-oo 

Since p > l, a subsequence of {Dhm}�= l converges weakly to Df in 
LP (IRn ) (cf. Theorem 3 in Section 1 .9); thus f E J(P. Consequently, 

9. We prove (ix) by first noting 

Capr (n Ak) < k�� Capp (Ak ) .  
k=l 

On the other hand, choose any open set u with n%" I Ak c u. As n� I Ak 
is compact, there exists a positive integer m such that Ak C U for k > m. 
Thus 

Recall (i) to complete the proof of (ix). I 

4.7.2 Capacity and Hausdorff dimension 

As noted earlier, we are interested in capacity as a way of characterizing certain 
"very small" subsets of !Rn . Obviously Hausdorff measures provide another 
approach, and so it is important to understand the relationships between capacity 
and Hausdorff measure. 

We begin with a refinement of assertion (v) from Theorem 2: 

THEOREM 3 
lf'Hn-p(A) < 00, then Capp(A) = 0 ( l  < p < n) . 

PROOF 
I. We may assume A is compact. 
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2. Claim: There exists a constant C:, depending only on n and A,  such that 
if V is any open set containing A ,  there exists an open set W and f E /\1' such 
that 

A C W C {f = l } ,  

spt (!) C V, 

r I DJ I I' dx < c. 
JR" 

Proof of Claim: Let V be an open set containing A and let {j = I /2 dist( A ,  
IR" - V) .  Since 'H"-P(A) < oo and A is compact, there exists a finite collection 
{ U(x;, 1', ) }:" 1 of open balls such that 27'; < b, U(x;, 1'; ) n A I= 0, A C U:" 1 U(x;, 1';) ,  and 

m 

L a(n - p)1'�-p < C'Hn-p(A) + l .  
i= l 

for some constant C. 
Now set W = U:" 1 U(x;, 1';) and define j; E J(P by 

l 

J;(x) = 2 -
l x - x;l 

7'; 
0 

Then 

if 

if 

if 

l x - x;l < 7'; 
7'· < lx - x I < 27' t - t - t 

27'; < lx - x;l . 

Let f = max1 <i<rn /;. Then f E K�', W C {f = l } ,  spt (!) C V, and 

1., IDJ II'  dx < fin IDJ; I I'  dx < cf 7'�-p < C('Hn-p(A) + l ) .  
IR i = l  IR t=l 

3. Using the claim inductively, we can find open sets {Vk}k' 1 and functions 
fk E J(P such that 

Set 

A c vk+l c vk, 

vk+l c {!k = 1 }0 ,  

spt (fk) c vk, 

r IDfk iP dx < c. }!Rn 
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and 

g = _!__ � /k . J s L, k J k=l 

Then 9i E /\�', 9i > l on VJ + I · Since spt ( I D/k l ) C Vk - Vk+ l • we see 

c J 1 < -P � - --+ 0 as j --+ oo, 
- s L, kl' J k= l  

since p > 1 .  I 

THEOREM 4 
Assume A C JRn and l < p < oo. if Capp ( A) = 0. then H8(A) = O for all 
s > n - p. 

REMARK We will prove later in Section 5.6.3 that Cap1 (A) = 0 if and only if 
rtn- l (A) = o. I 

PROOF 
1. Let Capp (A) = 0 and n - p < s < oo. Then for all i > l ,  there exists 

/; E KP such that A c { f; > I } 0 and 

�n I DJ; IP dx < �i . 

( r ) l/p 00 ( r ) l /p }Rn IDgiP dx < � j,ll!." I Df; IP dx < oo 

and by the Gagliardo-Nirenberg-Sobolev inequality, 

Thus g E KP. 
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2. Note A C {g > m }" for all m > I .  Fix any a E A .  Then for r small 
enough that !J(a, r ) C {g > m}0, (g)<� ,r > m; therefore (Y)u ,, · ___, oo as r ___, 0. 

3. Claim: For each a E A, 

l im sup -
1 J I Dgl '' dx = +oo. 

,-�o r·' B(tt , r )  

Proof of Claim: Let a E A and suppose 

l im sup � r I DgiP dx < oo. 
r-0 r J B(a,r) 

Then there exists a constant M < oo such that 

� { I DgiP dx < M 
r J B(a,r) 

for all 0 < r < I .  Then for 0 < r < I ,  

where e :::: s - (n - p) > 0. Thus 
. 

I 
l (g)a,r/2 - (g)a,r l  = [_n(B(a, r/2)) 

r g - (g)a,r dx J B(a,r/2) 

Hence if k > j, 

< 2n j lg - (g),, ,r l  dx J B(a,r) 

< 2n { lg - (g)a,r lp dx ( 
) 1 /p 

JB(a,r) 
8 

:::: Cr"P . 

k 
l (g)a,l /2" - (g)a,lj2i I <  L l (g)a, l/21 - (g)a, lj21- l l 

l-j+t 
k !!. < C l: CL) " .  l=j+l 

This last sum is the tail of a geometric series, and so {(g)a, 1;2• }%" 1 is a 
Cauchy sequence. Thus (g)a, t;2• f> oo, a contradiction. 
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4. Consequently, 

A C {a E IR" I lim sup � f 1 Dgl1' d:r = +oo} 
,-�o r J B(a,,·) 

C {a E IR" I lim sup � f 1Dgl1' d:r > o} = A,. 
r�o r J B(a,r) 

But since I Dg r is .C' -summable, 1-f! (A.,) = 0, according to Theorem 3 in 
Section 2.4.3. . 

4.8 Quasicontinuity; Precise representatives of Sobolev functions 

This section studies the fine properties of Sobolev functions. 

LEMMA 1 
Assume f E KP and E > 0. Let 

Then 

A =  {x E !Rn I (f)x,r > E for some r > 0} . 

where C depends only on n and p. 

REMARK This is a kind of capacity variant of the usual estimate 

PROOF For the moment we set E = l and observe that if x E A and (f)x,r > 1 ,  
then 

I 

o:(n)rn < f f dy < (o:(n)rn) l-_'. ( f r· dy) 
.... 

} B(x,r) } B (.z:.r) 

so that 

for some constant C. 
According to the Besicovitch Covering Theorem (Section 1 .5.2), there exist 

an integer Nn and countable collections :F1 , • • •  , J=:yn of disjoint closed balls 
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such that 
Nu 

A c U U B 
i = l  IJEF; 

and 
N., 

(!)8 > 1 for each B E U :F; . 
i= l  

Denote by Bf the elements of :Fi (i = l ,  . . .  , N,; j = l ,  . . .  ). Choose h;j E /(II 
such that 

and 

( i = 1 , . . . N,. : j = 1 ,  2, . . .  ) 

where C depends only on n and p. This is possible according to Theorem 1 in 
Section 4.4 and Poincare's inequality in Section 4.5.2. Note that 

f + hij > (f) B' > 1 in Bf 
• 

and hence, setting 

h = sup{ h;j I i = 1 ,  . . .  , N n, j = 1 ,  . . .  } E KP, 

that 

Now 

f + h > 1 on A. 

. ---

Consequently, since A is open and so (**) implies 

we have 

(**) 
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In case 0 < t # l ,  we set g = c1 f E I<''· so that 

Thus 

A = { x I (f)x,r > E for some r > 0} 
= {x I (g)x,r > l for some r > 0}. 

Sobolev Functions 

We now study the fine structure properties of Sobolev functions, using capac­
ity to measure the size of the "bad" sets. 

DEFINITION A function f is p-quasicontinuous if for each E > 0, there exists 
an open set V such that 

and 

f IJRn-v is continuous. 

THEOREM 1 FINE PROPERTIES OF SOBOLEV FUNCTIONS 

Suppose f E W1·P(JRn ) , l < p < n. 

(i) There is a Borel set E C JRn such that 

and 

lim (f)x ,r = f* (x) r�o 
exists for each x E lRn - E. 

(ii) In addition, 

lim [ If - f* (x) IP· dy = 0 r�o]B(x,r) 
for each x E lRn - E. 

(iii) The precise representative f* is p-quasicontinuous. 

REMARK Notice that if f is a Sobolev function and f = g £_n a.e., then g is 
also a Sobolev function. Consequently if we wish to study the fine properties 
of f, we must tum our attention to the precise representative f* , defined in 
Section 1 .7. 1 .  I 
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PROOF 
I .  Set 

A =  {x E IR" I lim sup . . u� ' 1 ID/1 1' dy > o} . r�o 1 1 /J(x,r) 
By Theorem 3 in Section 2.4.3 and Theorem 3 in Section 4.7.2, 

Now, according to Poincare's inequal ity, 

lim 1 If - (J)x,r 1r• dy = 0 r�o J /J{x,r) 
for each x ¢ A. Choose functions /; E W1 ·'' (1R" ) n C00(IR" )  such that 

and set 

(i = l , 2, . . . ) , 

B; = {x E !Rn 1 1 If - /; I  dy > � for some r > o} .  
J/J(x,r) 2 

According to Lemma 1 , 

Capp(B; ) 
< c r IDJ - Df·lp d < c 

2Pi - }Rn ' y - 2(p+ l ) i  

Consequently, CapP ( Bi ) < C /2i. Furthermore, 

I (J)x,r - J; (x) l < 1 I f - (f) x,r l dy + 1 If - /; I dy J/J(x,r) J/J(x,r) 
+ 1 I f; - /; (x) l dy. 

J /J(x,r) 
Thus (*) and the definition of B; imply 

lim sup I (J)x,r - /; (x) l < 
2

1
; r�o (x ¢ A U Bi ) . 

00 00 
Capp(Ek) < Capp(A) + L Capp(Bi) < CL ;i . 

i=k j=k 
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Furthennore, if x E IR" - Ek and i, j > k, then 

I J; (x) - fi (x) l < lim sup l (f)x,,· - J; (x)l r�o 
+ lim sup I (!),,,. - fJ (x) I r�o 

< _1 _:__ - 2i + 2i by (**). 

Hence {Jj }  j 1 converges unifonnly on IRn - Ek to some continuous function g. 
Furthennore, 

lim sup lg(x) - (J)x,rl < lg(x) - fi (x) l  + lim sup lh (x) - (J)x,rl , r-o r-o 
so that (**) implies 

g(x) = lim (J)x,r = J* (x) r�o (x E IR" - Ek) . 

Now set E = n%" 1 Ek. Then Capp(E) < limk�oo Capp(Ek) = 0 and 

J* (x) = lim (f)x r exists for each x E JRn - E. r--+0 ' 

This proves (i). 
2. To prove (ii), note A C E and so (*) implies for x E JR" - E that 

I 

lim (1 If - J*(x) IP· dy) ...-

r�o JB(x ,r) 
I 

< lim l (f)x ,r - J* (x) l  + lim (1 I f - (f)x.rlp• dy) ...-

r�o r�o JB(x,r) 
- o - . 

3. Finally, we prove (iii) by fixing E > 0 and then choosing k such that 
Capp(Ek) < E/2. According to Theorem 2 in Section 4.7, there exists an open 
set U ::> Ek with Capp(U) < E. Since the {fi }i" 1 converge unifonnly to J* on 
JRn - U, J* IJRn -U is continuous. I 

4.9 Differentiability on lines 

We wil l  study in this section the properties of a Sobolev function j, or more 
exactly its precise representative J* , restricted to lines. 
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4.9.1 Sobolev functions of one variable 
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NOTATION If h : lR --+ lR is absolutely continuous on each compact subinterval, 
we write h' to denote its derivative (which exists {} a.e.) 

THEOREM I 

Assume 1 < p < oo. 

(i) If f E Wl<�' (lR), then its precise representative f* is absolutely continuous 
011 each compact subinterval of lR and (!* )' E Lfoc (JR). 

(ii) Conversely, suppose f E Lfoc (JR) and f = 9 {} a.e., where 9 is absolutely 
cominuous on each compact subinterval of lR and 9' E Lf:.C (JR). Then 

t E wl:,:(JR) . 

PROOF 
I. First assume f E w;:,:(JR) and let (d/dt)f denote its weak derivative. 

For 0 < t < l define /' = TJ, * f, as before. Then 

J' (y) = f' (x) + ly (f')'(t) dt. 

Let x0 be a Lebesgue point of j and t ,  8 E (0, 1 ) .  Since 

Jr (x) - /6 (x)J < 1� J (f') '  ( t) - (!6)' (t) J dt + JJ' (xo) - /6 (xo) J  

for X E IR, i t  follows from Theorem l in Section 4.2. 1 that u· }<>0 converges 
uniformly on compact subsets of lR to a continuous function 9 with 9 = f 
£1 a.e. From (*) we see 

1x d 9 (x) = g(xo) + -
d 

f(t) dt xo t 

and hence 9 is locally absolutely continuous with 9' = (d/dt)f £1 a.e. 
Finally, since (f)x.r = (9)x.r -+ 9 (x) for each x E IR, we see 9 = f*. This 

proves (i). 
2. On the other hand, assume f = 9 £1 a.e., 9 is absolutely continuous and 

91 E Lfoc (IR). Then for each tp E C� (JR), 

1: ftp' dx = 1: gtp1 dx = - J: 91tp dx, 

and thus 91 is  the weak derivative of f. Since 9' E Lfoc(JR), we conclude 
f E w;:,:(JR). I 
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4.9.2 Differentiability on a.e. line 

THEOREM 2 

Sobolev Functions 
• 

(i) If f E W1�(1R" ) , then for each k = l ,  . . .  , n  the functions 

f k ( X1 , t) j* ( . . .  , X k - I  , t, X k + I , . •  · ) 
are absolutely continuous in t on compact subsets of IR, for £"- 1 a.e. point 
x' = (xl , . . .  , xk_ 1 , xk+ l , . . .  , x,) E IR"- 1 • In addition. (Jk )' E Lfoc (IR" ). 

(ii) Conversely, suppose f E Lfoc (IR" ) and f = g £" a.e., where for each k = 1 ,  . . . , n, the functions 

9k ( X1, t) - g ( . . .  , Xk - I ,  t, X k+ I ,  • · • ) 

are absolutely continuous in t on compact subsets of IR for £"- 1 a.e. 
point x' = (x 1 , . . .  , Xk- 1 , Xk+ l , . . .  Xn) E IR"- 1 , and gk E Lfoc(JR" ) . Then 
J E W1�(JR" ) . 

PROOF 
1. It suffices to prove assertion (i) for the case k = n. Define r = TJ< * f as 

before, and recall 

r -+ J in W1�(1R" ) .  
By Fubini's Theorem, for each L > 0 and £"- 1 a.e. x' = (x 1 , • • •  , Xn- t ), the . expressiOn 

JL 8r 8! p 
lr(x', t ) - f(x' , t ) IP + �(x', t) - -8 (x' , t) dt 

-L . UXn Xn 
goes to zero as E --> 0. Thus the functions 

f� (t) - r(x', t) ( t E IR) 

converge in w;�(IR), and so locally uniformly, to a locally absolutely continu­
ous function fn , with J� (t) = (8! /8xn ) (x', t) for £ 1 a.e. t E R On the other 
hand, Theorem 1 in Section 4.8, Theorem 2 in Section 5.6.3, and Theorem 4 in 
Section 4.7 .2 imply 

r -. r  1-ln- 1 a.e. 

Therefore, in view of Corollary l in Section 2.4. 1 ,  for £"-1 a.e. x' 

f� (t) --> J* (x', t) 

for all t E R Hence for £"-1 a.e. x' and all t E IR, 
fn (t) = J* (x', t). 

This proves statement (i). 
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2. Assume now the hypothesis of assertion (ii). Then for each <P E C,� (IR" ), 

r f 8.p dx = r g 8.p dx JR.. 8xk JR.. 8xk 
= 1 .. - 1 (l: gk (x' , t) .p'(x' , t) dt) dx' 

= - 1  .. _ 1  (1: g� (x', t) .p(x', t) dt) dx' 

= - r 9�<P dx. }JR .. 
Thus 8 f / 8xk = g� c_n a.e., k = 1 ,  . . .  , n, and hence f E u;;:,: (IR" ) .  I 



5 
BV Functions and Sets of Finite Perimeter 

In this chapter we introduce and study functions on JRn of bounded variation, 
which is to say functions whose weak first partial derivatives are Radon mea­
sures. This is essentially the weakest measure theoretic sense in which a function 
can be differentiable. We also investigate sets E having finite perimeter, which 
means the indicator function x E is BV. 

It is not so obvious that any of the usual rules of calculus apply to functions 
whose first derivatives are merely measures. The principal goal of this chapter 
is therefore to study this problem, investigating in particular the extent to which 
a BV function is "measure theoretically C1" and a set of finite perimeter has "a 
C1 boundary measure theoretically." 

Our study initially, in Sections 5.1 through 5.4, parallels the corresponding 
investigation of Sobolev functions in Chapter 4. Section 5.5 extends the Coarea 
Formula to the BV setting and Section 5.6 generalizes the Gagliardo-Nirenberg­
Sobolev Inequality. Sections 5.7, 5.8, and 5. 1 1  analyze the measure theoretic 
boundary of a set of finite perimeter, and most importantly establish a version 
of the Gauss-Green Theorem. This study is carried over in Sections 5.9 and 
5 . 10  to study the fme, pointwise properties of BV functions. 

5. 1 Definitions; Structure Theorem 

Throughout this chapter, U denotes an open subset of JRn . 

DEFINITION A function f E £I (U) has bounded variation in U if 

sup {i / div <p dx I <p E C� (U; JRn ), 1<;1 < l } < oo. 

166 
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We write 

BV(U) 

to denote the space of functions of hounded variation. 

DEFINITION An £"-measurable subset E c lR" has finite perimeter in U if 

x8 E BV(U) .  

It i s  convenient to introduce also local versions of the above concepts; 

DEFINITION A function f E L11oc(U) has locally bounded variation in U if 
for each open set V CC U, 

sup {i f div <p dx I <p E C�(V; JR" ) ,  l <p l  < 1 }  < oo. 

We write 

BVIoc(U) 

to denote the space of such functions. 

DEFINITION An t:_n-measurab/e subset E C JRn has locally finite perimeter 
in U if 

x8 E Bvtoc(U). 

Some examples will be presented later, after we establish this general structure 
assertion. 

/ 

THEOREM I STRUCTURE THEOREM FOR B\lioc F.UNCTIONS 
Let f E BVIoc(U). Then there exists a Radon measure f1 on U and a fJ,­
measurable function a : U -> lRn such that 

(i) la(x) I == I f1 a.e., and 
(ii) fu f div <p dx == - fu <p · a  dfJ, 

for all <p E C�(U; lRn ) .  

As we will discuss in detail later, the Structure Theorem asserts that the weak 
first partial derivatives of a BV function are Radon measures. 
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PROOF Define the linear functional 
L :  C� (U; JR" ) ___. lR 

by 
L(<p) = - i f div <p dx 

for <p E C� (U; lR") .  Since f E BVioc (U), we have 
sup { L(<p) I <p E C� (V; JRn ), /<p /  < l } = C( V) < oo 

for each open set V C C  U, and thus 

for <p E C� (V; lRn ) .  
Fix any compact set K C U, and then choose an open set V such that K C 

V cc U. For each <p E Cc(U; JRn ) with spt <p C K, choose <pk E C� ( \1; lRn ) 
( k = l ,  . . .  ) so that <pk ___. <p uniformly on V. Define 

L (<p) = lim L(<pk); k�oo 
according to (*) this limit exists and is independent of the choice of the sequence 
{ <pk }f 1 converging to <p. Thus L uniquely extends to a linear functional 

L :  Cc(U; JRn ) --> lR  

and 

for each compact set K C U. The Riesz Representation Theorem, Section 1 .8, 
now completes the proof. I 
NOTATION 

(i) If f E BVioc(U), we will henceforth write 
l iD !I I  

for the measure fJ,, and 
[DJ] - l iD// / L a. 

Hence assertion (ii) in Theorem l reads 

i f div <p dx = - i <p · a d i iD/1 1 = - i <p · d[Df] 

for all <p E C� (U; JRn ). 
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(ii) Similarly, i f  f == x E' and E is a set of locally finite perimeter in U, we 
will hereafter write 

l iD E l l  

for the measure fL, and 

"E _ -a. 
Consequently, 

l div <p dx = fu <p • VE di i8EI I 

for all <p E C� (U; JRn ). 

MORE NOTATION If f E BVioc( U), we write 

f-Li = I IDJI I  L (ji (i = l , . . .  , n) 
for a = ( a1 , • • •  , an) . By Lebesgue's Decomposition Theorem (Theorem 3 in 
Section 1 .6.2), we may further set 

where 

Then 

. . . ' ' + ' f-L = f-Lac f-Ls ' 

i rn !-Lac <t: '- ' 

1-L'.c = C L J; 

for some function J; E Lloc(U) (i = 1 ,  . . . , n) . Write 

Thus 

8! 
OX; 
DJ 

[D f]ac 
[Df]s 

J; (i = l , . . .  , n) 
( :� ,  . . . , :�) , 
(1-L!c, • . .  , f-L:c) = Ln L D J, 

(1-L! , • • .  , f-L� ) . 

[Df] = [Df]ac + [Df]s = C L Df + [Df]s, 
so that D f E £1� (U; JRn ) is the density of the absolutely continuous part 
of [D f] . 
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REMARK Compare this with the notation for convex functions set forth in 
Section 6.3. I 

REMARK 

(i) 1 /Df/ 1 is the variation measure of f; I /8E/ I is the perimeter measure of 
E; I /8EI/ (U) is the perimeter of E in U. 

(ii) If f E BVioc(U) n£l (U), then f E BV(U) i f  and only if I ID/I I(U) < oo, 
in which case we define 

I I! I IBV(U) = l lf i i £1 (U) + l iD f i i (U) . 

(iii) From the proof of the Riesz Representation Theorem, we see 

I ID/I I (V) == sup {l / div <p dx I <p E C�(V; lR" ), /t.p/ < I } , 

I /8EI / (V) == sup {L div <p dx I <p E c� (V; JR" ) ,  /t.p/ < I } 
for each V CC U. I 

Example 1 
Assume f E w,:,;,' (U) . Then, for each V CC U and <p E C� (V; lR" ) , with 
/t.p/ < I , we have 

fu fdiv t.p dx == - fu Df · <p dx < i /DfJ dx < oo. 

Thus f E BVioc(U). Furthermore, 

and 

0' =  

Hence 

and similarly 

1 /D/1 / == £" L /D// ,  

Df 
ID!I 

if D f :f. 0 

0 if Df = 0. 

W1• 1  (U) c BV(U). 

£" a.e. 



5.1 Definitions; Structure Theorem 

ln particular, 

W1�' (U) c BVioc(U) for I < p < oo. 

Hence, each Soholev function has locally hounded variation. 0 

Example 2 
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Assume E is a  smooth, open subset of JRn and 1t" - 1 (8E n [() < oo for each 
compact set [( C U. Then for V and <p as above, 

r div t.p dx =  r t.p · v d1tn- l , 
j E jiJE 

v denoting the outward unit normal along 8E. 
Hence 

{ div t.p dx = { <p .  v d1tn- t < 1t"- 1  (8E n V) < oo. 
jE jiJEnV 

Thus E has locally finite perimeter in U. Furthermore, 

and 

1tn-l a.e. on 8E n U. 
Thus I I8EI ! (U) measures the "size" of 8E in U. Since xE ¢ W1�1 (U) (ac­
cording, for instance, to Theorem 2 in Section 4.9.2), we see 

c 
w;�' (U) -:/= BVioc(U), 

c 
W1•1 (U) -:/= BV(U). 

That is, not every function of locally bounded variation is a Sobolev function. 

REMARK Indeed, if f E BVioc(U), we can write as above 

[Df] = [D/]ac + [D/]s = C L Df + [D/]s . 
Consequently, f E BVioc(U) belongs to w;::(U) if and only if 

[D/]s = 0, 

0 

The study of BV functions is for the most part more subtle than the study of 
Sobolev functions since we must always keep track of the singular part [ D f]s 
of the vector measure D f. 
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5.2 Approximation and compactness 

5.2.1 Lower semicontinuity 
THEOREM I LOWER SEMICONTINUITY OF VARIATION MEASURE 

Suppose fk E BV(U) (k = l ,  . . .  ) and /k --> f in L11oc(U). Then 

I I D/ I I (U) < lim inf i iD/k i i (U) . k�oo 

PROOF Let <p E C� (U; lRn ) ,  lcpl < I . Then 

Thus 

j f div <p dx = lim 1 /k div <p dx 
U k�oo U 

= - lim j <p · ak d i iD/k l l  k�oo U 
< lim inf i iD/k i i (U) . k�oo 

l iD / I I  (U) = sup {fu fdiv cp dx I <p E C� (U; !Rn ), I <p i < I }  
< lim inf i i D/k i i (U). I k�oo 

5.2.2 Approximation by smooth functions 

THEOREM 2 LOCAL APPROXIMATION BY SMOOTH FUNCTIONS 

Assume f E BV(U). There exist functions Udk' I c BV(U) n C00 (U) such 
that 

(i) /k --> f in £1 (U) and 

(ii) I I D/k i i (U) --> I I D/ I I (U) as k -->  oo. 

REMARK Compare with Theorem 2 in Section 4.2. 1 .  Note we do not assert 
I ID(fk - f) I I (U) __, o. I 

PROOF 
1. Fix c: > 0. Given a positive integer m, define the open sets 

uk = {X E u I dist(x, 8U) > 
m 
� 

k
} n U(O, k + m) ' (k = l ,  . . .  ) 

and then choose m so large 
I ID/ I I (U - U, )  < c:. 
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Set Uo ::: 0 and define 

(k = l , . . .  ) . 
Let { (k } 'k 1 be a sequence of smooth functions such that 

00 

L (k ::: l on U. 
k=l 
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Fix the mollifier ry, as described in Section 4.2. 1 .  Then for each k, select Ek > 0 
so small that 

Define 

spt (rl<k * (f(k)) c vk 

i I1J.k * (f(k) - f(k l dx < ;k , 
i I1J.k * (f D(k) - f D(k l dx < 2Ek • 

00 

J. = .L 1J<k * ( J(k )· 
k=l 

(**) 

In some neighborhood of each point x E U there are only finitely many nonzero 
terms in this sum; hence 

2. Since also 
00 

f = _L !(k, 
k=l 

( **) implies 

00 
I I !. - J I I L' (U) < L J I1J,k * (J(k ) - /(k l dx < t. 

k=l u 

Consequently, 

f. --> f in L1 (U), as E -->  0. 

3. According to Theorem l ,  

I IDJI I (U) < lim inf i iDJ, I I (U). •-o 
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4. Now let <p E C,! (U; lR" ) , I <pi < l .  Then 
00 J f, div <p dx = L 1 "�•• * (! (k )  div <p dx 

u k=!  u 

00 -
= L 1 f div ( (k ( "�•• * <p)) dx 

k=!  u 
00 

- L 1 f D(k · ( "�•• * <p) dx 
k= ! u 

= f! fdiv ((k ("'•• * t.p) )  dx 
k=! u 

00 

- L J <p · (ry •• * (! D(k ) - j  D(k) dx 
k= ! u 

= I� + I� . 
Here we used the fact l:::� 1 D(k = O in U . Now l(k(71<. * <p) l  < I  (k = 1 ,  . . . ), 
and each point in U belongs to at most three of the sets {Vk } k' 1 • Thus 

00 

1m = 1 f div ((t (ry,, * <p)) dx +  L.j f div ((k'T/•• * <p) dx 
u k=2 u 

00 
< I I DJI I (U) + L I I DJI I ( Vk)  

k=2 
< I I DJI I (U) + 3 I ID! I I (U - Ut ) 
< I IDJ I I (U) + 3t, by ( *). 

On the other hand, (**) implies 

I I2 1  < t. 

Therefore l J. div <p dx < I ID! I I (U) + 4o, 

and so 

I I DJ. I I (U) < I IDJ I I (U) + 4t. 

This estimate and (* * *) complete the proof. I 
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THEOREM 3 WEAK APPROXIMATION OF DERIVATIVES 
For each function !k as in the statement ofTizeorem 2, define the (l•ector- l'alued) 
Radon measure 

J-tk(B) = { D h dx 
lonu 

for each Borel set B c lR" . Set also 

JL(B) = { d[Df]. 
fonu 

Then 

weakly in the sense of (vector-valued) Radon measures on !R" . 

PROOF Fix <p E C� (JRn ;  lRn ) and E > 0. Define U1 C C U as in the previous 
proof and choose a smooth cutoff function ( satisfying 

Then 

{ ( = l on U1 , spt ( () c U, 
O < ( < I .  

= - fu div ((<p)fk dx + fu ( 1 - ()<p · Dfk dx. 

Since /k .--.. f in L 1 (U), the first term in (*) converges to 

-fu div ((<p)f dx = fu (<p · d[Df] 

= fu <p ·  d[Df] + i(( - l )<p · d[Df] .  (**) 

The last term in (**) is estimated by 

Using Theorem l in Section 5.2. 1 ,  we see that for k large enough, the last term 
in (*) is estimated by 
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Hence 

for all sufficiently large k. I 

5.2.3 Compactness 

THEOREM 4 
Let u c IR" be open and bounded, with au Lipschitz. Assume Udk' I IS a 
sequence in BV(U) satisfying 

sup 1 1/k i i BV(U) < OO. k 

Then there exists a subsequence {fkJ }j 1 and a function f E BV(U) such that 

. as J -> oo. 

PROOF For k = 1 , 2, . • .  , choose 9k E C=(U) so that 

fu 1/k - 9k l  dx < � , 
supj IDgk l  dx < oo; 
k u 

such functions exist according to Theorem 2. By the remark following Theo­
rem I in Section 4.6 there exist f E L1 (U) and a subsequence {gkj }j 1 such 
that 9kj -> f in L1 (U). But then (*) implies also fkj -> f in L1 (U). According 
to Theorem ! ,  f E BV(U). I 

5.3 Traces 

Assume for this section that U is open and bounded, with au Lipschitz. Observe 
that since au is Lipschitz, the outer unit normal 1/ exists 'Hn- l a. e. on au' 
according to Rademacher's Theorem. 

We now extend to BV functions the notion of trace, defined in Section 4.3 
for Sobolev functions. 
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THEOREM I 
Assume U is open and bounded, with iJU Lipschitz. There exists a hounded 
linear mapping 

such that 

T :  BV(U) -> L1 (aU; 'H" - 1 ) 

1 / div r.p dx = - f r.p · d[Df] + { (r.p · v) Tf d'H"- 1  (*) u u lau 
for all f E BV( U) and rp E C1 (IR" ;  IRn ) . 

The point is that we do not now require rp to vanish near au. 
DEFINITION The function Tf, which is uniquely defined up to sets of 
'Hn- l L au measure zero, is called the trace of f on au. 

We interpret T f as the "boundary values" of f on au. 

REMARK If f E W1• 1 (U) C BV(U), the definition of trace above and that 
from Section 4.3 agree. I 

PROOF 
1. First we introduce some notation: 

(a) Given x = (x . ,  . . .  , xn) E 1Rn, let us write x = (x' , xn ) for x' 
(x . , . . .  , Xn- d E IRn- l , Xn E JR. Similarly we write y = (y' ,  Yrt )· 

(b) Given x E IRn and r, h > 0, define the open cylinder 

C(x, r, h) = {y E IRn I IY' - x' l < r, IYn - Xn l < h} .  
Now since au i s  Lipschitz, for each point X E au there exist r, h > 0 and a 
Lipschitz function 1 : JRn- l -> 1R such that 

max II(Y' ) - xn l < 
h 

i x'-y' i<r 4 

and - upon rotating and relabeling the coordinate axes if necessary -

U n C(x , r, h) = {y I lx' - y' l < r, I(Y') < Yn < Xn + h}. 

2. Assume for the time being f E BV(U) n c=(U). Pick X E au and 
choose r, h, 1, etc., as above. Write 

C = C(x, r, h). 
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u 

X 

h 

C (x,r,h) 

r 

FIGURE 5.1 
A Lipschitz boundary within a cylinder. 

If 0 < € < h/2 and y E 8U n C, we define 

J.(y) = f(y', !(Y') + €).  

Let us also set 

Co,< = {y E C I !(Y1) + 6 < Yn < !(y') + €} 

for 0 < 6 < € < h/2, and define c. = Co, •. Write c• = (C n U) - c  •. 
Then 

lfo (y) - J.(y) i  < r :f (y', ,(y') + t) dt 
Jo Xn 

< [ iDf(y', !(Y') + t) l  dt, 

and consequently, since 1 is Lipschitz, the Area Formula. Section 3.3, implies 

r l fo - J. l d'Hn- l < c r IDJI dy = CI IDJ I I (Co,.) . 
lounc Jc6,, 

Therefore {f. }.>o is Cauchy in L1 (8U n C; 'Hn- l ), and thus the limit 

Tf = lim !. 
f-+0 

exists in this space. Furthermore, our passing to limits as f. --+ 0 in the foregoing 
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c 

FIGURE 5.2 
The l iD  / I I  measure of the shaded region C6,, goes to zero as t,8 ---+ 0. 

inequality yields also 

r ITJ - J. l d'Hn- l < CI IDJ I I (C. ) .  
lounc 

Next fix rp E C� ( C; IRn ) . Then 

1 f div 'P dy = - { 'P . D f dy + { J.rp • . v d'Hn- l . 
c• Jc, lounc 

Let € --> 0 to find 
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1 f div r.p dy = - 1 rp · a di i DJ I I + r Tfrp · v d'Hn-l . (* * *) 
unc unc lounc 

3. Since au is compact, we can cover au with finitely many cylinders C; = 

C(x;, r; , hi ) (i = 1 , . . . , N) for which assertions analogous to (**) and (* * *) 
hold. A straightforward argument using a partition of unity subordinate to 
the { C; } r I then establishes formula ( * ). Observe also that ( * * *) shows the 
definition of "T f" to be the same (up to sets of 'Hn- l L au measure zero) on 
any part of au that happens to lie in two or more of the cylinders C;. 

4. Now assume only f E BV(U) .  In this general case, choose fk E BV(U)n 
C00 (U) (k = 1 , 2, . . .  ) such that 

fk --> f in L1 (U), I ID!k i i (U) --> I I DJI I (U) 
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and 

J.Lk � J.L weakly, 

where the measures {J.Lk } r I '  J.L are defined as in Theorem 3 of Section 5.2.2. 
5. Claim: {Tfk }k' 1 is a Cauchy sequence in L1 (8U; 'Hn-l ). 

Proof of Claim: Choose a cylinder C as in the previous part of the proof. 
Fix € > 0, y E 8U n C, and then define 

f ) J !of 1 ( I fk(y = - /k(Y , I y ) + t) dt 
€ 0 

I �a· = - (fk)t(Y) dt. 
€ 0 

Then (**) implies 

Thus 

r IT/k - fk l d'}{n- l < � r r ITfk - (/k ) t l  d'}{n- l dt 
launc € lo launc 

< CI I D/k i i (C.) . 

+ r ITfl - m d'}{n-l 
launc 

+ f I lk - m d'Hn-l 
launc 

< C(I ID/k l l  + I IDfd i )(C.) 

+ 
c f I lk - iL l dy. € lc, 

and so 

lim sup r IT/k - Tfd d'}{n- l < CI IDJI I (C. n U). k;l-+= J aunc 

Since the quantity on the right-hand side goes to zero as € � 0, the claim is 
proved. 
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6. In view of the claim, we may define 

Tf = lim Tfk ; 
k-+oo 

this definition does not depend on the particular choice of approximating se­
quence. 

Finally, formula (*) holds for each fk and thus also holds in the limit for f. 
I 

THEOREM 2 
Assume U is open, bounded, with au Lipschitz. Suppose also f E BV(U). 
Then for 'H"- l a.e. X E au. 

and so 

lim f I f - Tf(x) l dy == 0, 
r�O B(x,r)nU 

Tf(x) == lim f f dy. 
r�o B(x,r)nU 

REMARK Thus in particular if f E BV(U) n C(U), then 

Tf == f lau 

PROOF 

'Hn- l a.e. I 

1. c /aim: For 'Hn- l a.e. X E au' 

lim 
I IDfi i (B(x, r) n U) 

== O
. 

r-+0 rn- 1 

Proof of Claim: Fix 1 > 0, 6 > f.  > 0, and let 

A - { aU ! I" I IDfi i (B(x, r) n U) } 
-r = x E 1m sup n- l > I · 

r�o r 
Then for each x E A-y, there exists 0 < r < f. such that 

I IDf i i (B(x, r) n U) > "' · rn- l - I 

Using Vitali's Covering Theorem, we obtain a countable collection of disjoint 
balls {B(x; , r; ) }f' 1 satisfying (*), such that 

00 

A-r C U B(x;, 5r; ) .  
i=l 
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Then 

where 
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00 

'H�6 1 (A-y ) < Lo:(n - 1 )(5r; )"- 1  
i= l 
c =  < - 'L I IDJI I (B(x; , r; ) n U) 
I i= l 

< CI IDJ I I (U') , 

U' = {x E U I dist(x, aU) < €} . 

Send € -> 0 to find 'H�-;5 1 ( A-y) = 0 for all 6 > 0. 
2. Now fix a point X E au such that 

lim 
I IDJ I I (B(x, r) n U) 

_ 0  
r-+0 rn- 1 - ' 

lim r ITJ - Tf(x) l d'H"- l = 0. 
r-+0 JB(x,r)n8U 

According to the claim and the Lebesgue-Besicovitch Differentiation Theorem, 
1-{n-l a.e. X E aU will do. Let h = h(r) = 2 max( l , 4Lip (!))r, and consider 
the cylinders 

C(r) = C(x, r, h). 

Observe that for sufficiently small r, the cylinders C(r) work in place of the 
cylinder C in the previous proof. Thus estimates similar to those developed in 
that proof show 

where 

r ITJ - f, l d'Hn- l < CI IDJ I I (C(r) n U), 
JounC(r) 

f,(y) = f(y' , !(Y') + €) 
Consequently, we may employ the Coarea Formula to estimate 

r ITJ(y' , ,(y' )) - f(y) i dy < Cri iDJ I I (C(r) n U). J B(x,r)nU 
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Hence we compute 

r lf (y) - Tf(x) l dy < ,� , r ITJ - Tf (.r) l  d'H." - l 
JB(x,r)nU r Jc(r)n8U 
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+ � r ITJ(y' , , (y' ) ) - J(y) l  dy r j B(x,r)nU 

< o( I ) + �, I IDJ I I (C(r) n U) r 
= o( I )  as r -> 0, by (**). I 

5.4 Extensions 

THEOREM I 
Assume U c IRn is open and bounded, with au Lipschitz . Let /1 E BV( U) 
h E BV(IRn - U). 

Define 

Then 

and 

- x = { j, (x) f( ) - h(x) 
x E U 
X E JRn - U. 

I IDfi i (IRn ) = I IDJd i (U) + I IDh i i (IRn - U) + r ITJ, - Thl d'H.n- l .  lou 
REMARK In particular, under the stated assumptions on U, 

(i) the extension 

Ef = { � on U 

on IRn - U 

belongs to BV(IRn ) provided f E BV(U), and 

(ii) the set u has finite perimeter and l laUI I  (IRn ) = 'H.n- l (au). I 
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PROOF 
1. Let r.p E c� (IR" ' IR" ), I 'P I < I .  Then 

r j div r.p dx = r j, div r.p dx + r - h div r.p dx 
}JRn Ju }JRn -u 

= - ' r.p · d[Dfd - { 
_ r.p . d[Dh] lu 11"1." -U 

+ r (T J, - r h)r.p . II d'H."_ , lou 
< I IDJd i (U) + I IDhi i (IR" - u) + r ITJ, - r12 1 d'H."- ' . lou 

Thus f E BV(IR" ) and 

2. To show equality, observe 

_ r r.p . d[DJJ = _ r r.p . d[Dfd _ r _ r.p .  d[DhJ 
11"1." lu 11"1." -U 

[D]] = 
{ [D/1 ] 

[Dh] 
on U 
on IR" - U. 

Consequently, (*) implies 

- { r.p ·  d[D]] = { (Tf1 - Tf2)r.p · v dW-1 , lou lou 
and so 

I I Dfl l (au) = r ITJ. - r12 1 d'H."- • .  • lou 
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Next we relate the variation measure of f and the perimeters of its level sets. 

NOTATION For f : U -+ IR. and I, E IR, detine 

Et = {x E U I f(x) > t } ,  

LEMMA I 
If f E BV(U) , the mapping 

( t E IR) 

is £ 1 -measurable. 

PROOF The mapping 

(x, t) >-+ X E, (x) 

is (L'' x £ 1 )-measurable, and thus, for each rp E C�(U; IR" ), the function 

t ,_. r div 'P dx = 1 X E div 'P dx 
j E, U ' 

is £ 1-measurable. Let D denote any countable dense subset of C� (U; IR")  
Then 

t >-+ I I8Et i i (U) = 

is L 1 -measurable. I 

sup 
<pED 
I 'PI � I 

r div 'P dx 
j E, 

THEOREM I COAREA FORMULA FOR BV FUNCTIONS 
Let f E BV(U) .  Then 

(i) E1 has finite perimeter for L1 a.e. t E IR and 
(ii) I IDJI I (U) = J�oo I I8Et i i (U) dt. 

(iii) Conversely, if f  E L1 ( U) and 

I: I I 8Et i i (U) dt < oo, 

then f E BV(U). 
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REMARK Compare this with Proposition 2 in Section 3.4.4. I 

PROOF Let cp E C� (U; IR" ). Icp l  < I . 

1. Claim #I: fu f div cp dx = J0000 (IE, div cp dx) dt. 
Proof of Claim #I: First suppose f > 0, so that 

Thus 

f(x) = {oo XE (x) dt lo ' 
( a.e. x E U). 

i f div cp dx == i (l::.o XE, (x) dt) div cp(x) dx 

== 100 (i XE, (x) div cp(x) dx) dt 

== 100 (le, div cp dx) dt. 

Similarly, if f < 0, 

whence 

if  div cp dx = i (!000 (xE. (x) - 1 )  dt) div cp(x) dx 

= !000 (i (XE, (x) - l )div cp(x) dx) dt 

= 1°00 (L, div cp dx) dt. 

For the general case, write f = j+ + (-f- ). 
2. From Claim #l we see that for all cp as above, 

Hence 

I I DJ I I (U) < J: I I8Et i i (U) dt. 

3. C /aim #2: Assertion (ii) holds for all f E B V ( U) n coc ( U). 
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Proof of Claim #2: Let 

m(t) = r I DJI dx = r IDJI dx. 1u-E, 1u<t l  
Then the function m i s  nondecrcasing, and thus m' exists £I a.e., with 

I: m'(t) dt < i ID/1 dx. 

Now fix any -oo < t < oo, r > 0, and define 1) : IR -> IR this way: 

1)(8) = 

Then 

1J'(s) = 
I 

r 

0 if s < t 
s - t  if t < s < t + r 

r 
I if s > t + r. 

if t < s < t + r 

0 if s < t or s > t + r. 

Hence, for all cp E C�(U; IRn ), 

Now 

- i 1J(f(x))div cp dx = i 1)' (!(x))Df · cp dx 

= � { DJ · cp dx. 
r 1 E, - E,+r 

m(t + r) - m(t) = � [l IDf l dx - 1 IDfl dx] r r U-Et+r U-E, 

= � r IDJI dx r 1 E, - E,+r 

> � { Df · cp dx r 1 E, - E,+r 

= - i ry(!(x))div cp dx by (* * *). 

For those t such that m' ( t) exists, we then let r --> 0: 

m' (t) > - r div cp dx 1E, 
en a.e. t. 

187 

(**) 

(* * *) 



188 BV Functions and Sets of Finite Perimeter 

Take the supremum over all rp as above: 
I I8Et i i (U) < m'(t) , 

and recall ( **) to find 

1: I I8Et i i (U) dt < i ID/1 dx == I I DJ I I (U). 

This estimate and (*) complete the proof. 
4. Claim #3: Assertion (ii) holds for each function f E BV(U). 
Proof of Claim #3: Fix f E BV(U) and choose {fk }k' 1 as in Theorem 2 in 

Section 5.2.2. Then 
in L 1 (U) as k -> oo. 

Define 

Now 
E� = {X E u I !k (X) > t} . 

1
oo 

1
max{f(x),/• (x)} 

lxE. (x) - XE (x) l  dt = dt = l !k(x) - f(x) l ;  
- oo  t ' min{f(x),J. (x)} 

consequently, 

Since fk -> f in L1 ( U), there exists a subsequence which, upon reindexing by 
k if needs be, satisfies 

for L 1 a.e. t. 

Then, by the Lower Semicontinuity Theorem, 
I I8Et i i (U) < lim inf i i8E� I I (U). 

k-+oo 

Thus Fatou's Lemma implies 

1: I I8Et i i (U) dt < 1i��f J: l l aE: I I (U) dt 

= lim I ID!k i i (U) 
k-+ oo 

= I IDJ I I (U) . 
This calculation and (*) complete the proof. I 
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5.6 Isoperimetric Inequalities 

We now develop certain inequalities relating the .en-measure of a set and its 
perimeter. 

5.6.1 Sobolev's and Poincare's inequalities for BV 

THEOREM 1 
(i) There exists a constant C1 such that 

for all f E BV(JRn ). 
(ii) There exists a constant C2 such that 

I I J - (f) x,r i i Lnfn-t (B(x,r)) < C2I IDJI I (U(x, r)) 

for all B(x, r) C IRn , f E B\lioc(IRn ) , where (f)x.r = fa(x,r) f dy. 
(iii) For each 0 < o: < I ,  there exists a constant C3(o:) such that 

I I J I I Ln/n- l (B(x,r)) < CJ(o:) I IDJ I I (U(x, r)) 

for all B(x, r) C IRn and all f E BVioc(IRn ) satisfying 

PROOF 

_.cn_,(_B-'-( x...:_, r....!...)_n�{=-f _0�}) > 0:. ,Cn(B(x, r)) -

1. Choose fk E C;,"'(IRn ) (k = 1 ,  . . . ) so that 

fk -> f in L1 (IRn ), .en a.e. 

I I Dfk i i (JRn ) -> I IDJ I I (JRn ) .  

Then by Fatou 's Lemma and the Gagliardo-Nirenberg-Sobolev inequality, 

This proves ( i). 

I IJ I I Lnfn- I (JRn ) < l���f i i Jk i i Ln/n-I (JRn ) 
< lim C. j ID fk i i L' (JRn) k�oo 

= C, I IDJ I I (JRn ) .  
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2. Statement (ii) follows similarly from Poincare's inequality, Section 4.5.2. 
3. Suppose 

Then 

-L"�(_B�(x�, r�)_n�{�f __ O�}) 0 > 0: > . L"(B(x, r· )) -

1 1 / I I Ln/n- I (B(x,r)) < I I / - (/)x,r i i Ln/n- I (B(x,r)) + l l (f)x,r i i Ln/n-I (B(x,r)) 

But 

< C2I IDJI I (U(x, r)) + l (f)x,r i (C' (B(x, r))) '- ' 1" . (**) 

I (/) x,r I (  L"(B(x, r)) ) l -l/n 

< 
1 

I f I l l dy - £n(B(x, r)) /n } B(x,r)n{f#O} 

< ( { lf ln/n- l dy)
l - l /n (L"(B(:, r) n {f -:f O}) ) '/n 

Ja(x,r) L (B(x, r)) 
< 1 1/ I I Ln/n- I (B(x,r)) ( J - o:) l /n ' 

by (*). We employ this estimate in (**) to compute 

1 1 / I I Lntn-t <a<x,r)) < ( 1 - ( I� o:) 'I" ) I ID/ I I (U(x, r)) .  I 

5.6.2 Isoperimetric Inequalities 

THEOREM 2 
Let E be a bounded set of finite perimeter in IR" . Then 

(i) L"(E) 1- l/n < C, I I8EI I (IR" ), and 
(ii) for each ball B(x, r) C IR" , 

min{L"(B(x, r) n E) , L" (B(x, r) - E)} t - � < ZC2 I I8EI I (  U(x, r) ) . 
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E 

FIGURE 5.3 
Relative lsoperlmetrlc Inequality. 

r 

• X 

B(x,r) 
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REMARK Statement (i) is the lsoperimetric Inequality and (ii) is the Relative 
lsoperimetric Inequality. The constants C1 and C2 are those from Theorems 1 
and 2 in Section 4.5. I 

PROOF 
1. Let f = X E in assertion (i) of Theorem 1 to prove (i). 
2. Let f = x8 ) E 

in assertion (ii) of Theorem I ,  in which case (x,r n 

Thus 

Ln(B(x, r) n E) (f)x,r = £n(B(x, r))  

r I f - (f)x,r ln/n-1 dy = (Ln (�(x, r) - E) ) n/n- l 
C(B(x, r) n E) 

Ja(x,r) L (B(x, r))  

(Ln(B(x, r) n E)) n/n- I
Ln(B( ) - E) + £n(B(x, r)) x, r . 
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Now if C'(B(x, r ) n E) < .C"(B(x, r ) - E), then 

( f I f - Ulx,r l";"- 1 dy
) 1 - 1/n 

j B(x,r·) 

> [C'(B(x, r) - E)) C'(B(x r) n £) 1- 1 /n - L"(B(x, r) )  ' 

> � min{C'(B(x, r) n E), C'(B(x, r ) - E)} 1 - 11" .  

The other case is similar. I 
REMARK We have shown that the Gagliardo-Nirenberg-Sobolev Inequality 
implies the Isoperimetric Inequality. In fact, the converse is true as well. 

To see this, assume f E C�(IR" ) , f > 0. We calculate 

ln IDJI dx = I I DJI I (JR" ) = 1: I I8Et i i (JR" ) dt 

= �o= I I 8Et i i (IR" ) dt 

> �
1 
�o= .L:"(Et) 1 - 1/n di. 

Now let 

/1 = min{t, !} ,  
( {  ) 1 - 1 /n 

x(t) = }'il.n J:•/n- 1 dx 

Then X is nondecreasing on (0, oo) and 

Also, for h > 0, 

(1 
) 1 - 1 /n 

lim x(t) = l/ 1"/n- 1 dx t-+oo JRn 

o < x(t + h) - x(t) 

< (ln l ft+h - Jt ln/n- 1 dx
) 1 - 1 /n 

< h.c"(Et) 1 - 1 /n . 

Thus X is locally Lipschitz, and 

.C1 a. e. t .  

(t E IR). 
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Integrate from 0 to oo: 

(1 
) 1 - 1 /rr �ex> 

1 ! 1";"- 1 dx = x'(t) dt 
p . () 

I 

5.6.3 'H" -- 1 and Cap 1 

< r� c�u�, )" 1" - 1 dt ./o 
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As a first application of the Isoperimetric Inequalities, we establish this refine­
ment of Theorem 4 in Section 4.7.2: 

THEOREM 3 
Assume A C IR" is compact. Then Cap1 (A) = 0 if and only if 'H"- 1 (A) = 0. 

PROOF According to Theorem 2 in Section 4.7. 1 ,  Cap1 (A) =0 if 'H"- 1 (A) = 0. 
Now suppose Cap 1 (A) = 0. If f E K 1 and A C {! > 1 r, then by Theo­

rem 1 in Section 5.5, 

where E1 = {! > t} . Thus for some t E (0, 1 ) , 

I I8Et i i (JR" ) < ln IDJI dx. 

Clearly A C E1°, and by the Isoperimetric Inequality, L"(Et )  < oo. Thus for 
each x E A, there exists a r > 0 such that 

L"(E1 n B(x, r )) I = -o:( n )r" 4 

In light of the Relative Isoperimetric Inequality, we have for each such B(x, r) , 
n-1 (�o:(n)r"] ---n 

= (L:n(Et n B(x , r)) ) n;;-1 < CI I8Et i i (B(x, r)) ;  

that is, 

r"- 1 < CI I8Et i i (B(x, r)) .  
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By Vitali's Covering Theorem there exists a disjoint collection of balls 
{B(xi , r1 ) }j 1 as above, with x1 E A and 

Thus 

00 

A C U B(x1 , 5r1 ) .  
j=l  

00 

L (5rj r- • < CI I8Et i i (IR") < c L. ID /I dx. 
j = l  R 

Since Cap 1 (A) = 0, given € > 0, the function f can be chosen so that 

r IDfl dx < €, }!Jtn 
and hence for each j, 

I I ri < (CI I8E1 I I (IR" )) n-l < C€ n-1 . 
This implies 'Hn-1 (A) = 0. I 

5.7 The reduced boundary 

In this and the next section we study the detailed structure of sets of locally finite 
perimeter. Our goal is to verify that such a set has "a C1 boundary measure 
theoretically." 

5.7.1 Estimates 

We hereafter assume 

E is a set of locally finite perimeter in IR" . 

Recall the definitions of liE, I I8EI I . etc., from Section 5. 1 .  
DEFINJTION Let x E IR". We say x E 8* E, the reduced boundary of E, if 

(i) I I8EI I (B(x, r)) > Ofor all r > O, 
(ii) limr�o fa(x,r) liE di i8EI I  = liE(x) , and 

(iii) l liE(x) l = l .  

REMARK According to Theorem 1 in Section 1 .7 . 1 ,  
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B(x,r) 

x •  

E 
v 

FIGURE 5.4 
Normals to E and to B(x, r). 

LEMMA 1 
Let cp E C�(IRn ; IRn ) .  Then for each x E IRn , 

f div cp dy =  f cp · vE di i8EI I + f cp · v d'Hn- l 1 EnB(x,r) 1 B(x,r) 1 En8B(x.r) 

for L1 a.e. r > 0, v denoting the outward unit normal to 8B(x, r) . 

PROOF Assume h : IRn --> IR is smooth, then 

l div (hcp) dy = l h div cp dy + l Dh · cp dy. 

Thus 
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f hcp · vE di i 8EI I  = f h div cp dy + f Dh · cp dy. (*) 11"1.n 1 E 1 E 

B y  approximation, (*) holds also for 

h. (y) = g.( IY - xi) ,  
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where 

g, (s) = 

Notice 

g� (s) = 

and therefore 

I if 0 < s < r 
r - s + c  

(' 
0 if S > 1" + L 

0 if 0 < s < r or s > 1· + c 
I if r < s < r + c , 

0 if IY - xi < r or IY - xi > r + c 
Dh, (y) = I y - X 

c IY - x i  
if r < IY - x i  < r + c . 

Set h = h, in (*): 

{ h<<p · vE di i8EI I  = { h, div <p dy - � j }p jE !' 

y - x  <p . 
I I dy. y - x  

En{yjr< jy-xj<r+<} 

Let c --+ 0 and recall Proposition I in Section 3.4.4 to find 

{ <p · vE dl loEI I = { div <p dy - { <p · v d1tn- l J B(x,r) } EnB(x,r) } En&B(x,r) 

for £I a.e. r > 0. I 

LEMMA 2 
There exist positive constants A1 ,  • • •  , As, depending only on n, such that for 
each X E o*E, 
(i) lim infr�o C(B��r)nE) > A1 > 0, 

(ii) lim inf 0 
.cn(B(x,r) - E) > A1 > 0 r- rn ' 

(iii) 

(iv) 

(v) 

lim infr�o jj&EI;�B\x,r)) > A3 > 0, 
lim sup i i&EI I(B(x,r}} < A r-+0 rn I - 4 ,  

l im sup I I&(EnB(x,r) )jj(IRn } < A  r-+0 rn I - 5· 

PROOF 
1. Fix x E 8* E. According to Lemma I ,  for £I a.e. r > 0 

l lo(E n B(x, r)) I I (IRn) < I I8EI I (B(x, r)) + 1tn- I (E n oB(x, r)) . (*) 

On the other hand, choose <p E C HlRn ; !Rn ) such that 

<p = vE (x) on B(x, r) . 
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Then the formula from Lemma I reads 

r IIE (x) · vE di loE I I = - r 11E (x) · v d1t"- 1 •  (**) J D(x,r) } EnOD(x,r) 

Since X E a· E, 

lim vE(x) · { liE di i8EI I = lvE(x) l 2 = I ; r�o Jn(x.r) 

thus for £1 a.e. sufficiently small r > 0, say 0 < r < r0 = ro ( x), ( **) implies 

� l loEI I (B(x, r)) < 1tn- 1 (E n oB(x, r)) .  

This and (*) give 

for a.e. 0 < r < ro. 
2. Write g(r) = t:_n(B(x, r) n E). Then 

g(r) = 1r 
1tn- 1 (oB(x, s ) n E) ds, 

whence g is absolutely continuous, and 

g'(r) = 1tn-1 (8B(x, r) n E) for a.e. r > 0. 

Using now the Isoperimetric Inequality and (* * * *), we compute 

Thus 

and so 

g(r) 1- l /n = £n (B(x, r) n E) l-lfn < Cl io(B(x, r) n E) I I (IRn )  

< C1tn-I (B(x, r) n E) 
for a.e. r E (0, ro) .  
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and 
r" g(r) > 

(C1n)" 

for 0 < r < r0. This proves assertion (i). 
3. Since for all <p E C� ( IR" ; IR!' )  

r div <p dx + r div <p dx = r div <p dx = 0, JE }JRn - E }Ru 
it is easy to check 

I I8EI I = I I8(1Rn - E) l l ,  
Consequently, statement (ii) follows from (i). 

4. According to the Relative Isoperimetric Inequality, 
n - 1  

.:.:.--=.:-'--�-'-'- > mm 
I I8E I I (B(x, r)) 

C . { [.n (B(x, r) n E) [." (B(x, r) - E) }-;;-
rn- 1 - rn ' rn ' 

and thus assertion (iii) follows from (i), (ii). 
S. By (* * *), 

I I8EI I (B(x, r) ) < 27tn-l (E n 8B(x, r)) < Crn- l 

this is (iv). 
6. Statement (v) is a consequence of (*) and (iv). I 

5.7.2 Blow-up 

DEFINITION For each x E 8* E, define the hyperplane 

H(x) = {y E !Rn l vE (x) · (y - x) = 0} 

and the half-spaces 

H+ (x) = {y E !Rn i vE (x) · (y - x) > 0}, 

H- (x) = {y E !Rn i vE (x) · (y - x) < 0}.  

NOTATION Fix x E 8* E, r > 0, and set 

Er = {y E !Rn I r(y - x) + X  E E} . 

(0 < r < ro) ;  

REMARK Observe y E E n  B(x, r) if and only if 9r(Y) E Er n B(x, I ) ,  where 
9r (Y) = ((y - x)/r) + x. I 
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FIGURE 5.5 
Approximate tangent plane. 

FIGURE 5.6 
Blow-up. 

E 

THEOREM I BLOW-UP OF REDUCED BOUNDARY 
Assume x E {)*E. Then 

as r --+ 0. 
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H(x) 
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Thus for smal l  enough r > 0, E n  B(x , r) approximately equals the half ball 
s- (x) n B(x, r) .  

PROOF 
I.  First of all, we may as well assume: 

X =  0, 11E(0) = en =  (0, . . .  , 0, 1 ) ,  
H (O) = {y E !Rn I y,. = 0 } ,  
H+ (o) = {y E IR.n I y,. > 0 } ,  

s- (o) = {y E IR.n I Yn < 0 } .  

2. Choose any sequence Tk --+ 0. It will be enough to show there exists a 
subsequence { sJ }j 1 C {rk } k  1 for which 

3. Fix L > 0 and let 

Dr = Er n B(O, L), 
y 

9r(Y) = - · r 

j div <p dz = 
n
l
- l { div ( <p o 9r) dy 

Dr r j EnB(O,r L) 

= 
rn

'
- 1  ln (<p 0 9r) . IIEnB(O,rL) dl lo(E n B (O, r£) ) 1 1  

< l l o(E n B(O, rL) ) I I (IRn ) 
- n - 1  r 

for all r E (0, 1 ] ,  according to Lemma 2(v). Consequently, 

(O < r < l ) ,  

and furthermore, 

(r > 0) . 
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Hence 

for all 0 < r < I .  
In view of this estimate and the Compactness Theorem from Section 5.2.3, 

there exists a subsequence {s1 }f 1 C {rk }k' 1 and a function f E B\lioc (IR" )  
such that, writing Ej = E.,3 , we have 

We may assume also x ---+ f C' a.e.; hence J(x) E {0, I }  for C' a.e. x and Ej 
so 

rn '- a.e., 

where 

has locally finite perimeter. 

Hence if <p E C� (!Rn ; lRn ), 

f div <p dy = { <p · vF di loFI I , (*) 
JF }[tn 

for some l loFI I-measurable function IIF, with l vF I  = I  l loF I I  a.e. 
We must prove F = H-(0). 
4. Claim #1 : vF = en l loFI I  a.e. 

Proof of Claim #1: Let us write llj = IIEr Then if <p E c� (!Rn ;  !Rn ), 

(j = I ,  2, . . .  ). 

Since 

we see from the above and (*) that 

Thus 

weakly in the sense of Radon measures. Consequently, for each L > 0 for 
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which I I8FI I (8B(O, L)) = 0, and hence for all but at most countably many 
L > 0, 

r llj di i8Ej l l ---+ r IIF dl loFI I ·  J B(O,L) J D(O,L) 

On the other hand, for all <p as above, 

whence 

Therefore 

since 0 E o*E. If I I8FI I (8B(O, L)) = 0, the Lower Semicontinuity Theorem 
implies 

I I8FI I (B(O, L)) < li� inf i i8Ei i i (B(O, L)) 
) �00 

= lim { en · vi dl ioEi l l  
J �oo j B (O,L) 

= r en . IIF di i8F I I ,  by (**)· 
j B(O,L) 

Since l vF I  = I l loFI I  a.e., the above inequality forces 

l loFI I  a.e. 

It also follows from the above inequality that 

I I8FI I (B(O, L)) = .lim I I 8Ej i i (B(O, L)) 
] �00 

whenever I I8FI I (8B(O, L)) = 0. 
5. Claim #2. F is a half space. 

Proof of Claim #2: By Claim # I ,  for all <p E C� (!Rn ; 1Rn ) , 

f div <p dz = { <p · en dl loFI I · }F }[tn 
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Fix < > 0 and let j< = ry, * X v• where 1J, is the usual mollifier. Then j< E 
coo ( IR" ), and so 

But also 

Thus 

r j<div <p dz = r div (TJ, * <p) dz }fRn 1 V 

= { 'h * ( <p · e " ) dl i?J Fl l .  
jR" 

r j<div<p dz = - r DF · t.p dz. Jan Jan 
ar - = 0  
OZ; (i = l ,  . . .  , n - 1 ) ,  ar - < 0. OZn -

As f, ---+ XF t:_n a.e. as c ---+ 0, we conclude that - up to a set of £"-measure 
zero -

F = {y E IR" I Yn < ')' } 
6. Claim #3: F = s - (0). 

for some I' E IR. 

Proof of Claim #3: We must show I' = 0 above. Assume instead /' > 0. 
Since X E ---+ x F in L/oc (IR" ) , 

J 

a(n)"Y" = C(B(O, /') n F) = lim C(B(O, /') n Ei) 
J-+00 

a contradiction to Lemma 2(ii). 
Similarly, the case I' < 0 leads to a contradiction to Lemma 2(i). 

, 

I 

We at once read off more detailed information concerning the blow-up of E 
around a point x E 8* E: 

COROLLARY I 
Assume x E 8* E. Then 
(l.) 1. £" (B(x, r) n E n H+ (x)) 

lm = 0  
r-+0 rn 
I . C((B(x, r) - E) n s - (x)) nd 1m = 0, a 
r-+0 rn 

(ii) lim I I8EI I (B(x, r)) = I . 
r�o a(n - l )rn- 1 

DEFINITION A unit vector vE(x) for which (i) holds (with H± (x) as defined 
above) is called the measure theoretic unit outer normal to E at x. 
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PROOF 
I. We have 

£n (B(x, r) n E n  H+ (x)) 
= C(B(x, I )  n Er n H+ (x)) rn 

--+ C'(B(x, I )  n H- (x) n s+ (x) ) = 0 as r --+  0. 
The other limit in (i) has a similar proof. 

2. Assume x = 0. By (* * *) in the proof of Theorem I ,  
1 18EI����O, r)) 

= I I8Er i i (B(O, 1 ) ) .  
Since I I8H- (O) I I  (8B (O, I )) = 1tn- 1 (8B(O, I )  nH(O)) = 0, part 2 of the proof 
of Theorem I implies 

lim 1 18EI I (�(O, r) ) = I I8H- (O)I I (B(O, 1 )) r�o rn 1 
= 1tn- 1 (B(O, I )  n H(O) ) = a(n - 1) . I 

5.7.3 Structure Theorem for sets of finite perimeter 

LEMMA 3 
There exists a constant C. depending only on n, such that 

for all B c 8*E. 

PROOF Let c, 8 > 0, B C 8* E. Since 1 18 El l  is a Radon measure, there exists 
an open set U :::> B such that 

I I8E I I (U) < I I8EI I (B) + c. 

According to Lemma 2, if x E 8* E, then 

Let 

lim inf I I8E I I (B(x, r)) > A3 > 0. r�o rn- 1 

F = { B(x, r) I x E B, B(x, r) C U, r < 180 , I I8EI I (B(x, r)) > A3rn- 1 } . 

According to Vitali's Covering Theorem, there exist disjoint balls { B(x; , r;) }f 1 
C .r such that 

00 
B C U B(xi, 5r;) . 

i= 1 
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Since diam H(x; , 5r; ) < 6 (i = I ,  . . .  ) , 

00 00 

?t�'- 1 (B) < L>(n - 1 )(5r; )"- 1 < C L) oEI I (B(x;, r; )) 
i= I 

Let c ---+ 0 and then 6 ---+ 0. I 

i= I 
< Cl loEI I (U) 
< C(l loEI I (B) + c). 
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Now we show that a set of locally finite perimeter has "measure theoretically 
a C1 boundary." 

THEOREM 2 STRUCTURE THEOREM FOR SETS OF FINITE PERIMETER 
Assume E has locally finite perimeter in IR" . 

(i) Then 

where 

00 

8* E = U Kk U N, 
k= l 

l loEI I (N) = o 

and [{k is a compact subset of a C1-hypersurface Sk (k = I ,  2, . . .  ). 

(ii) Furthermore, liE Is. is normal to sk (k = I '  . . . ) ,  and 
(iii) l loEI I = ?tn- l L o*E. 

PROOF 
I. For each x E 8* E, we have according to Corollary I 

lim 
[.n (B(x, r) n E n  H+(x)) = O 

r-+0 rn ' 

lim f.
n ((B(x, r) - E) n s- (x)) = O. 

r-+0 rn 

Using Egoroff's Theorem, we see that there exist disjoint 1 18£1 1 -measurable sets 
{ F; } r I c 8* E such that 

I I8EI I  (a*E - p F;) = 0, I I8EI I (F;) < oo ,  and 

the convergence in (*) is uniform for x E Fi (i = I ,  . . .  ) . 
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Then, by Lusin 's Theorem, for each i there exist disjoint compact sets { Ef } j 1 C F; such that 

00 

l loEI I  F; - U E/ == 0 and 
j= l 

11 E I E' is continuous. 
' 

Reindex the sets { Ef } i,j = 1 and call them { K k} f 1 • Then 

00 

o*E == U Kk u N, l loEI I (N) == o, 
k=l 

the convergence in (*) is uniform on Kk. and (**) 
11 E I K k is continuous ( k == I , 2, . . .  ) . 

2. Define for 6 > 0 

( ') _ { I 11E (x) · (y - x) l I Pk v == sup 
I I y - x  

0 < lx - Yl < 6, x, Y E Kk } . 
3. Claim: For each k == 1 , 2 , . . . , Pk(6) ---+ 0 as 6 ---+ 0. 

Proof of Claim: We may as well assume k == I .  Fix 0 < c < I. B y  (*), (**) 
there exists 0 < 6 < I such that if z E K1 and r < 26 , then 

Assume now x, y E K� . 0 < l x - Yl < 6. 
Case I. 11E (x) · (y - x) > c lx - Yl · 
Then, since c < I ,  

B(y, c lx - yl) c H+ (x) n B(x, 2lx - yl) . 

To see this, observe that if z E B(y, c lx - yl) , then .::: == y + w, where lwl < 
c lx - yl, whence 

IIE (x) · (z - x) = vE (x) · (y - x) + 11E (x) · w > c lx - yl - lwl > 0. 

On the other hand, (* * *) with z == x implies 

En C(E n B(x ,2lx - yl ) n H+ (x)) < 2n+2 a(n) (2lx - ylt 

== E
n:(n ) lx - yln , 
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and (* * *) with z = y implies -
.C"(E n B(y, c lx - Yl)) > C(E n B(y, clx - yl) n Ir (y)) 

> I - -...,. 
c"a(n) lx - Yl" ( < "  ) 

- 2 2"+1  
c"a(n)

l I " > X - y . 
4 
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However, our applying .C" L E to both sides of (* * * *) yields an estimate 
contradicting the above inequalities. 

Case 2. 11E (x) • (y - x) < -clx - Yl · 
This similarly leads to a contradiction. 
4. Now apply Whitney's Extension Theorem (found in Section 6.5) with 

f = O  and d = IIE on Kk . 

We conclude that there exist C1 -functions Jk : IR" -+ IR such that 

Let 

(k = l , 2 , . . .  ) . 

By the Implicit Function Theorem, Sk is a C1 , (n - I )-dimensional subman­
ifold of IR" . Clearly Kk c Sk. This proves (i) and (ii). 

5. Choose a Borel set B c {)*E. According to Lemma 3, 

Thus we may as well assume B C U%" 1 K k, and in fact B C K1 • By (ii) there 
exists a C1 -hypersurface S1 :::> K1 • Let 

II =  1tn- l L Sl . 

lim 
II(B(x, r)) = I 

r�o a(n - l )rn- l 
Thus Corollary I (ii) implies 

lim 
II(B(x, r)) = I r�o l lfJEI I (B(s, r)) 

(x E B). 

(x E B). 

Since 11 and l lfJEI I  are Radon measures, Theorem 2 in Section 1 .6.2 implies 

l l fJEI I (B) = 11(B) = 1t"- 1 (B). I 
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5.8 The measure theoretic boundary; Gauss-Green Theorem 

As above, we continue to assume E is a set of locally finite perimeter in IR" . 
We next refine Corollary 3 in Section 1 .7 . I . 

DEFINITION Let x E IR" . We say x E a. E, the measure theoretic boundary 

of E. if 

and 

LEMMA I 
(i) a•E c a.E. 

. C' (B(x, 1·) n E) 
l 1m sup > 0 

rn r�o 

. £" (B(x, r) - E) 
hm sup > 0. 

r-o rn 

(ii) Hn- l (a. E - a• E) = 0. 

PROOF 
I. Assertion (i) follows from Lemma 2 in Section 5.7. 
2. Since the mapping 

is continuous, if x E a. E, there exists 0 < a < I and r j --+ 0 such that 

Thus 

min{C(B(x, ri) n E) , C(B(x, rj ) - E)} = min{ a, I - a}a (n)rj, 

and so the Relative Isoperimetric Inequality implies 

I. l laEI I (B(x, r)) 0 lm sup n- 1 > . 
r-+0 r 

Since I Ia EI I  (!Rn - a• E) = 0, standard covering arguments imply 

1tn- l (a. E - a• E) = o. I 
Now we prove that if E has locally finite perimeter, then the usual Gauss­

Green formula holds, provided we consider the measure theoretic boundary 
of E. 
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THEOREM I GENERALIZED GAUSS-(JREEN THEOREM 
Let E C IR" have locally finite perimeter. 

(i) Then 1t"- 1  (fJ*E n K) < oo for eaclr compact set I\ C IR" . 
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(ii) Furthermore , for 1t"-1 a.e. x E {)* E. there is a unique measure theoretic 
unit outer normal vE (x) suclz that 

{ div <p dx = r . <p · liE d1t"- l (*} JE Ji!. l·. 

PROOF By the foregoing theory, 

{ div <p dx =  { <p · vE di ifJEI I -JE }JRn 
But 

l lfJEI I (IR" - fJ* E) =  
o 

and, by Theorem 2 in Section 5.7.3 and Lemma I ,  

l lfJEI I = 1tn- l L {)* E. 

Thus (*) follows from Lemma I .  I 

REMARK We will see in Section 5 . 1 1  below that if E C IR" is £"-measurable 
and 1t"- 1 ( {)* E n K) < oo for all compact K c IR" , then E has locally finite 
perimeter. In particular, we see that the Gauss-Green Theorem is valid for 
E = U, an open set with Lipschitz boundary. I 

5.9 Pointwise properties of BV functions 

We next extend our analysis of sets of finite perimeter to general BY functions. 
The goal will be to demonstrate that a BY function is "measure theoretically 
piecewise continuous," with "jumps along a measure theoretically C1 surface." 

We now assume f E BV(IR" ) and investigate the approximate limits of f(y) 
as y approaches a typical point x E IR" . 

DEFINITIONS 

(l.) ( . ( . { I .C" (B(x, r) n {f > t} )  } 
p, x) = ap hm sup f y) = mf t lim n = 0 .  

y-+x r-+0 r 

(ii) .X.(x) = ap lim infj(y) = sup
{ t I lim 

.C" (B(x, r) n {f < t } )  
= 

o} . 
y-+x r-+0 rn 
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REMARK Clearly -oo < .X.(x) < f.L(x) < oo for all x E IR." . I 

LEMMA I 
The functions x >---> .X.(x) , f.L(x) are Borel measurable. 

PROOF For each t E IR, the set E1 = {x E IR.n I J(x) > t} is £"-measurable, 
and so for each r > 0, t E IR, the mapping 

X >---> 
.cn (B(x, r) n Et) 

rn 
is continuous. This implies 

( ) _ 1. .Cn (B(x, r) n E1) f.Lt X = lm SUp n r-o r 
r ralional 

is a Borel measurable function of x for each t E lit 
Now, for each s E R, 

00 

{x E !Rn I f.L(x) < s} = n {x E IR.n I f-ls+f (x) = 0 } , 
k= l 

and so f.L is a Borel measurable function. 
The proof that A is Borel measurable is similar. I 

DEFINITION Let J denote {x E IR.n I .X.(x) < f.L(x) }. the set of points at which 
the approximate limit of f does not exist. 

According to Theorem 2 in Section 1 .7.2, 

C(J) = o. 

We will see below that for 1tn-l a.e. point x E J, f has a "measure theoretic 
jump" across a hyperplane through x. 

THEOREM I 
There exist countably many C1 -hypersurfaces {Sk}k' 1 such that 

PROOF Define, as in Section 5.5, 

Et = {x E IR.n I f(x) > t} (t E lR). 

According to the Coarea Formula for BY functions, E1 is a set of finite perimeter 
in IR.n for .C1 a.e. t. Furthermore, observe that if x E J and .X.(x) < t < f.L(x), 
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then 

and 

Thus 

. .C" (B (x, r) n {! > t}) 
hm sup > 0 

,·--.o r " 

. C' ( B(x , r) n {f < t }) 
hm sup > 0. 

1." r�o 

{x E J I .X.(x) < t < �J(x) } c a. Et . 
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Choose D C IR1 to be a countable, dense set such that E1 is of finite perimeter 
for each t E D. For each t E D, 1tn- l almost all of o.Et is contained in a 
countable union of C1 -hypersurfaces: this is a consequence of the Structure 
Theorem in Section 5.7. 

Now, according to (*), 

and the theorem follows. I 

THEOREM 2 

-oo < .X.(x) < �J(x) < +oofor 1tn- l a.e. x E IR". 

PROOF 
I. Claim #]; 1tn- 1 ({x I .X.(x) = +oo}) = 0, 1tn- 1 ({x i �J(x) = -oo}) = 0 . 

Proof of Claim #I: We may assume spt (f) is compact. Let 

Ft = {x E IR" I .X. (x) > t } . 

Since �J(x) = .X.(x) = J(x) .C" a.e., £1 and F1 differ at most by a set of 
.C"-measure zero, whence 

Consequently, the Coarea Formula for BY functions implies 

and so 

J: I I8Ft i i (IRn) dt = I IDJ I I (IR" ) < 00, 

lim inf I I8Ft l l  (IR" ) = 0. t�oo 
Since spt (f) is compact, there exists d > 0 such that 

I 
C (spt (f) n B(x, r)) < 8a(n)r" for all x E spt (f) and r > d. (**) 
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Fix t > 0. By the definitions of .X. and Ft . 

I. £n(B(x, r) n Ft ) I ,.. E F. 1m = tOr X t · r�o a(n)rn 
Thus for each x E Ft . there exists r > 0 such that 

C(B(x, r) n F1 )  _ I  a(n)rn - 4 · 

According to (**), r < d. 
We apply Vitali's Covering Theorem to find a countable disjoint collection 

{B(x; , r; ) }i' 1 of balls satisfying (* * *) for x = x;, r = r; < d, such that 

00 

Ft C U B(x; , 5r; ) .  
i= l 

Now (* * *) and the Relative Isoperimetric Inequality imply 

that is, 

n - 1  (a(n) )"  
< CI I8Ft i i (B(x; , r; ) )  

4 n- 1 r .  ' 

(i = l , 2, . . . ) . 

Thus we may calculate 

In view of (*), 

and so 

00 

1t�od 1 (Ft )  < La(n - 1 ) (5ri )" - 1 
i= I 

00 

< C L I I8Ft i i (B(x; , r;) ) 
i= l 

?tn- 1 ({x I .X.(x) = +oo}) = 0. 
The proof that ?tn- l ( { x I p,(x) = -oo}) = 0 is similar. 
2. Claim #2: ?tn- l ({x I p,(x) - .X.(x) = oo}) = 0. 
Proof of Claim #2: By Theorem I ,  J is £T-finite with respect to ?tn- l in !Rn ,  

and thus {(x, t) I x E J ,  .X.(x) < t < p,(x)} is £T-finite with respect to ?tn- l x £1 
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in IR"+1 • Consequently, Fubini's Theorem implies 

1: 7t"- 1 ({A(x) < t < Jt(x)}) dt = ln p,(x) - .A.(x) d?t"- 1 • 
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But by statement (*) in the proof of Theorem I ,  and the theory developed in 
Section 5.7, 

J: 7t"- 1 ( {A(x) < t < p,(x)}) dt < 1: ?t'H (o.E1 ) dt 

= 1: I I8Et i i (IR" ) dt 

= I IDf i i (IR" )  < 00. 

Consequently, ?t"- 1 ( { x I p,(x) - .A.(x) = oo}) = 0. I 
NOTATION F(x) = (.A.(x) + p,(x) )/2. 

DEFINITIONS Let 11 be a unit vector in !Rn , x E IR" . We define the hyperplane 

Hv = {y E IR" l 11  · (y - x) = 0} 

and the half-spaces 

H;f" = {y E IR" l 11 · (y - x) > 0} ,  

H;; = {y E IR" l 11 · (y - x) < 0} . 

THEOREM 3 FINE PROPERTIES OF BV FUNCTIONS 
Assume f E BV(IR" ) . Then 

(i) limr�o fB( ) If - F(x ) i "fn- 1 dy = 0 for ?t"- 1 a.e. x E IR" - J, x,r 
and 

(ii) for ?t"- 1 a.e. x E J, there exists a unit vector 11 = 11(x) such that 

and 

In particular, 

lim I If - p,(x) lnfn- 1  dy = 0 r�oJB(x, r)nH;; 

lim I If - .A.(x) l nfn- 1 dy = 0. r�oJB(x,r)nH;j 

p,(x) = ap li.Px f(y) , .A.(x) = ap l� f(y) . 
yEHj '1/EH;; 
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REMARK Thus we see that for H"- 1 a.e. x E J, f has a "measure theoretic 
jump" across the hyperplane Hv(x) · I 

PROOF We will prove only the second part of assertion (ii), as the other 
statements follow similarly. 

1. For 1t"- 1  a.e. x E J, there exists a unit vector 11 such that 11 is the measure 
theoretic exterior unit normal to E1 = {f > t }  at x for .X.(x) < t < p,(x ) .  Thus 
for each c > 0, 

_£n-'(_B_,_( x...c.., r....:.)_n.....:{o.:....f_>_.X......:.( x_:.)_+_c--<-}_n_H--"-
;;--'-) = 0 

r" 
, 

t:_n (B(x, r) n {f < .X.(x) - t:} )  -�..:_____:___co..:.._ _ _;_-'---.!..!.. = 0. 
r" 

Hence if 0 < c < I ,  

--k f If - .X.(x) l"tn- 1 dy r J B(x,r )nHt 

I 
< 

2a(n)cnfn- l 

+--k f If - .x.(x) l"tn- 1 dy 
T J B(x,r )nHtn{ f>>.(x)+<} 

+--k f I f - .x.(x) lntn- 1 dy. <**) 
T j B(x,r)nHt n{f<>.(x)-<} 

Now fix M > .X.(x) + c. Then 

--k f I f - .X.(x) l"tn- 1 dy 
T j B(x,r)nHt n{f>>.(x)+<} 

< (M _ .X.(x))"fn- l £" (B (x, r) n Ht � {f > .X.(x) + c}) 
r 

+--k f I f - .X.(x) l"tn- 1 dy. r J B(x,r)n{f> M} 

Similarly, if -M < .X.(x) - c, 

--k f If - .x.(x) l"tn- 1 dy 
T j B(x,r )n{!<>.(x) -<} 

< (M + .X.(x))nfn- l t:_n(B(x, r) n {� < .X.(x) - c}) 
r 

+--k f I f - .X.(x) lntn-1 dy. 
r JB(x,r)n{f < - M} 
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We employ the two previous calculations in (**) and then recal l (*) to compute 

lim sup -k f If - .x.(x) l ";"- 1 dy r·-o r J B(x,r)nHt 
< lim sup � f I f - .X.(x) l ";"- 1 dy r-o r Jn(r.,r )n{ l / i >M }  

for all sufficiently large M > 0. 
2. Now 

� r If - .X.(x) ln/n- 1 dy < �� r (J - M)+nfn-1 dy r 1 D(x,r )n{ f>M} r J D(x,r) 

(* * *) 

+ (M _ .X.(x))"fn- l C' (B(x, r) n {f > M}) 
r" 

I f  M > p,(x), the second term on the right-hand side of this inequality goes to 
zero as r --+ 0. Furthermore, for sufficiently small r > 0, 

_£ ".....o.(_B-'-=( x..:...' r:-'::) ,.,..
n_,_{J"-:-,->_M�}'-'-) < 

� 
L"(B(x, r)) - 2 

and hence by Theorem I (iii) in Section 5.6. 1 we have 
n - 1  

(I (J - M)+nfn- l dy)
...,. 

< ;:__ 1 I ID(J - M)+ I I (B(x, r)) . JB(x,r) r 

This estimate and the analogous one over the set {f < -M} combine with 
(* * *) to prove 

n-1 

lim sup (I I f - .X.(x) lnfn- l dy) -n r�o Jn(x,r)nHt 

< C lim sup 
l iD(! - Ml:! I (B(x, r)) 

r-+0 r 

C l. I ID(-M - J)+ I I (B(x, r)) 
+ 1m SUp n- l r-+0 r 

for all sufficiently large M > 0. 
3. Fix c > 0, N > 0, and define 

(* * **) 

A� = { x E IR" I li���p l iD(! - �l:! I (B(x, r)) > c for all M > N} . 

Then 
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for all M > N. Thus 

and so 

I. 1. l iD(! - M)+ I I (B(x, r) )  O 1m 1m sup 1 = 
M-oo r-0 rtt-

for 7-ln-l a.e. x E J. Similarly, 

I. 1. I ID(-M - !)+ I I (B(x, 1' ) )  0 1m 1m sup 1 = . 
M-oo r-0 rrt-

These estimates and (* * * *) prove 

lim { I f - ..\(x) l n/n- l dy = 0. I r�o Ja(x,r)nH"t 

COROLLARY 1 
(i) If f  E BV(l�n ) ,  then 

f* (x) = lim (f)x,r = F(x) r�o 
exists for 7-ln- l a.e. x E Rn . 

(ii) Furthermore, if fl, is the standard mo/lijier and /' = fl, * f, then 

f* (x) = lim t< (x) -�o 
for 7-ln- l a.e. X E Rn . 

5.10 Essential variation on lines 

We now ascertain the behavior of a BV function on lines. 

5.10.1 BV functions of one variable 

We first study BV functions of one variable. 
Suppose f : R --> R is C1 -measurable, - oo  < a  < b < X. 

DEFINITION The essenh'al variation of f on the inten·al (a, b) is 

m 
ess V/:J = sup _2)f(ti+ l ) - f(ti ) l 

j= l  
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the supremum taken over all finite partitions {u < t 1 < · · · < 1m+ I < b} such 
that each ti is a point of approximate cominuity of f. 

REMARK The variation of f on (a, !J) is similarly de tined, but without the 
proviso that each partition point I 1 be a point of approximate continuity. Since 
we demand that a function remain BV even after being redefined on a set of .C1 
measure zero, we see that essential variation is the proper notion here. 

In particular, if f = g .C 1 a.e. on (a, b) , then 

THEOREM 1 
Suppose f E L1 (a, b) . Then I IDf l l (a, b) = ess ��'f . Th1ts f E BV(a, b) if and 
only 1! ess �� f < oo. 

PROOF 
I. Consider first ess V� f. Fix f > 0 and let f' = 1J, * f denote the usual 

smoothing of f. Choose any a +  f < t 1 < · · · < tm+ l < b - f. Since C 1 a.e. 
point is a point of approximate continuity of f, ti - s is a point of approximate 
continuity of f for .C 1 a.e. s. Hence 

rn rn € 
,2 )/' (ti+ l ) - f' (ti ) l  = L 1 f!, (s)(f (ti+ 1 - s) - f(ti - s)) ds 
j= l  j= l - < 

< 1'. f!, (s) � lf (ti+ l  - s) - f(ti - s) l ds 

< ess v; f. 

It follows that 

f b-• 1 (!' )' I dx = sup 
Ja+£ .L Jr(tj+ l ) - f'(tj ) l  

j= l 

m 
< ess v; f. 

Thus if r.p E C� (a, b) , I'P I < I ,  we have 

1b 1b 1b-< f'r.p' dx = - (f') 'r.p dx < 1 (!')' 1 dx < ess vabf a a a+< 
for f sufficiently small. Let f --> 0 to find 

1b fr.p' dx < ess v; f. 
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I I DJ I I (a, /J) = sup {l' 
J<p' dx I <p E C,� (a, b) , I'P I  < I } 

< ess v;� f < oo. 

In particular, if f !f. BV(a, b) , 
I I DJI I (a, b) = ess \!;�'! = +oo. 

2. Now suppose f E BV(a, b) and choose a < c < d < b. Then for each 
<p E C,� ( c, d), with I 'PI < I ,  and each small f > 0, we calculate 

1d(f')'rp dx = - 1d f'rp' dx 

= - 1\rl< * f)rp' dx 

= - 1b f(fl, * r.p) ' dx 

< I I D! I I (a, b) .  
Thus fed I (!' )' I  dx < l i D / I I  (a, b) . 

3. Claim: f E U"'(a, b). 
Proof of Claim: Choose {!1 }�1 c BV(a, b) n C=(a, b) so that 

fJ --> f in L1 (a, b) , fJ --> f C a.e. 

and 

1b 1 !} 1  dx __, I IDJI I (a, b). 
For each y, z E (a, b) , 

fJ (z) = /j(Y) + lz f} dx. 

Averaging with respect to y E (a, b) , we obtain 

and so 

1 /j (z) l < ib l fJ I dy + 1b If} I dx, 

sup l l fJ I I L�(a,
b
) < oo. 

J 

Since fJ --> f .en a.e., I IJ I I L�(a,b) < oo. 
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4. It follows from the claim that each point of approximate continuity of f is 
a Lebesgue point and hence 

f' ( t ) -> f( t )  

as f ___. 0 for each point of  approximate continuity of  f.  Consequently, for each 
partition {a < t 1 < · · · < t, + 1 < !J} ,  with each IJ a point of approximate 
continuity of f, 

Thus 

rn ut 
"' \ f(tJ+ I ) - f( IJ ) l = lim "' \f' (tJ+ I ) - f' (IJ ) l � t -O � j= l  j= l 

1/J < lim sup \ (/' )' \ dx 
(-o u 

< \ \ Df\ \ (a, b) . 

ess V,�J < \ \ Df \ \ (a, b) < oo. I 

5.10.2 Essential variation on a.e. line 

We next extend our analysis to BV functions on lR11 • 
NOTATION Suppose f : R11 -> Ilt Then for k = I ,  . . .  , n, set x' = (x 1 , • • . Xk- l .  
Xk+ t , . . . X11) E Rn- l

, and t E R, write 

Thus ess V,i' h means the essential variation of h as a function of t E (a, b) , 
for each fixed x'. 

LEMMA 1 
Assume f E L/oc(R11 ) , k E { I , . . .  , n } , - oo  < a < b < oo. Then the mapping 

x' ,_. ess v: !k 

is L,n- l _measurable. 

PROOF According to Theorem I ,  for L,n- l a.e. x' E Rn-l , 

ess v: fk = \ \ Dfk \ \ (a, b) 

= sup { lb fk(x' , t)cp'(t) dt \ cp E C� (a, b), Jcp\ < I } . 
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Let { 'P:i }j 1 be a countable, dense subset of C,� (a, b) n { I  'PI < 1 } . Then 

!, x' ,_. fk(:r', t)rpj (t) dt 
(L 

is .C"- 1 -measurable for j = I ,  . . . and so 

is .C" - 1 -measurable. I 

THEOREM 2 
Assume f E L/oc (JRn ) . Then f E BVioc(R" ) if and only if 

L ess V�fk dx' < oo 

for each k = I , . . .  , n, a <  b, and compact set I< C R"- 1 •  

PROOF 
I. First suppose f E BV.oc(Rn ) . Choose k, a, b, J{ as above. Se 

Let /' = fl• * f, as before. Then 

lim 1 If' - !I dx = 0, 
£-0 c 

lim supl J D/' 1 dx < oc. 
£-0 c 

Thus for 'Hn-l a.e. x' E I<, 

where 

Hence 

ess v; !k < lim inf ess v; fie .�o for 7-i"- 1 a.e. x' E I< 
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Thus Fatou's Lemma implies 

r ess v,:· h dx' < lim inf r ess v,:· Ji, dx' JK ,�o JK 
= lim inf - dx 1 Df' 

,�o c Dxk 
< lim supl i Df' l  dx < oo .  

,�o c 

2. Now suppose f E Lloc (R" ) and 

l ess v�· /k dx' < 00 
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for all k == I ,  . . .  , n, a < b, and compact K C R"- 1 • Fix <p E C,� (R" ), 
I 'PI < I ,  and choose a, b, and k such that 

spt (r.p) C {x I a <  Xk < b}. 

Then Theorem I implies 

for 

1 
U<p 1 

b , 
In- dx < ess va !k dx < oo, 

JRn UXk K 

K = {x' E Rn- l I ( . . .  Xk- l o  t, Xk+ t .  . • .  ) E spt (r.p) for some t E R}. 

As this estimate holds for k = I ,  . . .  , n, f E BVioc (Rn ) . I 

5.11 A criterion for finite perimeter 

We conclude this chapter by establishing a relatively simple criterion for a set 
E to have locally finite perimeter. 

NOTATION Write x E Rn as X = (x' , t) , for x' = (x 1 1 . . . , Xn-d E Rn- l , 
t = Xn E IR. The projection P : Rn ---> Rn- l is 

P(x) = x' 

DEFINITION Set N(P I A, x' ) = 1-f(A n p- 1 {x'} )  for Borel sets A c Rn 
and x' E Rn- l .  
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LEMMA I 
(i) The mapping x' ,_. N(P \ A, x') is £" - 1 -measurahle. 

(ii) JJR .. - '  N(P \ A, x') dx' < 7-l"-1 ( A). 

PROOF Assertions (i) and (ii) follow as in the proof of Lemma 2, Section 3.4. 1 :  
see also the remark in Section 3.4. 1 .  

DEFINITIONS Let E C R" he C'-measurahle. We defllle 

I = {x E R" \ lim £" (B(x, r) - E) == o} 
r-0 rrt 

to be the measure theoretic interior of E and 

0 = {x E R" I lim £" (B(x, r) n E) == o} 
r-0 rn 

to be the measure theoretic exterior of E. 

REMARK Note a*E = R" - ( I  U 0). Think of I as denoting the "inside" and 
0 as denoting the "outside" of E. I 

LEMMA 2 
(i) I, 0, and a*E are Borel measurable sets. 

(ii) C"( (I - E) U (E - I)) = 0. 

PROOF 
I. There exists a Borel set C c R" - E such that C" ( C n T) = C" ( T - E) 

for all £"-measurable sets T. Thus 

I =  {x \ lim £"(B(x, r) n C) = o} , 
r-0 rn 

and so is Borel measurable. The proof for 0 is similar. 
2. Assertion (ii) follows from Corollary 3 in Section 1 .7 . I .  I 

THEOREM I CRITERION FOR FINITE PERIMETER 
Let E c R" be £"-measurable. Then E has locally finite perimeter if. and only 
if, 

for each compact set K c R" . 
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!'ROOF 
I. Assume tirst (*) holds, fix a >  0, and set 

U = ( -a, a)" C R" . 
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To sirnplify notation slightly, let us write z = x' E R" - 1 , t = :r,. E JR. Note 
from Lernma I and hypothesis (*) 

{ N(P I U n a.E, z) dz < 'H"- 1 (U n a.E) < oo. (**) }fin - \  
Define for each z E R"- 1 

Assurne <p E C� (U), I'PI < I , and then cornpute 

where 

r div (rpen ) dx = J div (r.pert ) dx = J �'P dx J E I I UXn 
= 1n- l  [1 f' (t) ::,, (z, t) dt] dz 

< fv ess v::ar dz (* * *) 

V = (-a, a)n- t c Rn- t . 
2. For positive integers k and m, define these sets: 

{ a(n - 1) 3 } G(k) = x E Rn I C(B(x, r) n 0) < 1 r" for 0 < r < - , - 3n+ k 

{ a(n - 1) 3 } H(k) = x E Rn I C(B(x, r) n i) < 
3n+t rn for O < r < 

k 
, 

c+ (k, m) = G(k) n {x I X +  sen E 0 for 0 < s < 3/m}, 

c- (k, m) = G(k) n {x I X - sen E 0 for 0 < s < 3/m} , 

H+ (k, m) = H(k) n {x I X +  sen E I for 0 < s < 3/m}, 

H- (k, m) = H(k) n {x I X - sen E I for 0 < s < 3/m} . 

3. Claim #I: 

(k, m = l , 2, . . .  ) . 

Proof of Claim #I: For fixed k, m, write 
00 

c+ (k, m) = U Gi,  
j=-oo 
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where 

G1 = G+(k, m) n {x l
j - l < x11 < i } . 

m m 

Assume z E ll�-"- 1 , 0  < 1· < min { l /k, 1 /m} ,  and B( z, 1·) n P(GJ) =/= 0. Then 
there exists a point b E  GJ n p- 1 (B(z, T)) C G(k) such that 

b, + ; > sup{xn I x E Gj n p- I (IJ(x, r)) }. 

Thus, by the definition of c+ ( k, m ) , we have 

Take the .C11-measure of each side above to calculate 

�C- 1 (P(G1) n B(z, T)) < C'(O n B(b, 3T))  < a��:� I ) (3T)" , 

since b E  G(k). Then 

. .cn- 1 (P(G1) n B(z, T)) 2 
ltm sup < -

r�o a(n - l )'fn- l - 3 

for all z E Rn- l .  This implies 

(j = 0 ±  1 , ±2, . . .  ) .  

and consequently 

c- 1 (P(G+ (k, m) )) = 0. 

Similar arguments imply 

for all k, m. 
4. Now suppose 

00 
z E V- U P[G+ (k, m)uG- (k, m)uH+ (k. m)uH- (/;. m)] 

k,m=l  

and 

N(P I u n a*E, z) < 00. 

(* * **) 

Assume -a < t 1 < · · · < tm+ l < a  are points of approximate continuity of r.  
Notice that Jr(tj+ l ) - r(tJ ) I  =I= 0 i f  and only if  Jr (tj+l ) - r(tj) l  = I . In 
the latter case we may, for definiteness. suppose (z ,  t1 ) E I. ( : . ti+ ' )  <t I. Since 
ti+ 1 is a point of approximate continuity of r and since IR" - ( 0 U I) = a*E, 
it follows from the finiteness of N(P I U n a*E, z) that every neighborhood 
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of tJ+ I  must contain points s such that (z, s) E 0 and r is approximately 
continuous at s. Consequently, 

"' 
ess v�" r = sup L: Jr (tJ+d - r (tj ) l  

j = I 

the supremum taken over points -a < t ,  < · · · < tm+ l < a  such that (z, tj )  E 
0 U I and /" is approximately continuous at each t J .  

5. Claim #2: If (z ,  u) E I and (z, v) E 0, with 1L < v ,  there exists u < t < 11 
such that (z, t) E a* E. 

Proof of Claim #2: Suppose not; then (z, t) E 0 U I for all u < t < v. We 
observe that 

00 00 
I c U G(k), 0 c U H(k) , 

k=l k= l 

and that the G(k), H(k) are increasing and closed. Hence there exists ko such 
that (z, u) E G(ko) , (z, v) E H(ko). Now H(ko) n G(ko) = 0, and so 

Uo = sup{ t  I (z, t) E G(ko), t < v} < v. 

Set 

vo = inf{ t I (z, t) E H(ko), t > Uo }-

Then 

(z, Uo) E G(ko), (z, vo) E H(ko), 

u < Uo < Vo < v, 

and 

{ (z, t) I Uo < t < vo} n [H(ko) U G(ko)] = 0. 
Next, there exist 

Uo < 81 < tl < Vo 

with (z, s ! )  E I, (z, tl ) E 0; this is a consequence of (* * * *). Arguing as 
above, we find k1 > ko and numbers u , ,  v1 such that 

Uo < U! < V! < Vo, (z, v,) E H(k! ) , 



226 BV Functions and Sets of Finite Perimeter 

and (z , t) !f. ll(kt ) U G(k 1 ) if u1 < t < 111 . Continuing, there exist kJ -+ oo 
and sequences {uJ }} 1 , {vJ }} 1 such that 

Choose 

Then 

whence 

and 

'Uo < U I < . . . , Vo > 11 1 > 112 . . .  , 

1t i < vi for all j = I ,  2, . . .  , 
(z, ui ) E G(kJ ), (z, vJ ) E 1/ (kj ) ,  
(z, t) rf. G(kJ ) U H(kj ) if uj < t < Vj . 

,lim Uj < t < ,lim Vj . 
J -00 J -00 

00 

y = (z, t) !f. U [G(ki ) U H(ki) ] ,  
j= l 

I. cn (B(y, r) n E) a(n - I )  
1m sup > ---'--:--'-
r�o rn - 3n+l 

. ,Cn (B(y, r) - E) a(n - 1 ) 
hm sup > 1 r�o rn - 3n+ 

Thus y E 8.E. 
6. Now, by Claim #2, if z satisfies (* * * *), 

ess Va
afZ < Card {t 1 -a < t < a, (z , t) E o.E} 

= N(P 1 u n a.E, z) . 

Thus (* * *) implies 

fv ess va
ar dz < fv N(P I u n a.E, z) dz <. 1{''-l (U n a. E) < 00 

and analogous inequalities hold for the other coordinate directions. According 
to Theorem 2 in Section 5. 10, E has locally finite perimeter. 

7. The necessity of (*) was established in Theorem I in Section 5.8. I 



6 
Differentiability and Approximation by C 1 
Functions 

In this final chapter we examine more carefully the differentiability properties 
of BV, Sobolev, and Lipschitz functions. We will see that such functions are 
differentiable in various senses for C" a.e. point in R" , and as a consequence 
are equal to C 1 functions except on small sets. 

Section 6. 1 investigates differentiability .C" a.e. in certain U'-senses, and 
Section 6.2 extends these ideas to show functions in Wl.1' for p > n are in fact 
.C" a.e. di fferentiable in the classical sense. Section 6.3 recounts the elementary 
properties of convex functions. In Section 6.4 we prove Aleksandrov 's Theorem, 
asserting a convex function is twice di fferentiable C' a.e. Whitney's Extension 
Theorem, ensuring the existence of C1 extensions, is proved in Section 6.5 and 
is utilized in Section 6.6 to show approximation by C1 functions. 

6.1 LP differentiability; Approximate differentiability 

6. 1.1 L 1 ' differentiability a.e. for BV 

Assume f E BVioc (R" ) .  

NOTATION We recall from Section 5 . 1  the notation 

[D/] = [D/]ac + [Df], = C L Df + [Df], , 

where D f E L.'oc (R" ; R" ) is the density of the absolutely continuous part [D f]ac 
of [D f] , and [D /], is the singular part. 

227 
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We first demonstrate that near [/' a.e. point x, f can be approximated in an 
integral norm by a linear tangent mapping. 

THEOREM 1 
Assume f E BVioc(R11 ) .  Then for C' a.e. x E R" , 

I 

(i l f (y) - f(x) - Df(x) · (x - y)J 1 •  dy)
,.. 

= o(1·) 
lJ(x,r) 

PROOF 
I. en a.e. point x E Rn satisfies these conditions: 

(a) lim i l f (y) - f(x) l dy = 0. r�O B(x,r) 
(b) lim [ I DJ(y) - Df(x) l dy = 0. r�oJB(x,r) 
(c) lim J [Df], J (B(x, r))/rn = 0. r�o 

as r --+ 0. 

2. Fix such a point x; we may as well assume x = 0. Choose r > 0 and let 
f' = fl• * f. Select y E B(r) and write g(t) = f'(ty). Then 

g ( l ) = g(O) + [ g'(s) ds, 

that is, 

f'(y) = /'(0) + 1' Df' (sy) · y ds 

= /' (0) + Di (O) · y + 1' [Df' (sy) - Df(O)] · y ds. 

3. Choose any function rp E C� (B(r)) with I 'P I < I ,  multiply by <p, and 
average over B(r): 

{ rp(y) (f' (y) - /'(0) - Df(O) · y) dy JB(r) 

= [' (1 rp(y) [Df' (sy) - D/(0)] · y dy) ds Jo Ja(r) 

= f ' !_ ( f rp ( z ) [Df'(z) - D/(0)] · z dz) ds. (*) 
Jo s Ja(rs) s 
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Now 

g, (s) = J cp C) /Jf' (z )  · z dz 
l3(r.< ) -� 

Furthermore, 

= - r !' ( z ) div ( cp c) z) dz .J /J ( r·,< ) S 

-+ - J  f(z) div (cp (� ) z) dz 
n(•·•l s 

= J cp c) z · d[ D f] 
£3(•·.•) s 

= J cp ( z ) Df(z) · z dz + J cp ( z ) z · d[Df], . 
l3(r.• ) S £3 ( 1'.< )  S 

Jg, (s) J < ..:._ J J DJ' (z) l dz sn+ l s" £3( rs) 

= ;, J r Df!, (Z - y)f(y) dy dz 
l3(rs) }Rn 

= rn f { f!, (z - y) d[Df] dz 
S £3( rs) }Rn 

< :. r r f!, ( z - Y) dJ I DJ I I  dz 
S } l3(rs) }Rn 

= rn { { f!,(z - y) dz dJ IDJI I  
S }Rn J B(rs) 

< :n { { dz di iD/1 1  
S f J B(rs+<) J B(rs)nB(y,<) 

< cmin((rst' fn) (rs + ('t 
- snt'n 

< C for 0 < f, s < I .  

22J 
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4. Therefore, applying the Dominated Convergence Theorem to (*), we find 

j cp(y)(f(y) - f(O) - Df(O) · y)) dy Ja(r) 
< Cr1

1 [ I DJ(z) - Df(O) I dz d.� + Cr t I [DJ�,�(�
'
(rs) )  ds 

o Jn(•··•l .fo 1 s 

= o(r) as r -> 0. 

Take the supremum over all cp as above to find 

_[ l f (y) - f(O) - Df(O) · yJ dy = o(r) as r -> 0. (**) Ja (r) 
5. Finally, observe from Theorem I (ii) in Section 5.6.1 that 

n - 1 

( [ I J(y) - f(O) - Df(O) . Yl .::., dy)
-;;-

JB(r) 

< C J JD(f - /(0) - Df(O) · y) J J (B(r)) 
- r••- t  

+ C _[ J f(y) - /(0) - D f(O) · yJ dy JB(r) 
= o(r) as r -> 0, 

according to (**), (b), and (c). I 

6.1.2 u· differentiability a.e. for W1·P ( I  < p < n) 
We can improve the local approximation by tangent planes if f is a Sobolev 
function. 

THEOREM 2 
Assume f E W1::'(lRn ) for I < p < 

n. Then for .en a.e. x E Rn , 

[ l f (y) - f(x) - Df(x) · (y - x) IP· dy = o( r) as ( 
) 1/p' 

Ja(x,r) 
PROOF 

I . .en a.e. point x E Rn satisfies 

(a) limr�o fa(x,r) l f (x) - j(y) J P  dy = 0. 
(b) limr�o fa(x,r) J Df(x) - Df(y) J P  dy = 0. 

r -> 0. 

2. Fix such a point x; we may as well assume x = 0. Select .p E C� (B(r)) 
with J Jcp J J L• (B(r)) 

< I ,  where 1 /p + 1/q = I . Then, as in the previous proof, 
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we calculate 

1 cp(y)(f(y) - f(O) - Df(O) · y) dy 
J U(•• )  

= 1
1 � f cp ( z )  [Df(z) - D/(0)] · z d:: ds 

0 S l3(rs) S 
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< r1
1 (1 cp C)'1 dz) l

/
<
l (f J Df(z) - /Jf(O) I 1' d::)

1 ll' ds. 
0 Jl3(rs) S U(r,< ) 

Since 

i (
z
) q !, I 

cp - dz = J cp(yW dy < , 
l3(rs) S B(r) a( n )r" 

we obtain 

{ cp(y)(f(y) - /(0) - D f(O) · y) dy = o(rl -nfq ) as r -+ 0. 
Ja(r·) 

Taking the supremum over all functions cp as above gives 

and so 

� { J f(y) - / (0) - Df(O) · y JP dy = o(r l-n/q) , ( )
1 /p 

r } B ( r) 

_[ l f (y) - /(0) - D /(0) · yJP dy = o(r) as r -+ 0. ( )
1 /p 

JB(r) 

3. Thus Theorem 2(ii) in Section 4.5 . 1  implies 

(1 Jf (y) - /(0) - Df(O) · yJP• dy) JB(r) 

1 /p• 

( )
1 /p 

< Cr 1 IDJ(y) - D/(O) JP dy 
Ja(r) 

+ C ( { J f(y) - /(0) - Df(O) · yJP dy) 
l /p 

JB(r) 
= o(r) as r -+  0, 

according to (*) and (b). I 
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6.1.3 Approximate differentiability 

DEFINITION Let f : R" --> R'" . We say f is approximately differentiable at 
x E Rn if there exists a linear mapping 

such that 

/, : R" --> R"' 

. lf (y) - f(x) - L(y - x) l ap lim = 0. 
v�x IY - xl 

(See Section 1 .7.2 for the definition of the approximate limit.) 

NOTATION As proved below, such an L, i f  it exists, is unique. We write 

ap D f(x) 
for L and call ap D f(x) the approximate derivative of f at x. 

THEOREM 3 
An approximate derivative is unique and, in particular, ap D f = 0 
en a.e. on {! = 0}. 

PROOF Suppose 

and 

I. lf(y) - f(x) - L(y - x)l 0 ap 1m = y�x I Y - xl 

I. lf(y) - f(x) - L'(y - x) l 0 ap 1m = . y�x IY - xl 
Then for each f > 0, 

and 

. en (B(x, r) n {y l if(y) -Jl�2:1
L(y-x) l > f}) 

lim = 0  (*) r�o £n (B(x, r)) . 

. en ( B(x, r) n { y I if(y)-f���-.;,f<y-x) l > ('}) 
hm = 0. (**) HO en(B(x, r)) 

If L =I= L', set 

6t' = I l L - L' l l  = max I (L - L')(z) l > 0 J z J=l  
and consider then the sector 

S = {Y I  I (L - L')(y - x) l > I I L - L'�I Iy - xl }
· 
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Note 

for all r > 0. 

e"(B(x , r) n S) = a >  0 e"(R(x, r)) -

But i f  y E S, 

3f iY _ xl = 
I l L - L' I I I Y - xl ' 

2 
< I (L - L' )(y - x)l 
< l f(y) - f(x) - L(y - x)l + l f(y) - f(.r) - L'(y - x) l 

so that 
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S { 1 1 /(y) - f(x) - L(y-x) l } { 1 1 J (y) - f(x) - L' (y-x) l  } c Y I I 
> f  u y I I 

> f  . 
y- x y-x 

Thus (*) and (**) imply 

lim e"(B(x, r) n S) 
= O r�o en(B(x, r)) ' 

a contradiction to ( * * * ). I 

THEOREM 4 
Assume f E BVioc(Rn ) . Then f is approximately differentiable en a.e. 

REMARK 

(i) We show in addition that 

ap DJ = Df _cn a.e., 

the right-hand function defined in Section 5 . 1 .  
(ii) Since YV;�(Rn ) C BVioc (Rn ) ( I  < p < oo), we see that each Sobolev 

function is approximately differentiable en a.e. and its approximate deriva­
tive equals its weak derivative en a.e. I 

PROOF Choose a point x E Rn such that 

J l f (y) - f(x) - Df(x) · (y - x) l dy = o(r) as r ->  0; (*) 
JB(x,r) 

en a.e. X will do according to Theorem I .  
Suppose 

I. l f(y) - !(x) - Df(x) · (y - x)l () 0 ap 1msup 
I I > > . 

y�x Y - X 
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Then there exist 1"J -+ 0 and 1 > 0 such that 

C'' ( {y E B(x, rJ )  l l f(y) - f(x) - Df(x) · (y - x)l > 9Jy - xi }) 0 ( > I >  . 
0' n)rj' -

Hence there exists a > 0 such that 

.C"({yE B(x , r; ) - R(x, arj ) l l f(y) -f(:r) - Df(x) · (y-x) J > Oi y - x J } )  1 . > -a(n)rj' - 2 

for j = I ,  2, . . . . Since Jy - xl > ar1 for y E B(x, 1·J ) - B(x , m·J ) , 

.C"( {y E B(x, rJ ) I I f(y) - f(x) - Df(x) · (y - x) I > Bari }) > 1 (**) 
a(n)rj' - 2 

for j = I ,  . . . .  But by (*), the expression on the left-hand side of (**) is less 
than or equal to 

o(r ) 
9 J 

= o( I )  as r 1 -+ 0, ar · J 

a contradiction to ( ** ). 
Thus 

and so 

I . lf(y) - f(x) - Df(x) · (y - x) l 0 ap 1m sup 
I I = , 

y�x Y - X 

ap D f(x) = Df(x). I 

6.2 Differentiability a.e. for W 1 •P (p > n) 

Recall from Section 3. 1 the following definition: 

DEFINITION A function f : R" -+ Rm is differentiable at x E R" if there 
exists a linear mapping 

such that 

lim l f(y) - f(x) - L(x - y) J  
= O. 

y�x lx - Yl 
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NOTATION If such a linear mapping t exists at x, it is clearly unique, and we 
write 

/) f(;r) 

for L.  We call Df(.'"C) the derii'Giil·e of f at J'. 

THEOREM 1 
Let f E W1�11 (R" ) for some 11 < p < oo. Then f is differentiable .C" a.e., and 
its derivative equals its weak derivative .C" a.e. 

PROOF Since W1�00 (lR" ) C W1�'(R" ) , we may as well assume n 
< p < oo. 

For .C" a.e. x E R" , we have 

lim { JDJ(z) - Df(x) l 1' dz = 0. r�o Ja(x,r) 

Choose such a point x, and write 

g(y) = f(y) - f(x) - Df(x) · (y - x) (y E B(x, r)) .  

Employing Morrey's estimate from Section 4.5.3, we deduce 

( ) 
1 /p 

Jg(y) - g(x) l < Cr 1 J Dg JP dz 
Ja (x,r) 

for r = Jx - yJ. Since g(x) = 0 and Dg = Df - Df(x) , this reads 

(*) 

l f (y) - f(x) - Df(x) · (y - x)l < C 1 ID!(z) - Df(x)JP dz ( ) 
1 /P 

J y - x l Ja(x,r) 

according to ( * ). I 

= o( l ) as y -> x 

As an application we have a new proof of Rademacher's Theorem, Sec­
tion 3. 1 .2: 

THEOREM 2 
Let f : Rn -> R be a locally Lipschitz function. Then f is differentiable en a.e 

PROOF According to Theorem 5 in Section 4.2.3, f E wl�oo (Rn ). I 
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6.3 Convex functions 

DEFINITION A function f : IR" -----+ IR is called convex if 

f(>..x + ( I - >..)y) < Af(x) + ( I - >..)f(y) 
for all 0 < >.. < I , x, y E !R" . 

THEOREM I ---- · 
Let f : IR" -----+ IR be convex. 
(i) Then f is locally Lipschitz on IR" , and there exists a constant C, depending 

only on n ,  such that 

and 

su�. lf l  < C J lf l  dy B(x, 2 ) JB(x,r) 

ess sup IDJI < C i l f l  dy 
B(x , D r B(x,r) 

for each ball B(x, r) C IR" . 

(ii) If, in addition, f E C2(1Rn ) . then 

D2 f > 0 on IR" , 

that is, D2 f is a nonnegative definite symmetric matrix 011 IR" . 

PROOF 
I. Suppose first that f E C2 (!Rn ) and is convex. Fix x E IR" . Then for each 

y E !Rn and ).. E (0, 1 ), 

f(x + >..(y - x)) < f(x) + >..(f(y) - f(x) ) .  
Thus 

f(x + >..(y � x)) - f(x) < f(y) _ f(x). 
Let >.. -----+ 0 to obtain 

f(y) > f(x) + Df(x) · (y - x) 
for all x, y E !Rn . 

2. Given now B(x, r) C IR", we fix a point z E B(.r. r/2). Then (*) implies 

f(y) > f(z) + DJ(z) · (y - ;;) . 
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We integrate this inequality with respect to y over B(z, r/2) to find 

f(z) < j f(y) dy < C J l f l  dy. 
Jn(z ,  f )  J D(x,r) 

Next choose a smooth cutoff function ( E C,� (IR" ) satisfying 

Now (*) implies 

0 < ( < I , 

r ( = I on B(x, 2 ), ( = 0 on IR" - B(x, r) . 

f (z) > f(y) + Df(y ) · (z - y). 
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Multiply this inequality by ((y) and integrate with respect to y over B(x, r): 

f(z) j ((y) dy > j f (y)((y) dy + { ( (y)DJ(y) · (z - y) dy 
D (x,r) D(x,r) } D(x,r) 

= r f (y) [( (y) - div (((y)(z - y)) ] dy } B(x ,r) 

> -c r 11 1 dy. } B(x,r) 

This inequality implies 

f(z) > -C J lf l dy, J B(x ,r) 

which estimate together with (**) proves 

lf(z) l < C J I f  I dy. J B(x,r) 

3. For z as above, define 

(* * *) 

{ r r 1 } Sz = Y l 4 < 1y - xi < 2 , Df(z) · (y - z) >
2 1Df(z) I I Y - zl , 

and observe 
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where C depends only on n. Use (*) to write 
1' f(y) > f(z) + 8 1 Df(z) l  

for all y E Sz. Integrating over Sz gives 

IDJ(z) l < � i ,. l f (y) - f(z) l  dy . 
D(r. :; )  

This inequality and (* * *) complete the proof of assertion (i) for C2 convex 
functions f. 

4. If f is merely convex, define f' = 1/f * f, where � > 0 and TJ• is the 
standard mollifier. 

Claim: f' is convex. 

Proof of Claim: Fix x, y E IR", 0 < A < I . Then for each z E IR", 

f(z - (Ax + ( I - A)y)) = f(A(z - x) + ( I - A)(z - y)) 
< Af(z - x) + ( I - A)f(z - y). 

Multiply this estimate by TJ,(z) > 0 and integrate over IR": 

f' (Ax + ( 1 - A)y) = r f(z - (AX + ( I - A)y))1). (z) dz }'U{n 
< A r f(z - X)TJ. (Z) dz }'U{n 

+( I - A) { f(z - y)1), (z) dz }JRn 
= AJ'(x) + ( I - A)J' (y). 

5. According to the estimate proved above for smooth convex functions, we 
have 

sup ( lf' l  + riDf' l) < C J I J' I dy B(x, ¥ )  JB(x,r) 
for each ball B(x, r) C !Rn . Letting � -----+ 0, we obtain in the limit the same 
estimates for f. This proves assertion (i). 

6. To prove assertion (ii), recall from Taylor's Theorem 

f(y) = f(x) + D f(x ) ·  (y-x)+(y-x)T·1 1 
( 1 - s)D2 f(x+s(y-x)) ds· (y-x) . 

This equality and ( *) yield 

(y ·- xf · 1 1 
( I - s)D2f(x + s(y - x)) ds · (y - x ) > 0 
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for all x, y E IR". Thus, given any vector �, set y == J: + t � in ( * * * *) for t > 0 
to compute: 

e · 11 ( I - s)D2f(x + stO ds · � > o. 

Send t -+ 0 to prove 

THEOREM 2 
Let f : IR" -+ IR be convex. Then there exist signed Radon measures ILiJ = f.J)' 
such that 

( i, j = I ,  . . .  , n) 

for all <p E C1(IRn ). Furthermore, the measures Jlii are nonnegative (i 
l ,  . . .  , n). 

PROOF 
I. Fix any vector � E !Rn , 1� 1  == I , � =  (�1 , . . .  , �n ). Let '7• be the standard 

mollifier. Write f' = TJ• * f. Then f' is smooth and convex, whence 

D2f' > 0. 

Thus for all <p E C1(IRn ) with <p > 0, 

Let E -+ 0 to conclude 

Then Corollary 1 in Section 1 .8 implies the existence of a Radon measure f.1� 
such that 

for all <p E C1 (!Rn ) . 
2. Let 11;; � lle' for i =  l ,  . . .  , n. If i f= j, set � =  (e; + eJ) /J2. Note that 

in this case 
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' 

Thus 

where 

I 

THEOREM 3 
Let f : �n -----+ IR be convex. Then 

8J 8J n -
8 , . . . , {) E BVioc(IR ).  

XI Xn 

PROOF Let V CC IRn , <p E C�(V, IR" ) ,  I'PI < I . Then for k =  l ,  . . . , n , 

n 
< Lllik(V) < oo. I 

i= l  
NOTATION In analogy with the notation introduced in Section 5 . 1 , let us write 
for a convex function f: 

. . 

where I: :  !Rn -----+ Mnx n is I ID2J I I -measurable, with lEI = I I ID2f l l  a.e. We 
also write 

(i, j = l ,  . . . .  n) . 



6.4 Second derivatives a. e. for convex functions 

By Lebesgue's Decomposition Theorem, we may further set 

where 

But then 

ij - ij + ij JL - JLac JL.• , 

ii e" f1ac < < ' I.J j_ e" JL .< • 

D2f = 

1111 --en L f r-ae i j 

(i, j = l , . . .  , n) , 

82! 
8x18x1 

82! 
8xn8xl 

. . . 

11 I l  • • • 11 1 n ,.......ac ,.......ac 

11nl . . .  11nn ,.......ac ,.......ac 

82! 
8x18Xn 

82! 
8xn8Xn 

' 
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Thus [D2f] = [D2J] .c 
+ [D2J) . = en L D2J + [D2JJ.. , so that D2f E 

L/oc(JRn ; Mnxn) is the density of the absolutely continuous part [D2 f] ac of [D2 f] 

6.4 Second derivatives a.e. for convex functions 

Next we show that a convex function is twice differentiable a.e. This asser­
tion is  in the same spirit as Rademacher's Theorem, but is perhaps even more 
remarkable in that we have only "one-sided control" on the second derivatives. 
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THEOREM I ALEKSANDROV'S THEOREM 
Let f : IR" -----+ IR be convex. Then f has a second del'h•ative C" a .l'. More 
precisely. for C" a.e. x, 

I T 2 f(y) - j(1:) - Df(x) · (y - x) - 2 (y - x) · D f(x) · (y - x) 

= o(IY - x l2 ) as y -----+ x. 

PROOF 
I. en a.e. point X satisfies these conditions: 

(a) Df(x) exists and lim _[ IDJ(y) - Df(x) l dy = 0. r-;O J B(x,r) 
(b) lim J I D2 f(y) - D2 f(x) l dy = 0. r-;0 JB(x,r) 
(c) lim I [D2 f] s l (B (x, r)) /rn = 0. r-;0 
2. Fix such a point x; we may as well assume x == 0. Choose r > 0 and let 

f' = TJ. * f. Fix y E B(r). By Taylor's Theorem, 

f'(y) = f' (O) + Df'(O) · y +  [(1 - s)yT · D2f'(sy) · y ds. 

Add and subtract ( l /2)yT · D2 f(O) · y: 

f'(y) = f' (O) + D f'(O) · y + �YT · D2 f(O) · y 
I 

+ 1 ( 1 - s)yT · [D2f'(sy) - D2f(O)J · y ds. 

3. Fix any function <p E C�(B(r)) with I'P I < 1 , multiply the equation above 
by <p, and average over B(r): 

j <p(y) (J' (y) - J' (O) - Df'(O) · y - �YT · D2 f(O) · y) dy JB(r) 2 

= t ( l - s) (J <p(y)yT · [D2f'(sy) - D2J(O)] · y dy) ds � �(r) 
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Furthermore, as in Section 6. 1 . 1 , we may calculate 

as E -----+ 0 

r D2TJ. (Z - y)f(y) dy dz }'U{n 

{ TJ.(z - y) d[ D2 f] dz }'U{n 

< Cmin((rs)n, En ) (rs + Et 
- SnEn 
< C  for O < E, s < l by (**) · 
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·--

4. Hence we may apply the Dominated Convergence Theorem to let E -----+ 0 
in (* * *): 

j cp(y) [f(y) - f(O) - D f(O) · y - � yr · D2 f(O) · y] dy JB(r) 

< Cr2 1
1 r ID2 f(z) - D2 f(O) I dz ds + Cr2 1

1 I [D2 J] .  l�(rs)) ds 
o JB(rs) o (sr) 

by (**) with x = 0. 
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Take the supremum over all 'fJ as above to obtain 

{ jh(y) j dy = o(r2 ) as r -----+ 0 Jn(r·) ) 

for 
I T 2 h(y) = f(y) - f(O) - Df(O) · y - 2 y · D f(O) · y. 

5. Claim #/: There exists a constant C such that 
-��p jDhj < C j jh j dy + Cr 

B(r/2) r Jn ( r ) 
(r > 0). 

Proof of Claim #1: Let A =  jD2f(O) j .  Then g = h + (A/2) jyj2  is convex: 
apply Theorem I from Section 6.3. 

6. Claim #2: supB(r/2) jh j = o(r2) as r -----+ 0. 

Proof of Claim #2; Fix 0 < E, T) < I ,  T) i /n < 1 /2. Then 

C'{z E B(r) j jh(z) j > tr2} < � { jhj dz Er } B(r) 

= o(rn) as r -----+ 0, by (* * **) 
< TJC'(B(r)) for 0 < r < r0 = r0(t, TJ) · 

Thus for each y E B(r/2) there exists z E B(r) such that 

and 

for if not, 

C'{z E B(r) l lh(z) l > Er2} > C' (B(y, u) )  = a(n)w" = TJC'(B(r)) .  

Consequently, 

jh(y) j < jh(z) j + jh(y) - h(z) l 
< tr2 + u sup jDhj 

. B(r) 

< tr2 + C1J1 1nr2 by Claim #1  and ( * * * *) 
= 2tr2, 

provided we fix T) such that CT)1 /n = t and then choose 0 < r < r0• 
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7. According to Claim #2, 

sup f(y) - f(O) - D f(O) · y - �YT · D2 f(O) · y 
B(r/2) 2 

This proves (*) for x = 0. I 

6.5 Whitney's Extension Theorem 
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as r --+ 0. 

We next identify conditions ensuring the existence of a C1 extension f of a 
given function f defined on a closed subset C of IR" . 

Let C C IR" be a closed set and assume f : C -+ IR, d : C --+ IR" are given 
functions. 

NOTATION 

(i) R( x) = J(yJ-J(xJ-d\x)·(y-xJ y, lx-y 
(ii) Let K C C be compact, and set 

(x, y E C, x f= y). 

pK(b) = sup{ IR(y, x) l l 0 < lx - vi < b, x, y E K}. 

THEOREM I WHITNEY'S EXTENSION THEOREM 
Assume J, d are continuous, and for each compact set K C C, 

pK(b) --+ 0 as b --+  0. 

Then there exists a function f : !Rn --+ IR such that 

(i) f is C1 • 
- -

(ii) f = f, Df = d on C. 

PROOF 
I. The proof will be a kind of "C 1-version" of the proof of the Extension 

Theorem presented in Section 1 .2. 
Let U = !Rn - C; U is open. Define 

I 
r(x) = 

20
min{ l , dist(x, C)} . 

By  Vitali's Covering Theorem, there exists a countable set {xi }} 1 C U such 
that 

00 
U = U B(xj , 5r(xj )) 

j=l 
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and the balls { B ( x j ,  r( xi ) ) }  j 1 are dis joint. For each x E U, define 

Sx = {xj I B(x, IOr(x)) n IJ(xj , I Or(J:j )) f= 0} .  
2. Claim #I: Card (Sx) < ( 1 29)" and 1 /3 < r(;r) /r(J:j )  < 3 if Xj E Sr. 
Proof of Claim #I: 1f x1 E S,, then 

I I lr(x) - r(xJ ) I < 20 1 x - xi l  < 20 ( 1 0(r(J·) + r(xj) ) )  
I 

= 2 (r(x) + r(x1) ) .  

Hence 

In addition, we have 

consequently, 

lx - xi l + r(xj ) < I O(r(x) + r(xj )) + r(xj) 
= IOr(x) + l l r(:z·j )  
< 43r(x ); 

B(xJ , r(xj )) C B(x, 43r(x)) .  
As the balls {B (xJ , r(xJ ) ) }) 1 are disjoint and r(xJ ) > r(x)j3, 

Card (Sx)a(n) (r�) ) n < a(n)(43r(x)t 

whence 

Card (Sx)  < ( 1 29t. 
3. Now choose f-l : IR -+ IR such that 

f-l E C00 , 0 < f-l < 1 ,  /-l(t) = I for t < I .  f-l(t) = 0 for t > 2. 
For each j = 1 ,  . . .  , define 

(x E iR" ). 

Then 
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Also 

and 

Define 

c I Duj (x)l < ( ) r x · J 

c1 . < r(x) If Xj E Sx 

u1 = 0 on B(x. IOr(J: )) if Xj </. Sr.. 

00 
u(x) = L u1 (x) 

j=l 
(x E IR" ). 

Since Uj = 0 on B(x, IOr(x)) if Xj </. Sx, 

u(y) = L u1 (y) if y E B(x, I Or(x)). 
Xj ESx 

By Claim # I ,  Card (Sx) < ( 1 29t; this fact and (**) imply 

u E C00 (U), u > I on U 

Cz IDu(x) l < r(x) (x E U). 

Now for each j = I , . . . , define 

Notice 

Thus 

_ u1 (x) VJ (x) = u(x) 

Dvj = 
Dui -

0" 

00 
2:: v1 (x) = 1 
j= l 00 
L: Dvj (x) = 0 
j=l 

c3 IDvj (x) l  < r(x) 

(x E U). 

u · Du J 
u2 

(x E U) 

The functions { Vj }j 1 are thus a smooth partition of unity in U. 
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4. Now for each j = I ,  . . .  , choo!>e any point s j E C such that 

-
Finally, define f : IR" ----> IR this way: 

f(x) if X E C 

f(x) = 00 

L vJ (x) [f(sj ) + d(sJ ) · (x - sJ ) ]  if x E U. 
j=l 

Observe 

J E c=(U) 

and 

DJ(x) = L { [f(sJ ) + d(sj ) · (x - Sj ) ]Dvj (x ) + Vj (x)d(sj)}  (x E U) 
Xj E Sx 

5. Claim #2: Df(a) = d(a) for all a E C. 
Proof of Claim #2 : Fix a E C and let K = C n B(a, I ) ; K is compact. 

Define 

<p(b) = sup{ I R(x, y) l l x, y E K, O  < l.r - Yl < b}  
+ sup{ ld(x) - d(y) l l x, y E K, l .r - Yl < b}. 

Since d :  C ----> !Rn is continuous and (*) holds, 

<p( b) ----> 0 as b ----> 0. 

If x E C and lx - al < I ,  then 

and 

IJ(x) - J(a) - d(a) · (x - a)l = l f(x) - f(a) - d(a) · (x - a) l  
= I R(x, a) l l x - a l  
< <p(lx - a l ) l .r - al 

ld(x) - d(a)l < <p(lx - al ) . 
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Now suppose x E U, l:r - al < 1 /6. We calculate 

l f(x) - f(a) - d(a) · (x - a)l = lf(x) - f(a) - d(a) · (x - a)l 
< L lvi (x) [f(sj ) - f(a) + d(sJ ) · (x - sj) - d(a) · (:r - a) ] I 

Xj E Sx 

< L Vj (x)lf(sj ) - f(a) + d(sj ) · (a - Sj ) l  
x1 E S, 

+ L Vj (x) l (d(sj ) - d(a)) · (x - a) l . 
x1 E Sx 

Now lx - al < 1 /6 implies r(x) < ( 1 /20) Ix - al - Thus for Xj E Sx. 

Ia - s1 l < Ia - Xj l + lx1 - sj l 
< 2la - xj l  
< 2( lx - al + lx - Xj l )  
< 2( lx - a l  + I O(r(x) + r(xJ ) )) 
< 2( lx - al + 40r(x)) 
< 6lx - al . 

Hence the calculation above and Claim #1  show 

- -
lf(x) - f(a) - d(a) · (x - a) l < C<p(6lx - al ) lx - al .  

In view of (* * *), the calculations above imply that for each a E C, 

l f(x) - f(a) - d(a) · (x - a) l = o(lx - al )  as x --+ a. 

Thus Df(a) exists and equals d(a). 
6. Claim #3 : J E C1 (!Rn ) .  

Proof of Claim #3: Fix a E C, x E !Rn, l x - al < l j6. If x E C, then 

I Df(x) - Dj(a)l = ld(x) - d(a) l < <p( lx - al) . 

If x E U, choose b E  C such that 

lx - bl = dist(x, C) . 
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Thus 

I Df(x) - Dj(a) l = I Df(x) - d(a) l  < IDf(x) - rl(b)l + ld(b) - rl(a)l . 
Since 

l b - al < l b  - x l  + lx - al < 2lx - al, 
we have 

ld(b) - d(a)l < <p(2lx - al ) .  
We thus must estimate: 

I Df(x) - d(b) l = L [f(s1 ) + d(sj) · (x - sj ) ]Dv1 (x) 

Now 

and therefore 

Xj ES, 

< L [-f(b) + f(sj ) + d(sj ) · (b - SJ )] Dv1 (x) 
XjES, 

+ L [(d(sj) - d(b)) · (x - b)]Dv1 (x) 
Xj ES, 

c < " <p(lb - s · l ) l b - s l r(x) � 1 1 
Xj ES, 

c + r(x) L <p(lb - si l ) lx - bl 
Xj ESx 

+ L <p( lb - Sj l ) .  
Xj ES, 

1 lx - bl < l x - al < 6 . 

1 1 r(x) = - lx - bl < - · 20 - 120 

1 1 r(x · ) < 3r(x) < - < - . J - - 40 20 
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Hence 
I r(xJ ) = 20 1.rJ - sJ I 

Accordingly, if x1 E S", 

l b - si l < l b - xl + l :r - J:J I + lxJ - si l  
< 201·(:1: ) + IO(r(.z:) + r(.r1 )) + 20r(x1 ) 
< 1 20r(x) = 6lx - bl < 6lx - a l .  

Consequently (* * * *) implies 

IDJ(x) - d(b)l < C<p(6lx - al) .  
This estimate and the calculations before show 

ID}(x) - Df(a)l < C<p(6lx - al) . I 

6.6 Approximation by C1 functions 
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We now make use of Whitney's Extension Theorem to show that if f is a 
Lipschitz, BV, or Sobolev function, then f _actually equals a C1 function J, 
except on a small set. In addition, D f = D f, except on a small set. 

6.6.1 Approximation of Lipschitz functions 

THEOREM 1 
Suppose f :  !Rn ----+ IR is Lipschitz continuous. Then for each E > 0, there exists 
a C1 function J : !Rn ----+ IR such that 

In addition, 

C{x l f(x) "I f(x) or D}(x) "I Df(x)} < E. 

sup ID  fl < C Lip (f) JRn 

for some constant C depending only on n. 

PROOF By Rademacher's Theorem, f is differentiable on a set A C !Rn , with 
cn(IRn - A) = 0. Using Lusin 's Theorem, we see there exists a closed set 
B c A such that D f I s  is continuous and cn(IRn - B) < Ej2. Set 

d(x) = Df(x) 
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and 

Define also 

Then 
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R( ) _ f(y) - f(x) - d(x) · (y - x) y, x = 

I I x - y (x f= y). 

TJ�.: (x) = sup{ IR(y, x) l l y E B, 0 < l x - Yl < 1 /k}. 

--- T)k (x) -+ 0 as k -+  oo, for all x E B. 
By Egoroff's Theorem, there exists a closed set C C B such that 

T)k -+ 0 uniformly on compact subsets of C, 

and 

C(B - C) < � . 
This implies hypothesis (*) of Whitney's Extension Theorem. 

The stated estimate on supJRn I D fl follows from the construction of f in the 
proof in Section 6.5, since supc ldl < Lip (f) and thus 

I RI , I�PI < c Lip (!) . I 

6.6.2 Approximation of BV functions 

THEOREM 2 

f:._et f E BV (IRn ) . Then for each � > 0, there exists a Lipschitz function 
f : !Rn -+ IR such that 

C{x I f(x) f= f(x) } < e. 

PROOF 
I. Define for .\ > 0 

R>.. = { x E !Rn I I IDJ I I��(x, r)) < .\ for all r > 0} . 

2. Claim #1 : cn (IRn - R>.. ) < "'<'�,w i iDJI I (IRn ). 
Proof of Claim #1 : According to Vitali's Covering Theorem, there exist 

disjoint balls { B(x; ,  r; ) }f" 1 such that 

00 
!Rn - RA C U B(x;, 5r; ) 

i=l 
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and 

Thus 

5"a n 
00 ( ) C" (IR" - R.>-. ) < 5"a(n) I>:' < >. I I D/ I I (IR" ) . i= l 

3. Claim #2: There exists a constant C, depending only on n ,  such that 

l f (x) - f (y) l  < C.\lx - Yl 
for C" a.e. x, y E R>-.. 
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Proof of Claim #2: Let x E R>-., r > 0. By Poincare's inequality, Theorem 
I (ii) in Section 5.6. 1 ,  

1 I f - (f)x,r l dy < CI IDf l�(�(x, r) )  
< C>.r. 

Ja(x,r) r 
Thus, in particular, 

Since 

IU)x,rfzk+' - U)x,r;z• I < 1 If - U)x,r;z• I dy JB(x,rj2k+ ' )  

f (x) == lim (f)x,r r-;0 
for en a.e. X E R)..' 

00 

l f (x) - (f)x, r l  < L IU)x,rf2'+' - U)x,r/2" 1 < C.\r. k= l 
Now for x, y E R>-., x f= y, set r = lx - Yl · Then 

l (f)x,r - (f)y,rl < 1 IU)x,r - f(z) l  + lf(z) - (f)y,r l dz JB(x,r)nB(y,r) 

< C ({ l f (z) - U)x,rl dz+J lf (z) - (f)y,r l dz) JB(x,r) J B(y,r) 
< C>.r. 
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We combine the inequalities above to estimate 

lf(x) - f(y) j  < C>..r = C>..!:r - yj 

for C" a.e. x, y E R>.. 
4. In view of Claim #2, there exists a Lipschitz mapping f : R>. -+ IR such 

that f = f C' a.e. on R>.. Now recall Theorem I in Section 3. 1 and extend f 
to a Lipschitz mapping f : IR" -+ R I 
COROLLARY I 
Let f E BV(IR") .  Then for each E > 0 thete exists a C1 function f :  IR" -+ IR 
such that 

C {x I f(x) "I f(x) or Df (x) "I Df(x)} < E. 

PROOF According to Theorems I and 2, there exists f E C1 (1Rn ) such that 

C({f "I !}) < E. 

Furthermore, 

Df(x) = Df(x) 

.en a.e. on {! = !} , according to Theorem 4 in Section 6. 1 .  I 
6.6.3 Approximation of Sobolev functions 

THEOREM 3 
Let f E W1·P(!Rn )  for some 1 < p < oo. Then for each E > 0 there exists a 
Lipschitz function f : !Rn -+ IR such that 

C {x I f(x) "I f(x) } < E 

and 

PROOF 
I. Write g = If ! + !Dfj ,  and define for >.. > 0 

R>. = {x E !Rn I r g dy < >.. for all r > o} . 
JB(x,r) 

\ 
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Proof of Claim #1: By Vitali's Covering Theorem, there exist disjoint balls 
{ IJ(x; , r; ) }?" 1 such that 

00 
IR" - R>. c U B(x; , 5r;) 

; == 1 

and 

J g dy > A  
JB(x;,r, ) 

(i = l , . . .  ) . 

Hence 

I 
1 

I 
1 A <  g dy+ g dy .Cn (B(x; , r; ) )  B(x;,r, )n{g> f l .C"(B(x; , 1'; )) B(x,r, )n{g<>./2} 

I 
1 A < g dy + -_cn (B(x; , 1'; ) ) B(x,,r,)n{g>A/2) 2 

and so 

a(n)r� < 2 r g dy ). J B(x,,r; )n{g>A/2} 

Using (*) therefore, we see 

00 
C(!Rn - R),) < sna(n) L 1'� i= l 

2 - 5" 1 < g dy 
- >. {g> >./2} 

(i = 1 ,  . . .  ) . 

I 

< 2 ' 5" ( { gP dy) -;; 
(C({g > A/2}) ) 1 - �  

A J {g > A/2} 

< £ r ID t iP + IJ IP dy ).P J{ IJI+ID II  >A/2} 

= o (;
P
) as A -+ oo. 

3. Claim #2: There exists a constant C, depending only on n ,  such that 

l f(x) l < >., lf (x) - f(y) l < CAlx - Yl 

for .C" a.e. x ,  y E R>.. 
Proof of Claim #2: This is almost exactly like the proof of Claim #2 in the 

proof of Theorem 2. 
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4. In view of Claim #2 we may extend f using Theorem l in Section 3. 1  to 
a Lipschitz mapping f : IR" ----+ lR, with 

Ill < A, Lip (]) < CA, J = f t::• a.e. on R>.. 
5. Claim #3: I I ! - fl l w' ·P(IR" ) 

= o( l ) as A ----+ oo. 

Proof of Claim #3: Since f = J on R>., we have 

f If - 11 '' dx = f If - 11'' dx }Rn }Rn - R >.  

< C  r IJ IP dx + CAI'.c" (IR" - RA) 
}JRn -R' 

= o( l ) as A ----> oo, 

according to Claim # l .  Simi larly, D f = D J £" a.e. on R\ and so r I DJ - D]IP dx < c r IDJ IP dx + CAPC(IR" - RA ) hn h" -R' 

= o( l ) as A --> oo. I 

COROLLARY 2 
Let f E W1·P(IR" )  for some l < p < oo. Then for each € > 0, there exists a 
C1 junction J : IR" ----> lR such that 

and 

Ln { x I f ( x) =I J ( x) or D f ( x) =I D J ( x)} < € 

PROOF The assertion follows from Theorems l and 3. I 
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and Hardt [H). 

Chapter 1:  Essentially this entire chapter closely follows [Fl. In Section 1 . 1 ,  
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the proof of the Riesz Representation Theorem from [S, Sections 4. 1 ,  4.2] (cf. [F, 
Section 2.5)). A. Damlamian showed us the proof of Corollary I in Section 1 .8. 
See [G, Appendix A] for Theorem 2 in Section 1 .9. 
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density theorems in Section 2.3. Falconer [FA] and Morgan [MO] provide nice 
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Chapter 3 :  The primary reference is [F, Chapters l and 3]. Theorem l in 
Section 3 . 1  is [S, Section 5 . 1 ) .  The proof of Rademacher's Theorem, which we 
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The proof of the Area Formula in Section 3.3, originating with [F, Sec­
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Notation 

A Vector and set notation 

IR" n-dimensional real Euclidean space 

e; (0, . . .  , l ,  . . .  ,0), with l in the ith slot 

lx l  
x · y 
XT . A . y 

B (x, r) 

B (r) 
U(x, r) 

C(x, r, h) 

a(s) 

a(n) 

Q(x, r) 

u, v, w 
V cc u  

K 

a typical point in !Rn 
(xr + xi + · · · + x�) 1  

XtYI + X2Y2 + · · ' + XnYn 
bilinear form :L�i=t a;1x;yi, where x, y E !Rn 
and A =  ((a;1)) is an n x n matrix 

{Y E !Rn I lx -yl < r} = closed ball with center 
x, radius r 
B (O, r) 
{y E !Rn I lx - Yl < r} = open ball with center 
x, radius r 
{y E !Rn I IY' - x' l < r, IYn - Xn l < h} = open 
cylinder with center x, radius r, height 2h 

• 

7r2 
r(� + l ) (O < s < oo) 

volume of the unit ball in !Rn 
{y E !Rn I lxi - Yil < r, i = l ,  . . .  , n} = open 
cube with center x, side length 2r 
open sets, usually in !Rn 
V is compactly contained in U; i.e., V is compact 
and V c U  
compact set, usually in !Rn 
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E 

Sa(E) 
8E 
8* E 
8.E 
1 18£ 1 1  

B Functional notation i f df.L or (f)E 

(/)x,r 

spt(J) 

r. r 
r 
f IE 
f or Ef 

Tf 
Dj 
[Dj] 

[Df]ac, [Df]s 

ap Dj 
Jf 
Lip( f) 
D2j 

Notation 

indicator function of the set E 

closure of E 

interior of [,' 

Steiner symmetrization of a set E; Section 2.3 

topological boundary of E 
reduced boundary of E; Section 5.7.1 

measure theoretic boundary of E; Section 5.8 

perimeter measure of E; Section 5 . 1  

. I { 
JL(E) J E 

f df.L = average of f on E with respect 

to the measure JL 
r f dx 

Js(x,r) 
support of f 
max (j, O), max (-f, O) 

precise representative of f; Section l .7.l 

f restricted to the set E 
an extension of f; cf. Sections 1 .2, 3. l . l ,  4.4, 
5.4, 6.5 
trace of f; Sections 4.3, 5.3 

derivative of f 
(vector-valued) measure for gradient of f E BV; 
Section 5 . 1  
absolutely continuous, singular parts of [D f] ; 
Section 5 . 1  
approximate derivative; Section 6 . 1 .3 

Jacobian of f ; Section 3.2.2 

Lipschitz constant of f; Sections 2.4. 1 , 3. l . l  

Hessian matrix of f 



C Function spaces 

[ [)2 /I 

G(f, A) 

C Function spaces 

Let U c IR" be an open set. 
C(U) 
C(U) 
C"' ( U) 

Cc(U), Cc(U), etc. 

LP(U) 

Loo(U) 

Lfoc( U) 

LP (U; JL) 

263 

(matrix-valued) measure for Hessian of convex 
f; Section 6.3 

absolutely continuous, singular parts of [ D2 f] ; 
Section 6.3 
graph of f over the set A; Section 2.4.2 

{! : U ----> lR I f continuous } 

{! E C( U) I f uniformly continuous} 

{! : U ----> lR I f is k-times continuously 
differentiable} 

{! E Ck (U) I ocr f is uniformly continuous on 
U for ]a] < k} 
functions in C(U), C(U), etc. with compact sup­
port 

functions f : U ----> !Rm ,  f = (! 1 ,  j2 , • • •  , Jm) , 
with fi E C( U), C(U), etc. for i = I ,  . . .  , m 

I 

{! : u ----> lR I (fu 1J I P dx r < 00, 

f Lebesgue measurable } ( I  < p < oo) 
{! : U ----> lR I ess sup I! I < oo, u 

f Lebesgue measurable } 
{! : U----> lR I f E LP(V) for each open V CC U} 

I 

{! : u ----> lR I (i IJ J P dJ1) p < oo, 

f JL-measurable } ( l < p < oo) 
{! : U ----> lR I f is JL-measurable, 
JL- ess sup IJ I < oo} u 

Sobolev space; Section 4. 1 
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KP 

BV(U) 

Notation 

{f : IR" __. IR 1 J > o, J E u· , D J E LP} ;  
Section 4.7 
space of functions of bounded variation; Sec­
tion 5 . 1  

D Measures and capacity 
.en n-dimensional Lebesgue measure 

'H.{; approximate s-dimensional Hausdorff measure; 
Section 2. 1 

'H." s-dimensional Hausdorff measures; Section 2. 1 

E Other notation 

p, L A  

p, L j 

v J.. p, 

ap lim f 
y- x 

ap lim sup f, ap lim inf f 

s 
0 
L* 

y-+x y-+x 

[L] 
A(m, n) 

Hausdorff dimension; Section 2 . 1  

p-capacity; Section 4.7. 1 

tL restricted to the set A; Section l . l . l  

(signed) measure with density f with respect to 
p,; § 1 .3 
derivative of v with respect to p,; Section 1 .6. 1 

v is absolutely continuous with respect to p,; 
§ 1 .6.2 
v and p, are mutually singular: Section 1 .6.2 

approximate limit: Section 1 .7.2 

approximate lim sup, approximate lim inf; Sec­
tion 1.7.2 
weak convergence; Section 1 .9 

symmetric linear mapping; Section 3.2. 1 

orthogonal linear mapping; Section 3.2. 1 

adjoint of L; Section 3.2. 1 

Jacobian of linear mapping L; Section 3.2.1 

{A : { 1 ,  . . .  , n} ----> { l .  . . .  , m} I A increasing}; 
Section 3.2. 1 



E Other notation 

I\ 

p* 

11 u+ 1r ' ' 

JL, A 

.! 
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projection associated with A E A(m, n); Sec­
tion 3.2. 1 
molli liers; Section 4.2. 1 

..!!J!_ = Sobolev conjugate of p; Section 4.5. 1 H -JI 

hyperplane, hal f spaces; Section 5.7.2 

approximate lim sup, lim inf for B V function; 
Section 5.9 
set of "measure theoretic jumps" for B V function; 
Section 5.9 
essential variation; Section 5 . I  0 





Index 

Aleksandrov's Theorem, 242 
approximate continuity, 47 
approximate limit, 46 
Area Formula, 96 

Besicovitch's Covering Theorem, 30 
Binet-Cauchy Formula, 89 
blow-up, 1 99 
Borel measure, 4 

regular, 5 
Borel set, 4 
bounded variation, 1 66 
BY function, 1 66 

approximation by Lipschitz functions, 
252 

approximation by smooth functions, 
172 

extension, 1 83 
trace, 177 
weak approximation of derivative, 175 

capacity, 147 
Caratheodory 's Criterion, 9 
chain rule, 1 30 
change of variables, 99, 1 1 7  
Coarea Formula, 1 1 2  

for B V functions, 185 
convex function, 236 

densities, 7 1  

derivative, 37 
Differentiation Theorem for Radon 

Measures, 40 
Dominated Convergence Theorem, 20 

Egoroff's Theorem, 16 
essential variation, 2 1 6  

Fatou's Lemma, 19 
finite perimeter, 167 
Fubini's Theorem, 22 

Gagliardo-Nirenberg-Sobolev inequality, 
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Gauss--Green Theorem, 209 

Hausdorff dimension, 65 
Hausdorff measure, 6 1  

integrable function, 1 8  
Isodiametric Inequality, 69 
Isoperimetric Inequality, 1 90 . 
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Lebesgue Decomposition Theorem, 42 
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Lebesgue measure, 26 
Lebesgue-Besicovitch Differentiation 

Theorem, 43 
Lipschitz function, 79 

approximation by C 1  functions, 25 1 
Lusin 's Theorem, 1 5  

measurable function, I I  
measurable set, 2 
measure, I · 
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measure theoretic boundary, 208 
measure theoretic interior, 45 
mollifier, 1 22 
Monotone Convergence Theorem, 20 
Morrey 's inequality, 1 43 
multiplicity function, 93 
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perimeter measure, 170 
Poincare's inequality, 141 

for B V functions, 1 89 
polar decomposition, 87 
precise representative, 46, 160 
product measure, 22 
product rule, 1 29 

quasicontinuity, 1 60 

Rademacher's Theorem, 8 1  
Radon measure, 5 
reduced boundary, 194 
Relative Isoperimetric Inequality, 1 90 
Riesz Representation Theorem, 49 
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a-finite set, 4 
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Sobolev function, 1 2 1 .  
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Sobolev inequality 
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Structure Theorem 

for BV functions. 1 67 
for sets of finite perimeter, 205 

summable function, 1 8  

trace 
of a BV function, 1 77 
of a Sobolev function, 131 

variation measure, 49, 1 70 
lower semicontinuity, 1 7 2  

Vitali's Covering Theorem, 27 

weak compactness in LP, 57 
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