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Preface

These notes gather together what we regard as the essentials of real analysis
on R".

There are of course many good texts describing, on the one hand, Lebesgue
measure for the real line and, on the other, general measures for abstract spaces.
But we believe there is still a need for a source book documenting the rich
structure of measure theory on R™, with particular emphasis on integration and
differentiation. And so we packed into these notes all sorts of interesting topics
that working mathematical analysts need to know, but are mostly not taught.
These include Hausdorff measures and capacities (for classifying “negligible”
sets for various fine properties of functions), Rademacher’s Theorem (asserting
the differentiability of Lipschitz functions almost everywhere), Aleksandrov’s
Theorem (asserting the twice differentiability of convex functions almost every-
where), the Area and Coarea Formulas (yielding change-of-variables rules for
Lipschitz maps between R® and R™), and the Lebesgue-Besicovitch Differen-
tiation Theorem (amounting to the Fundamental Theorem of Calculus for real
analysis).

This book is definitely not for beginners. We explicitly assume our readers
are at least fairly conversant with both Lebesgue measure and abstract mea-
sure theory. The expository style reflects this expectation. We do not of-
fer lengthy heuristics or motivation, but as compensation have tried to present
all the technicalities of the proofs: “God is in the details.”

Chapter 1 comprises a quick review of mostly standard real analysis, Chapter 2
introduces Hausdorff measures, and Chapter 3 discusses the Area and Coarea
Formulas. In Chapters 4 through 6 we analyze the fine properties of functions
possessing weak derivatives of various sorts. Sobolev functions, which is to say
functions having weak first partial derivatives in an L? space, are the subject of
Chapter 4; functions of bounded variation, that is, functions having measures
as weak first partial derivatives, the subject of Chapter S. Finally, Chapter 6
discusses the approximation of Lipschitz, Sobolev and BV functions by C'
functions, and several related subjects.

We have listed in the references the primary sources we have relied upon
for these notes. In addition many colleagues, in particular S. Antman, Jo-Ann



vili

Cohen, M. Crandall, A. Damlamian, H. Ishii, N. Owen, P. Souganidis, and
S. Spector, have suggested improvements and detected errors. We have also
made use of S. Katzenburger’s class notes.

Early drafts of the manuscript were typed by E. Hampton, M. Hourihan,
B. Kaufman, and J. Slack.

LCE was partially supported by NSF Grants DMS-83-01265, 86-01532, and
89-03328, and by the Institute for Physical Science and Technology at the Uni-
versity of Maryland. RFG was partially supported by NSF Grant DMS-87-04111
and by NSF Grant RII-86-1067]1 and the Commonwealth of Kentucky through
the Kentucky EPSCoR program.

Warnings

Our terminology is occasionally at variance with standard usage. The principal
changes are these:
What we call a measure is usually called an outer measure.

For us a function is integrable if it has an integral (which may equal $00).
We call a function f summable if |f| has a finite integral.

We do not identify two L¥, BV, or Sobolev functions which agree a.e.

The reader should consult as necessary the list of notation, page 261.
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General Measure Theory

This chapter is primarily a review of standard measure theory, with particular
attention paid to Radon measures on R".

Sections 1.1 through 1.4 are a rapid recounting of abstract measure theory. In
Section 1.5 we establish Vitali’s and Besicovitch’s Covering Theorems, the latter
being the key for the Lebesgue-Besicovitch Differentiation Theorem for Radon
measures in Sections 1.6 and 1.7. Section 1.8 provides a vector-valued version
of Riesz’s Representation Theorem. In Section 19 we study weak compactness
for sequences of measures and functions.

1.1 Measures and measurable functions
1.1.1 Measures; Approximation by open and compact sets

Although we intend later to work almost exclusively in R™, it is most convenient
to start abstractly.

Let X denote a set, and 2 the collection of subsets of X.

| DEFINITION A mapping u: 2% — [0, oq] is called a measure on X if
(i) wu(0)=0, and
(i) p(A) <> oo, u(Ax) whenever A C U | Ak.

Warning: Most texts call such a mapping p an outer measure, reserving the
name measure for u restricted to the collection of p-measurable subsets of X
(see below). We will see, however, that there are definite advantages to being
able t0 measure even nonmeasurable sets.

REMARK If 11 is a measure on X and A C B C X, then

p(A) <uB). |
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DEFINITION Let pu be a measure on X and A C X. Then p restricted to A,
written

u LA,

is the measure defined by

(u L A)B)=uANB) for all B C X.

DEFINITION A set A C X is u-measurable if for each set B C X,

w(B) = w(BNA)+ u(B - A).

REMARKS If y(A) =0, then A is u- “measurable. Clearly A is y-measurable
Af and only if X — A is p-measurable. Observe also that if A is any subset of
X, then any p-measurable set is also yu L A-measurable. T

P m RS Ty

THEOREM I PROPERTIES OF MEASURABLE SETS
Let {Ar}po, be a sequence of u-measurable sets.

(i) The sets U2 | Ay and N2 | Ay are p-measurable.
(i) If the sets {Ar}3., are disjoint, then

(iii) IfA, C...Ax C Akyr..., then

(iV) IfAl 2 ...Ak 2 Ak-f-] ...and ;L(Al) < 00, then

Jim, u(Ae) = (ﬂAk>-

k=1
PROOF
1. Since
uB) < w(BNA)+ wB - A)

for all A, B C R", it suffices to show the opposite inequality in order to prove
the set A is y-measurable.
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2. For each set B C R™

p(B) = p(BN A1)+ u(B - Ay)
u(BNA) + (B —A)NA)+p((B— A1) — Ay)
> u(BN (A1 U Ag)) + pu(B — (A1 U Az)),

|l

and thus A; U A; is p-measurable. By induction the union of finitely many
p-measurable sets is g~-measurable.
3. Since

X—(AiNA)=(X—-A)U(X - A),

the intersection of two, and thus of finitely many, u-measurable sets is
p-measurable.,
4. Assume now the sets {A;}22  are disjoint, and write

J
Bj_:_UAk (]-’—-’1,2,)
k=1

Then

#(Bj+1) = u(Bjs1 N Ajpr) + #(Bjt1 — Ajqa)
= p(As+1) +u(B;)  (G=1,..);

whence

It follows that

> o n(Ar) < p (U Ak) ;

from which inequality assertion (ii) follows.
5. To prove (iii), we note from (ii)

oC oo
Jm p(Ak) = p(Ar) + Y u(Apgy — Ax) = p ( Ak) :
k=1 k=1
6. Assertion (iv) follows from (iii), since

oo

u(Ay) — Jim n(Ay) = kl_i?; p(Ar — Ag) = 1 ( (Ay — Ak))

k=1

> M(Al) - M (ﬂ Ak) :
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7. Recall that if B is any subset of X, then each p-measurable set is also
# L B-measurable. Since B; = U} _, A is p-measurable by step 2, for each
B C X with y(B) < co we have

(o) ofe- e

k=1 A,:l

MLB(QB;C> uLB( ]X Bk>

I
= lim (L B)(Bg)+ lim (L B

k~=oco k—o0

= ‘u,(B).

Thus U, Ay is p-measurable, as is Mg, Az, since
oo

A=
k=1

k=1

This proves (1). |

DEFINITION A collection of subsets A C 2X is a o-algebra provided

(i) 0, X e A
(i) A€ Aimplies X - Aec A;
i) Ax € A (k=1,...) implies U Ax € A.

Thus the collection of all y-measurable subsets of X forms a o-algebra.

_H‘_—-_-\.""""_-h,_.

DEFINITION A subset A C X is o-finite with respect to p if we can write
A = U | Bk, where By is p-measurable and yu(By) < oo for k = 1,2,....

DEFINITION The Borel o-algebra of R™ is the smallest o-algebra of R"
containing the open subsets of R".

Next we introduce certain classes of measures that admit good approximations
of various types,

DEFINITIONS

(i) A measure p on X is regular if for each set A C X there exists a p-
measurable set B such that A C B and p(A) = p(B).

(ii) A measure p on R™ is called Borel if every Borel set is p-measurable.



I.1 Measures and measurable functions 5

(iii) A measure y on R™ is Borel regular if u is Borel and for each A C R"
there exists a Borel set B such that A C B and u(A) = p(B).

(iv) A measure pon R™ is a Radon measure if 1 is Borel regular and p(K) <
o0 for each compact set K C R™.

THEOREM 2
Let p be a regular measure on X. If Ay C ... Ax C Agyy...., then

lim p(A) = (U Ak) /

REMARK The important point is that the sets {Ax};2, need not be u-measur-
able here. |

PROOF  Since y is regular, there exist measurable sets {Cy }72.,, with 4y C Cy
and p(Ax) = p(Ci) for each k. Set By = N;>xC;. Then Ay C By, each By
is u~measurable, and p(Ax) = p(Bg). Thus

llm u(Ag) = 11m u(By) = (U Bk) > U (U A;L) :

But A C U352, 4j, and so also

o0

hm /.LAk)<p, U

el
——

We demonstrate next that if x is Borel regular, we can generate a Radon
measure by restricting p to a measurable set of finite measure.

THEOREM 3
Let pp be a Borel regular measwre on R™. Suppose A C R™ is p-measurable
and pu(A) < co. Then p L A is a Radon measure.

REMARK If A is a Borel set, then x L A is Borel regular, even if p(A) = oo.

V(K] :Ikgmm’()sﬁ;ﬁ}«w
PROOF Letv =p L A Clearly v(K) < oo for each compact K. Since every
p-measurable set is v-measurable, v is a Borel measure.
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Claim: v is Borel regular.

Proof of Claim: Since u is Borel regular, there exists a Borel set B such that
A C B and p(A) = p(B) < oo. Then, since A is u-measurable,

p(B — A)= p(B) —p(A) =0.

Choose C C R™. Then

(1L B)(C) = u(C N B)
= u(CNBNA)+u(CNB)— A)
< w(CNA)+ (B = A)

= (p L A)(C).

Thus o L B = L A, so we may as well assume A is a Borel set.

Now let C € R™. We must show that there exists a Borel set D such that
C C D and y(C) = v(D). Since u is a Borel regular measure, there exists a
Borel set E such that ANC C E and p(E) = p(ANC). Let D = EU (R™ - A).
Since A and E are Borel sets, so is D. Moreover, C C (ANC)U(R*—-A) C D.
Finally, since DN A= ENA,

v(D) = w(DNA) = p(ENA) < p(E) = p(AnC) =v(C). |

We consider next the possibility of measure theoretically approximating by
open, closed, or compact sets.

LEMMA 1
Let 1 be a Borel measure on R™ and let B be a Borel set.

(i) If p(B) < oo, there exists for each € > 0 a closed set C such that C C B
and n(B — C) < e.

(ii) If p is a Radon measure, then there exists for each € > 0 an open set U
such that B C U and u(U — B) < e.

PROOF

I.letv = p L B. Since p is Borel and p(B) < oo, v is a finite Borel
measure. Let

F = {A Cc R*|A is p-measurable and for each ¢ > 0
there exists a closed set C C A such that v(A — C) < €}.

Trivially, F contains all closed sets.-
2. Claim #1: If {A;}2, C F,then A =N2,A; € F.
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Proof of Claim #I: Fix ¢ > 0. Since A; € F, there exists a closed set
C; C Ay with v(A; —C;) < ¢/20 (1=1,2,...). Let C =nN,C;. Then C is
closed and

oo

u(A-c)_-:u(ﬂ A — ﬁC>
=1 =1

SV(OO(Ai—Ci)>

oo

< ZV(Az — Cz) <e€

1=]

Thus A € F.
3. Claim #2: If {A;}2, C F, then A= U2, A; € F.

Proof of Claim #2: Fix € > 0 and choose C; as above. Since v(A) < co, we
have

i (4-0) (04 De)

=1 1=1

Consequently, there exists an integer m such that

v (A—- CJG&) < €.
i=1

But UZ,C; is closed, and so A € F.
4. Now, since every open subset of R™ can be written as a countable union
of closed sets, Claim #2 shows that F contains all open sets. Now consider

G={AeF|R* - Ae F}.
Trivially, if A € G, then R® — A € G. Note also that G contains all open sets.
5. Claim #3: 1f {A;}52, € G, then A= U2 | A; €G.

Proof of Claim #3: By Claim #2, A € F. Since also {R" — A4;}92, C F,
Claim #] implies R* — A = N2, (R® — A;) € F.

6. Thus G is a g-algebra containing the open sets and therefore also the Borel
sets. In particular, B € G and hence given € > 0 there is a closed set C C B
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such that
u(B-C)=v(B-C)<e.

This establishes (i),

7. Write U, = U(0, m), the open ball with center 0, radius m. Then U,,, — B
is a Borel set with u(U,, — B) < 00, and so we can apply (i) to find a closed
set Cy C U, — B such that y((Up — Cm) — B) = u((Um — B) — Cn) <
e/2™. Let U = U2_ (U, — Cy,); U is open. Now B C R™ — C,,, and thus
Un N B C Uy — Cy,. Consequently,

B = G(UmmB)c B (Um — Cp) = U.

m=1 m=]

Furthermore,

THEOREM 4 APPROXIMATION BY OPEN AND COMPACT SETS
Let 11 be a Radon measure on R™. Then

(i) for each set A C R,
pu(A) = inf{u(U) | A C U,U open},

and

(ii) for each p-measurable set A C R™,

u(A) = sup{u(K) | K C A, K compact}.

REMARK Assertion (i) does not require A to be p-measurable. |

PROOF

1. If u(A) = oo, (i) is obvious, and so let us suppose p(A) < co. Assume
first A is a Borel set. Fix € > 0. Then by Lemma 1, there exists an open set
U D A with u(U — A) < e. Since p(U) = p(A) + p(U — A) < 00, (1) holds.
Now, let A be an arbitrary set. Since u is Borel regular, there exists a Borel set
B D A with u(A) = p(B). Then

#(A) = p(B) = mf{u(U) | B C U, U open}
> inf{u(U)| ACU,U open}.

The reverse inequality is clear: assertion (i) is proved.
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2. Now let A be p-measurable, with #(A) < oo. Setv = u L A; vis aRadon
measure according to Theorem 3. Fix ¢ > 0. Applying (i) to v and R™ — A,
we obtain an open set U with R* — A CU and v(U) <e. Let C=R"* - U.
Then C is closed and C C A. Moreover, AL ~

w4 - C) = v(R" - C) = v(U) < .
Thus
0 < pu(A) - u(C) < ¢
and so
u(A) = sup{u(C) | C C A, C closed). (%)

Now suppose that u(A) = oco. Define Dy = {x | k=1 < |z| < k}. Then
A=UX (DN A);soco=pu(A)=>57", (AN D). Since x is a Radon
measure, u(Dk N A) < co. Then by the above, there exists a closed set Cj, C
Di N A with p(Cr) > p(Dy, N A) — 1/25. Now U, Cy C A and

AR
k=1

k=1
o0 o @] 1
=3 MO 2 Y WDk 4) - g = oo
k=1 k=1

But UZ_ Cy is closed for each n, whence in this case also we have assertion (x).

Finally, set B,, = B(0,m), the closed ball with center 0, radius m. Let C be
closed, Cn = C N Bpy,. Each set C,y, is compact and x(C) = limm_,00 #(Crm).
Hence for each p-measurable set A,

sup{u(K) | & € A, K compact} = sup{x(C) | C C A, C closed}. |

We introduce next a simple and very useful way to verify that a measure is
Borel.

THEOREM 5 CARATHEODORY'’S CRITERION
Let i be a measure on R™. If u(AU B) = p(A) + u(B) for all sets A, B C R™
with dist(A, B) > 0, then u is a Borel measure.

PROOF
1. Suppose C C R™ is closed. We must show

t(A) > w(ANC) + uA—-C), (%)

the opposite inequality following from subadditivity.
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If £(A) = oo, then (%) is obvious. Assume instead p(A) < oo. Define

an{xER”|dist(:c,C)_<_-:;} (n=1,2,...).

Then dist(A — Cn, ANC) > 1/n > 0. By hypothesis, therefore,
A= Co)+ w(ANC) = p((A-Cr)U(ANC)) < u(4).  (**)

2. Claim: lim,,_, o u(A — Cy) = p(A — C).
Proof of Claim: Set

1 - 1
Then A —C = (A - C,,) WU, Ry, so that

oo

(A —Cn) < u(A—C) < w(A=Cp)+ Y u(Ry).

k=n
If we can show Y o, u(Ry) < oo, we will then have

lim p(A —Crn) < u(A-C)

n— 00

n—+00

< lim p(A—Cp)+ lim D u(Re)
k=n

= lhm M(A__C‘n)a

n—00

thereby establishing the claim.
3. Now dist(R;, R;) > 0 if > ¢ + 2. Hence by induction we find

and likewise

Combining these results and letting m — oo, we discover

oo

D #(RE) < 2u(A) < 0.
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4. We have
(A — Cy+u(AN C) = nl'Lmoo u(A—Cp)+u(ANC)
< u(A4),

according to (*x), and thus C is u-measurable. |

1.1.2 Measurable functions

We now extend the notion of measurability from sets to functions.
Let X be a set and Y a topological space. Assume g is a measure on JX.

DEFINITION A function f : X — Y is called p-measurable if for each open
UcY, f~Y(U) is p-measurable.

REMARK If f: X — Y is y-measurable, then f~!(B) is p-measurable for
each Borel set B C Y. Indeed, {A C Y | f~'(A) is p-measurable} is a
o-algebra containing the open sets and hence the Borel sets.

DEFINITION A function f : X — [—o00, 00| is o-finite with respect to i if f
is pu-measurable and {z | f(z) # 0} is o-finite with respect to p.

Measurable functions inherit the good properties of measurable sets.

THEOREM 6 PROPERTIES OF MEASURABLE FUNCTIONS
() If f,g: X — R are pu-measurable, then so are f + g, fg, | f|, min(f,g),

and max(f,g). The function f/q is also pu-measurable, provided g # 0
on X.

(i) If the functions f, : X — [—o00,00] are u-measurable (k = 1,2,...),
then infr>; fi, SUp;.>, fe, liminfg_, o fx, and limsup,_ . fr are also
p-measurable.

PROOF

1. In view of the remark, we easily check that f : X — [—o00,00] is
p-measurable if and only if f~![—o0,a) is p-measurable for each a € R, if
and only if f~![—o00, a] is u-measurable for each a € R.

2. Suppose f,g: X — R are y-measurable. Then

(f+9)7'(~o09)= | (f7'(-00,m) Ng7"(—00,9)),

rt+s<a

and so f + g is u-measurable. Since

(f*)"(=o00,a) = 7! (~00,at) — f~ (=00, —al],
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for a > 0, f% is u-measurable. Consequently,

fg=lf+9 ==

is p#-measurable as well. Next observe that, if g(z) #0 for z € X,

1\ ! g~1(3,0) ifa< 0
(_) (~00,a) = { g!(-0,0) if a =0
g g~ (—00,0)Ug™!(%,00) ifa>0;

thus 1/g and so also f/g are y-measurable.
3. Finally,

are py-measurable, and consequently so are

fl=f"+f",
maX(f,g):(f—g) +g)
min(f,g) = ~(f - 9)” +2g.

4. Suppose next the functions fr : X — [—o00,00] (k = 1,2,...) are u-
measurable. Then

-1 %
(i?;f; fk) [_OO’ a) = kL:J] fk_l["'oo’a)

and

k>

_ ~
(sup fk) [—oo, a] = ﬂ fk_][——oo, a]7
k=1

SO that

inf fi, sup fix are u-measurable.
k>1 k>1

We complete the proof by noting

lim mff;c = sup inf f
k— m2>1 k2m ,

limsup fr = mf sup fr. |

’C-—»OO k>m

Next is a simple but useful way to decompose a nonnegative measurable
function.
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THEOREM 7

Assume f . X — [0,00| is pu-measurable. Then there exist p-measurable sets
{Ar}%2 in X such that

o0
k=1

??‘l

PROOF  Set
Ay ={z e X|f(z)>1},

and inductively define for kK = 2,3,...

k—
1
A=< ze X If EE:; A,

Clearly,
Z
k=

If f(z) = oo, then € A for all k. On the other hand, if 0 < f(z) < oo, then
for infinitely many n, * € A,,. Hence for infinitely many n

?s"‘ |

n—1

1
ZkXAkS; I

1.2 Lusin’s and Egoroff’s Theorems

THEOREM I

Suppose K C R" is compact and f : K — R™ is continuous. Then there exists
a continuous mapping f : R* — R™ such that,

f=f on K.

REMARK Extension theorems preserving more of the structure of f will be
presented in Sections 3.1.1, 4.4, 5.4, and 6.5. 1

PROOF

1. The assertion for m > 1 follows easily from the case m = 1, and so we
may assume f : K — R,
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2letU=R" - K. ForzeU and s € K, set

B |z — s|
us(z) = max{2— diSt(x,K)’O ,

so that

z — ug(x) is continuous on U,
0< rU's(x) <l
us(z) = 0 if |z — s| > 2dist(z, K).

Now let {s;}52; be a countable dense subset of K, and define

og(z) = Z 27y, (z) forz € U.

j=1

Observe 0 < g(z) < 1 for z € U. Now set

— 2'kusk(z)
) = T2
forz € U, k =1,2,.... The functions {vk}ﬁc_’__l form a partition of unity on
U. Define
F f(z) ifz e K
fay=4{ L% i
Yooy vk(x)f(sk) ifzel.

By the Weierstrass M-test, f is continuous on U.
3. We must show

lim f(z) = f(a)

z€U

for each a € K. Fix ¢ > 0. There exists § > 0 such that

[f(a) = f(sp)| <e

for all s such that |a — sg| < 6. Suppose z € U with |z — a| < §/4. If
la — sg| > 6, then

)
-+ lx—Sk’,

5§|a—skf_<_|a—$|+lx-—skf<4

so that
3 .
lz — sx| > Z(S > 2|z —a| >2 dist(z, K).

Thus, v(z) = 0 whenever |z — a| < §/4 and |a — sk| > 6. Since

Z ‘Uk(a:) =1
k=1
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if z € U, we calculate for |z — a| < §/4, z € U,

£(z) - f a)|<§jvk If(se) - f@)l <e |

We now show that a measurable function can be measure theoretically ap-
proximated by a continuous function.

THEOREM 2 LUSIN’S THEOREM

Let 1 be a Borel regular measure on R* and f : R" — R™ be j-measurable.
Assume A C R™ is u-measurable and p(A) < oo. Fix € > 0. Then there exists
a compact set K C A such that

(i) w(A—-K)<e, and
(ii) f |k is continuous.

PROOF  For each positive integer i, let {B;;}52; C R™ be disjoint Borel sets
such that R™ = U$2 B;; and diam B;; < l/z Define A;; = AN f~1(B;;)-
Then A;; is u-measurable and A = U22, A;;.

Write v = ¢ L A; v is a Radon measure. Theorem 4 in Section 1.1 implies
the existence of a compact set K;; C A;; with v(A;; — K;;) < €/2'77. Then

Uk
J=1

I
R
o
|
C
=

As limp o (A — UL, Kij) = p(A — UZ2, Kj), there exists a number N (1)
such that

N(3)

- &5 | <e/2.
J=I

Set D; = UN(%)KZJ, D; 1s compact. For each ¢ and 7, we fix b;; € B;; and
then define g; : D; — R™ by setting g;(z) = b;; for z € K;; (7 < N(2)).
Since Ky, ..., Kin(;) are compact, disjoint sets, and so are a positive distance
apart, g; is continuous. Furthermore, |f(z) — g;(z)| < 1/i for all z € D;. Set
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K =n2,D;: K is compact and

< Z,LL(A - D))< e
i=1

Since |f(z) — g;(x)| < 1/i for each z € D;, we see g; — f uniformly on K.
Thus f |k is continuous, as required.

COROLLARY 1

Let p. be a Borel regular measure on R™ and let f : R® — R™ pe y-measurable.
Assume A C R™ is p-measurable and p(A) < co. Fix € > 0. Then there exists
a continuous function f : R* — R™ such that p{z € A| f(z) # f(z)} < e

PROOF By Lusin’s Theorem there exists a compact set K C A such that
p(A — K) < € and f |k is continuous. Then by Theorem 1 there exists a
continuous function f : R™ — R™ such that f |x= f |x and

e Al f(z)# flz)} Sp(A-K)<e |

REMARK Compare this with Whitney’s Extension Theorem, Theorem 2 in Sec-
tion 5.6, which identifies conditions ensuring the existence of a C'! extension f.

NOTATION The expression “g a.e.” means “almost everywhere with respect
the measure g,” that is, except possibly on a set A with p(A4) = 0.

THEOREM 3 EGOROFF’S THEOREM

Let i+ be a measure on R™ and suppose f : R* — R™ (k = 1,2,...) are
p-measurable. Assume also A C R™ is p-measurable, with p(A) < oo, and
fe = g p a.e. on A. Then for each € > 0 there exists a p-measurable set
B C A such that

(i) u(A—-B)<e and
(i))  fi — g uniformly on B.

PROOF Define C;; = U2 {z | |fe(z) — g(z)| > 27'}, (3,5 = 1,2,...). Then
Ci.j+1 C Cjj for all 4, 7; and s0, since u(A) < oo,

J—roo

lim p(ANCGCij)=p Aﬂﬂ Ci; | =0.
=1

Hence there exists an integer N (4) such that (AN C; ny) < €/2°.
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Let B= A — U?_‘;lCi,N(i). Then

p(A-B) < ZM (ANCingy) <e

1=1

Then for each 7, x € B, and all n > N(7), |fn(z) — g(z)| < =i Thus
fn. — g uniformly on B. |

1.3 Integrals and limit theorems

Now we want to extend calculus to the measure theoretic setting. This section

presents integration theory; differentiation theory is harder and will be set forth
later in Section 1.6.

NOTATION

f+=max(f,0), f— ::max(—f,O), f=f+—f—'

Let  be a measure on a set X.

DEFINITION A function g : X — [—00, 00| is called a simple function if the
image of g is countable.

DEFINITION If g is a nonnegative, simple, p-measurable function, we define

fgdu— > yp(g™Hy))

0<y<oo

DEFINITION If g is a simple p-measurable function and either [ gt dp < oo
or [ g~ dyu < co, we call g a p-integrable simple function and define

fgdu5/9+du—fg"du-

Thus if g is a p-integrable simple function,

/gdu= > ypla ).

—~—oc<u<oo
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DEFINITIONS Let f : X — [—00,00|. We define the upper integral

/ f dpp = inf {/ gdy | g a p -integrable simple function with g > f p a.e.}

and the lower integral

/f dy = sup {fg dy | g a p -integrable simple function with g < f a.e.} :

DEFINITION A p-measurable function f : X — [—o0, 0] is called p-integr-
able if [* fdu = [, f du, in which case we write

/fduE/*fdﬂ:/*fdu-

Warning: Our use of the term “integrable” differs from most texts. For us, a
function i1s “integrable” provided it has an integral, even if this integral equals
+00 or —o0.

REMARK Note that a nonnegative p-measurable function 1s always g-integrable.

We assume the reader to be familiar with all the usual properties of integrals.

DEFINITIONS

() A function f : X — [—o0, 00| is y-summable if f is p-integrable and

/Ifld# < co.

(i)) We say a function f : R* — [—o00,00]| is locally y-summable if f |x is
p-summable for each compact set K C R™.

DEFINITION We say v is a signed measure on R"* if there exists a Radon

measure y on R* and a locally p-summable function f: R* — [—o0, 00| such
that

V(K = /K fdy (%)

for all compact sets K C R™,
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NOTATION
(1) We write
v=ulLf

provided () holds for all compact sets K. Note p L A =p L x A
(i) We denote by

LYX, u)

the set of all #-summable functions on X, and

Lioo (R, 1)

the set of all locally p-summable functions.

The following limit theorems are among the most important assertions in ail
of analysis.

THEOREM 1 FATOU’S LEMMA
Let fr, : X — [0,00] be p-measurable (k = . Then

/l'}cminff;c dp < l}cminf/f,c dy.

PROOF Takeg = Zjo 185X 4 to be a nonnegative simple function less than or

equal to im infy_, fk, and suppose the pu-measurable sets {AJ -, are disjoint
and a; >0 for j=1,.... Fix 0 <t < 1. Then
o0
AJ — U Bjyk’
k=1
where

Bjx=A;n{z| fi(z) > ta; for all { > k}.

Note
A; D Bjx+1 2 By (k=1,...)
Thus
/fk duzZ/ fr du
j=1"4
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and so

liminf/f;c dp ZtZGj[.L(A
j=1

k—oo
= t/gdu,.

This estimate holds for each 0 < ¢ < 1 and each simple function g less than or
equal to liminfy_, . fx. Consequently,

hm mf/f;c dyp > /hm inf fr dp = /l}cm inf f, dp. |
THEOREM 2 MONOTONE CONVERGENCE THEOREM

Let fr, : X — [0,00] be p-measurable (k = 1,...), with f; < ... < fr <
fk-H <....Then

/khm frdp = 11m /f;c dp.

PROOF Clearly,

/fjduS/klggcfk (=1,
whence

lim /f;c dp < /kl_im fr dp.

k-—oc

The opposite inequality follows from Fatou’s Lemma. |

THEOREM 3 DOMINATED CONVERGENCE THEOREM
Let g be p-summable and f, {fx}3%, be p-measurable. Suppose |f;| < g and
ft = f pae. as k — co. Then

jim [1fe = fldu=0
PROOF By Fatou’s Lemma,
/29 dp = /1;cr_§i£f(2g —|f = fel)dp < liqggf/2g ~ |f = fil du,
whence

lim sup /If—fkldug& 1
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THEOREM 4 VARIANT OF DOMINATED CONVERGENCE THEOREM
Let g, {gx}32, be p-summable and f, {fi}32, n-measurable. Suppose |fi| <
g (k=1,...), f = f pae., and

klim /g;c dyz/g dp.

fim /Ifk—fl dps = 0.

Then

k—oc

PROOF  Similar to proof of Theorem 3. |

It is easy to verify that limy_,, | |fx — f| dit = 0 does not necessarily imply

ft = [ 1 a.e. Butif we pass to an appropriate subsequence we do obtain a.e.
convergence.

THEOREM 5
Assume f, {fx}32 | are p-summable and

knmoo/m — fldp=0.
Then there exists a subsequence {fy,}52, such that

Jo, = f ©ae.

PROOF We select a subsequence {fx; }32, of the functions { fi }32, satisfying

Z/|fkj—f|du<oo. (%)

Fix € > 0. Then
oo 00
{lif_ﬂSUP|fkj — fl >€} C ﬂU{|fkj — fI > €}.
Hence

Jj—o0

j=i

g-i—;/\fkj—f|du,

e ({limS“PUkj — fl> 6}) < ZM ({1fx; — f| > €})
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foreach 7 =1,.... In view of () therefore,

s ({imanis =115 ¢}) o
Jj—oc

foreache >0. |

1.4 Product measures, Fubini’s Theorem, Lebesgue measure
Let X and Y be sets.

DEFINITION Let i1 be a measure on X and v a measure on'Y. We define the
measure p x v : 2X*Y [0, 00| by setting for each S C X X Y':

(1 x v)(S) = inf {Zu(Az)u(Bz)} ,

where the infimum is taken over all collections of p-measurable sets A; C X
and v-measurable sets B; CY (1= 1,...) such that

S C G(Ai X B,)

=1

The measure y X v is called the product measure of p and v.

THEOREM 1 FUBINI’'S THEOREM
Let y be a measure on X and v a measure on'Y .

(i) Then p X v is a regular measure on X XY, even if p and v are not
regular.

(ii) If A C X is p-measurable and B C Y is v-measurable, then A x B is
(1 x v)-measurable and (p X v)(A x B) = u(A)v(B).

(i) If SC X xY is o-finite with respect to ux v, then S, = {z | (z,y) € S}
is p-measurable for v ae. y, S, = {y | (z,y) € S} is v-measurable for
pae. x, u(Sy) is v-integrable, and v(S,) is p-integrable. Moreover,

(1 x 1)(S) = /Y 4(Sy) du(y) = /X V(S,) du(a).

(iv) If f is (p x v)-integrable and f is o-finite with respect to p X v (in
particular, if f is (1 X v)-summable), then the mapping

y+— / f(z,y) du(zx) is v-integrable,
X
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the mapping

X / f(z,y) dv(y) is p-integrable,
Y

and

/nyfd(“x ) "'/Y UX f(2:y) dﬂ«(%‘)J dv ()

-/ [ [ 1) an(w)] duto)

REMARK We will study in Section 3.4 the Coarea Formula, which is a kind
of “curvilinear” version of Fubini’s Theorem. |

PROOF
1. Let F denote the collection of all sets S C X x Y for which the mapping

T+ Xo(T,Y)

is /i-integrable for each y € Y and the mapping

yH/Xxs(x,y) dp(z)

is v-integrable. For § € F we write

w5)= [ | xolow) dute)] avtw)

Define

Po = {A x B| A p-measurable, B v-measurable },

P = {52155 | S5 € Pol,

Py =1{NjZ,8; | S5 € P}
Note Py C F and

o(A x B) = u(A)v(B) (A x B € Py).
If Ay x By, Ay X By € Py, then
(A; x B1)N (A x B2) = (A; N A2) x (B N Bz) € Py,

and

(Al X Bl) -— (Az X Bz) = ((Al — Az) X Bl) U ((A1 ﬂAz) X (81 - Bz))
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is a disjoint union of members of Py. It follows that each member of P, is a
countable disjoint union of members of Py and hence P, C F.
2. Claim #1: Foreach S C X x Y,

(p x v)(S) =inf{p(R) | S C R € P,}.

Proof of Claim #1: First we note that if S C R = U2 (A; x B;), then

oo

R)S S p(Ai x B) = 3 p(Ai)v(By),

Thus
inf{p(R) | S C Re€ P1} < (¢ x v)(5).

Moreover, there exists a disjoint sequence {Aj’ X Bj’}‘j,?_‘;l in Py such that

oC

R = A xB
7=

[

Thus

3. Fix A x B € P,. Then
(1 % v)(A x B) < p(A)(B) = p(A x B) < p(R)
for all R € P, such that A x B C R. Thus Claim #1 implies
(1 x v)(A x B) = u(A)(B).

Next we must prove A X B is (¢ X v)-measurable. So suppose T C X xY
and T C R € P;. Then R— (A x B) and RN (A x B) are disjoint and belong
to P;. Consequently,

(1 x v)(T = (A x B)) + (ux v)(TN (A x B))
< p(R— (A x B)) +p(RN (A x B))
and so, according to Claim #1,
(xv)(T-(AxB)+ (1 xv)(TN(Ax B)) < (pxv)(T).

Thus (A x B) is (¢ X v)-measurable. This proves (ii).
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4. Claim #2: Foreach S C X xY thereisaset R€ P, suchthat S C R
and

p(R) = (1 x v)(S).

Proof of Claim #2: If (p x v)(S) =o0,set R=X xY. If (u xv)(S) < oc.
then for each j = 1,2,... there is according to Claim #1 a set R; € P, such
that S C R; and

o(R;) < (1 x v)(S) + % |

Define

R = ijE'Pz.

j=1
Then R € F, and by the Dominated Convergence Theorem,

k— o0

(b xv)(8) < p(R) = lim p | (R | < (uxv)(S)

5. From (ii) we see that every member of P, is (¢ X v)-measurable and thus
(1) follows from Claim #2.

6.1f SC X xY and (¢ x v)(S) =0, then there is a set R € P, such that
S C Rand p(R) =0; thus S € F and p(S) = 0.

Now suppose that S C X x Y is (¢ X v)-measurable and (¢ x v)(S) < <.
Then there is a R € P, such that S C R and

(b x V)(R~ S) = 0;
hence
p(R - S)=0.
Thus

p{z| (z,y) € S} = p{z | (z,y) € R}
for v ae. y€Y, and
(1 x0)(8) =p(R) = [ ufz| (2,9) € 5} dv(y).

Assertion (iii) follows.
7. Assertion (iv) reduces to (iii) when f = x . If f > 0, is (# x v)-integrable
and 1s o-finite with respect to ¢ X v, we use Theorem 7, Section 1.1.2, to write

1
f ZkZ%XAk
=1
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and note (iv) results for such an f from the Monotone Convergence Theorem.
Finally, for general f we write

f:f+_f_1

and (iv) follows. |

DEFINITION One-dimensional Lebesgue measure L' on R! is defined by

EI(A) :-Einf{Zdiam C;|AC U C;, C; C ]R}

forall ACR
DEFINITION We inductively define n-dimensional Lebesgue measure L™ on
R™ by

Lr=Lrx =L x o x LY(n times)

Equivalently L™ = L™ x Lk for each k € {1,...,n— 1}.

We assume the reader’s familiarity with all the usual facts abour L™.

NOTATION We will write “dz,” “dy,” etc. rather than “dL"™” in integrals taken
with respect to L. We also write L' (R™) for L' (R™, L"), etc.

1.5 Covering theorems

We present in this section the fundamental covering theorems of Vitali and
of Besicovitch. Vitali’'s Covering Theorem is easier and is most useful for
investigating £™ on R™. Besicovitch’s Covering Theorem is much harder to
prove, but it is necessary for studying arbitrary Radon measures ¢ on R™. The
crucial geometric difference is that Vitali’s Covering Theorem provides a cover
of enlarged balls, whereas Besicovitch’s Covering Theorem yields a cover out
of the original balls, at the price of a certain (controlled) amount of overlap.
These covering theorems will be employed throughout the rest of these notes,

the first and most important application being to the differentiation theorems in
Section 1.6.

1.5.1 Vitali’s Covering Theorem

NOTATION If B is a closed ball in R™, we write B to denote the concentric
closed ball with radius 5 times the radius of B.
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DEFINITIONS

(i) A collection F of closed balls in R™ is a cover of a set A C R™ if

Ac | B

BeF

(ii) F is a fine cover of A if, in addition,
inf{diam B |z € B,B € ¥} =0

for each € A.

THEOREM I VITALI'S COVERING THEOREM
Let F be any collection of nondegenerate closed balls in R™ with

sup{diam B | B € ¥} < oc.

Then there exists a countable family G of disjoint balls in F such that

|l)Bc |JB

BeF Beg

PROOF )
1. Write D = sup{diam B | B € F}. Set 7; = {B € F | D/? <
diam B < D/2?7'}, (7 =1,2,...). We define G; C F; as follows:

(a) Let G, be any maximal disjoint collection of balls in 7.

(b) Assuming G;,Gy,...,Gr—1 have been selected, we choose Gy to be any
maximal disjoint subcollection of

k—1

BeF|BnB =0foral B €| G,
J=1

Finally, define G = U32,G;. Clearly G is a collection of disjoint balls and
GgCF.

2. Claim: For each B € F, there exists a ball B’ € Gsothat BN B #
and BC B'.

Proof of Claim: Fix B € F. There then exists an index j such that B € F;.
By the maximality of G;, there exists a ball B’ € U},_,Gx with BN B’ # 0.
But diam B’ > D/27 and diam B < D/2’~!, so that diam B < 2 diam B'.
Thus B C B, as claimed. |
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A technical consequence we will use later is this:

COROLILARY 1
Assume that F is a_fine cover of A by closed balls and

sup{diam B | B € F} < co.

Then there exists a countable family G of disjoint balls in F such that for each
finite subset {Bi,..., Bm} C F, we have

.A-LJ.Bk(: LJ .B

PROOF Choose G as in the proof of the Vitali Covering Theorem and select
{Bi,...,Bm} C F. If A C Ulx,Bi, we are done. Otherwise, let z €
A — U Bg. Since the balls in F are closed and F is a fine cover, there exists
Be Fwithz € Band BN B, =0 (k=1,...,m). But then, from the claim
in the proof above, there exists a ball B’ € G such that BNB' # 0 and B C B’ |

Next we show we can measure theoretically “fill up” an arbitrary open set
with countably many disjoint closed balls.

COROLLARY 2
Let U C R™ be open, § > 0. There exists a countable collection G of disjoint
closed balls in U such that diam B < § for all B € G and

Lr (U— g B) = 0.

PROOF

1.Fix 1 —1/5™ < 0 < 1. Assume first L*(U) < oo.

2. Claim: There exists a finite collection {Bi}ﬁ\i‘l of disjoint closed balls in
U such that diam (B;) < 6 (¢ =1,..., M,), and

M
Lr (U - Bi> < 6L™(U). (%)

=1

Proof of Claim: Let 7y = {B | B C U,diam B < §}. By Theorem 1, there
exists a countable disjoint family G; C F; such that
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Thus
LMU)< ) LB
BEG,
=5" Y Ln(B)
BegG
— §5nLn ( g B>
BeG,
Hence
T 1 T
L (U B)g-s—ﬁ (U),
BeG
so that
| 1
n _ < — n
C (U g B>_(1 & )C(U)
BeG,
Since G, is countable, there exist balls By,..., By, in G; satisfying ().
3. Now let
M,
=U - U Bz',
i=1
F, ={B| B C U,,diam B < 6},
and, as above, find finitely many disjoint balls Bas,+1,..., Bar, in F, such that
Mg M?
L (U_UBz'> = L" (Uz— U Bz’)
< 0L™(U2)
< 6°L™U).

4. Continue this process to obtain a countable collection of disjoint balls such
that

<U UB> <O LMU) (k=1,...).

Since 6% — 0, the corollary is proved if £™*(U) < oo. Should £™(U) = oo,
we apply the above reasoning to the sets

Upn={zeU|m<|z|<m+1} (m=0,1,.). |
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REMARK See Corollary 1 in the next section, which replaces £" in the pre-
ceding proof by an arbitrary Radon measure. |

1.5.2 Besicovitch’s Covering Theorem

If p is an arbitrary Radon measure on R™, there is no systematic way to control
u(B) in terms of x(B). In studying such a measure, Vitali’s Covering Theorem
is not useful; we need instead a covering theorem that does not require us to
enlarge balls.

THEOREM 2 BESICOVITCH’S COVERING THEOREM
There exists a constant N, depending only on n, with the following property:
If F is any collection of nondegenerate closed balls in R* with

sup{diam B | B € ¥} < co

and if A is the set of centers of balls in F, then there exist G,...,Gn, C F

such that each G; (i = 1,..., N,) is a countable collection of disjoint balls in
F and
Nn
Ac|J U B
i=1 BEG;
PROOF

1. First suppose A is bounded. Write D = sup{diam B | B € F}. Choose
any ball B; = B(a;,r;) € F such that r; > (3/4)D/2. Inductively choose
Bj, 7 > 2, as follows. Let A; = A — Uz;llBi. If A; = 0, stop and set
J=j—1 If A; # 0, choose B; = B(a;,r;) € F such that a; € A; and
r; > 3/4 sup{r | B(a,r) € F,a € A;}. If A; # 0 for all 7, set J = oo.

2. Claim #1: 1f j > i, then r; < (4/3)rs.

Proof of Claim #1: Suppose j > 4. Then a; € A; and so

3 3
T > Zsup{r | B(A,7) € F,a € Ai} > i
3. Claim #2: The balls {B(a;,r;/3)}]_, are disjoint.
Proof of Claim #2: Let j > ¢. Then a; ¢ B;; hence

i 2T _ Ty 2\ /(3 ri T
C— . =ttt - d : — 4 L
o — aj| > 3 + 3 =3 (3> (4)7‘3> + 3
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4. Claim #3: If J = oo, then lim;_,oo 7; = 0.

Proof of Claim #3: By Claim #2 the balls {B(a;,r;/3)}/., are disjoint.
Since a; € A and A is bounded, r; — 0.
5. Claim #4: A C U;,-’__:lBj.

Proof of Claim #4: If J < oo, this is trivial. Suppose J = co. If a € A,
there exists an 7 > 0 such that B(e,r) € F. Then by Claim #3, there exists an
r; with r; < (3/4)r, a contradiction to the choice of r; if @ ¢ UJZ, B;.

6. Fix k> landlet I = {j|1<j <k, BjNBx # 0}. We need to estimate
the cardinality of I. Set K = I'N{j|r; < 3rk}-

7. Claim #5: Card (K) < 20™.

Proof of Claim #5: Let j € K. Then B; N By # 0 and r; < 3rx. Choose
any z € B(a;,r;/3). Then

T.
|z — ai §|x—aj|+|aj—ak|3*?%+rj+rk

a4
= ~3—7‘j+'rk < 4ry + T = Srg,

so that B(aj, rj/3) C B(ax,Srx)- Recall from Claim #2 that the balls B(a;, r;/3)
are disjoint. Thus

a(n)5"r™ = L (B(ak, Srk))
> > LY(Ble;, L))

JEK

=3 e (%)

jEK

Te\"™ )
> — i #1
> E a(n)(4) by Claim
jeK

'I‘kn

= Card (K)a(n)F :

Consequently,

i

8. We must now estimate Card (I — K).

Leti,je I — K, withi# j. Then1 <4, j <k, BiNBx # 0, BjN By # 0,
Ti > 31k, T; > 37k, For simplicity of notation, we take (without loss of gen-
erality) ax = 0. Let 0 < 6 < 7 be the angle between the vectors a; and a;.



32 General Measure Theory

FIGURE 1.1
Illustration of Claim #6.

We intend to find a lower bound on 6, and to this end we first assemble some
facts:

Since 1,5 < k, 0 = ax ¢ B; UB;. Thus r; < |a;| and 7; < |a;|. Since
BiN By # 0 and BN Bx # 0, |la;| < 7 + 7 and |a;| < 7j + 7. Finally,
without loss of generality we can take |a,| < |a;|. In summary,

3re < 715 < |a;| < 7 + Tk
3ry <75 < |aj| ST+ Tk
|a;| < |ajl.

9. Claim #6a: If cos > 5/6, then a; € B;.

Proof of Claim #6a: Suppose |a; — a;| > |a;|; then the Law of Cosines gives

la:)? + la;|* —|ai — g/°
2|0uz||&j|

cos 6§ =
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Suppose now instead |a; — a;| < |a;| and a; ¢ B;. Then r; < |a; — a;| and

2 2 2
cos = lail” + |aj|” ~ la; — ay)
2|ailla;|
_ Jail | (lajl = lai = aj])(lej] + la: — a])
2| 2|a;||a;]
L (lajl = las — a])(2lay])
~2 2|asl|a;|
<l Tj+Tk—TJ=l+L<§
2 Ti 2 T 6

for

Proof of Claim #6b: Since a; € B;, we must have i < 7; hence ¢; € B; and
so |a; — aj| > ri Thus

ja: — ag] + o — la|

0<
= |aj|
la; — aj| + lai| —|aj| o —ay| — las| + |a;
- 251 lo: — a5
|az - aylz - (lajl - |az|)
|aj|a; = a;]
_ lail® +1a;” = 2lasllajl cos 6 — |asl® — |aj|* + 2aille;]
laj|la; — a,|
~ 2|a;i|(1 = cos8)
|ai — a;]
< 2(rs +7)(1 — cos 6)
< .
2(1 + Hr;(1 —cos b
< AHAnlZeosl) _ ).
i

11. Claim #6c: If a; € Bj, then cosf < 61/64.
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Proof of Claim #6¢: Since a; € Bj and a; € B;, we have 7; < |a; —a;j| < 7;.
Since ¢ < j, 7; < (4/3)7;. Therefore,

s = aj] +las| = laj| 2 7 7 = — 7

> %TJ Tj — Tk
1 1
~ B

I
O\
/_\
£ W
N—
N

-i

.

_|_
D |

‘_:i
R

AV4
OO | rm
‘_:i

-+

-i

&
—

Then, by Claim #6b,

1
‘§|%‘| < la; — aj| + |ai| — la;| < |ajle(8).

Hence cos 6 < 61/64.
12. We combine Claims #6a—c to obtain

Claim #6: For all 1,5 € I — K with i # j, let 8 denote the angle between
a; — a; and aj — ay. Then 6 > arccos61/64 = 6y > 0.

13. Claim #7: There exists a constant L, depending only on n such that
Card (I — K) < L,.

Proof of Claim #7: First, fix 19 > 0 such that if z € 9B(0,1) and y, 2z €
B(z, 1), then the angle between y and z is less than the constant y from Claim
#6. Choose L, so that dB(0, 1) can be covered by L,, balls with radius 1y and
centers on 9B(0, 1), but cannot be covered by L, — 1 such balls.

Then 9By, can be covered by L, balls of radius rgry, with centers on 0By. By
Claim #6, if 1, 5 € I — K with ¢ # j, then the angle between a; —a and a; — ag
exceeds 6. Thus by the construction of T, the rays a; — ax and a; — a, cannot
both go through the same ball on By. Consequently, Card (I — K) < L,,.

14. Finally, set M, = 20™ + L, + 1. Then by Claims #5 and #7,

Card () = Card (K)+ Card (I — K)
< 20" + Ln < M.

15. We next define Gi,...,Gar,.
First define o : {1,2,...} — {1,..., My} as follows:

(@) Leto(i)=1forl <i< M.
(b) For k > M, inductively define o(k + 1) as follows. According to the
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calculations above,
Card {j | 1 < 5 < k,B; N By # 0} < M,

so there exists [ € {1,...,M,} such that Bxy, N B; = 0 for all 7 such
thato(j) =1 (1 < j < k). Seto(k+1)=1L
Now, let G; = {B; | 0(3) = j}, 1 < j < M,. By the construction of o (),

each G; consists of disjoint balls from F. Moreover, each B; is in some §;, so
that

J M.,
AC U B; = U U B.
i=1 i=1 BEG;
16. Next, we extend the result to general (unbounded) A.
Forl > 1,let Ay = An{z | 3D(I—1) < |z| < 3Di} and set F' = {B(a, ) €
F | a€ A;}. Then by step 15, there exist countable collections G!, ..., Qﬁwn of
disjoint closed balls in F* such that

Let

G, =|JGi ! for 1 <j < My,
=1

oC
1 .
Gism, = | JGF for 1 <j < M,.
=1
Set N, = 2M,,. |
We now see as a consequence of Besicovitch’s Theorem that we can “fill up”

an arbitrary open set with a countable collection of disjoint balls in such a way
that the remainder has p-measure zero.

COROLLARY 1

Let p. be a Borel measure on R™, and F any collection of nondegenerate closed
balls. Let A denote the set of centers of the balls in F. Assume p(A) < oo and
inf{r | B(a,r) € ¥} = 0 for each a € A. Then for each open set U C R",
there exists a countable collection G of disjoint balls in F such that

and



36 General Measure Theory

REMARK The set A need not be p-measurable here. Compare this assertion
with Corollary 2 of Vitali’s Covering Theorem, above. |

PROOF Fix 1 - 1/N, <0< 1.
1. Claim: There exists a finite collection {Bj,...,Bp,} of disjoint closed

balls in U such that

M,
[J,((AQU)—UBi) < 0u(ANU). (*)
=1
Proof of Claim: Let F; = {B | B € F,diam B < |, B C U}. By Theo-
rem 2, there exist families Gy,..., Gy, of disjoint balls in F; such that
Nn
AnvcJ U B
i=1 BEG;
Thus

u(ANU) <ZM(AmUﬂ U )

BE€g;

Consequently, there exists an integer 7 between 1 and NV, for which

plAnU() | B >N—-N(AOU)
BEG;

By Theorem 2 in Section 1.1, there exist balls By,..., By, € G; such that

(AmUﬂU ) )W(ANU).

But
M, M,
u(Af7L0==LL</Uq[f(WLJl%) +;L(%1ﬂlf—'LJ£%>,
1=1 1=1

since U ' Bi 15 p- measurable and hence (%) holds.
2.NowletU2—_—U uM =1Bi, 2= {B| Be F,diam B < 1,B C U},

and as above, find finitely many disjoint balls Bps,+1, ..., Bas, In F3 such that
M- M,
u((AﬂU)—UBi):u((AﬂUz)—- U Bi)
i=1 i= M, 41
< Ou(ANT,)

< O*u(ANT).
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3. Continue this process to obtain a countable collection of disjoint balls from
F and within U such that

M
’ ((A vy - Bz-) < G5u(AND).

Since 6* — 0 and p(A) < oo, the corollary is proved. |

1.6 Differentiation of Radon measures

We now utilize the covering theorems of the previous section to study the dif-
ferentiation of Radon measures on R™.

1.6.1 Derivatives
Let 2 and v be Radon measures on R™.

DEFINITION For each point x € R™, define

—_— 3 v{B(z,r)) .
D.v(z) = { limsup, o =5z if wW(B(x,7))>0forallr>0

400 if w(B(z,r)) =0 for some r > 0,
D u(z) = lim inf,_.q :—E-gi(z—i% if u(B(x,7)) >0 forallT>0
—F +00 . if u(B(z,r)) =0 for some v > 0.

DEFINITION If D, v(z) = D ,v(z) < +00, we say v is differentiable with
respect to p at * and write

D,v(z) = D,v(z) = D ,v(x).

D v is the derivative of v with respect to p. We also call D,v the density of
v with respect to p.

Our goals are to study (a) when D, exists and (b) when v can be recovered
by integrating D,v.

LEMMA 1
Fix 0 < a < 00. Then

i) AC{zeR"| D, v(z)<a}impliesv(A) < ap(A),
(ii) AC{xeR"| D,v(z)> o} implies v(A) > apu(A).
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REMARK The set A need not be p- or v-measurable here. |

PROOF We may assume p(R"), v(R®) < oo, since we could otherwise con-
sider s and v restricted to compact subsets of R™.
Fix e > 0. Let U be open, A C U, where A satisfies the hypothesis of (i). Set
F={B|B=B(a,r),a€ A,B CUv(B)< (a+e)u(B)}.

Then inf{r | B(a,r) € F} = 0 for each a € A, and so Corollary 1 in Sec-
tion 1.5.2 provides us with a countable collection G of disjoint balls in F such

that
v (A— U B) = 0.
Beg

v(A)< D v(B) < (a+e) Y p(B) < (a+eu().

Beg Beg

Then

This estimate is valid for each open set U DO A, so that Theorem 4 in Sec-
tion 1.1 implies v(A) < (a + €)u(A). This proves (i). The proof of (ii) is
similar.

THEOREM 1

Let p and v be Radon measures on R™. Then D, v exists and is finite p a.e.
Furthermore, D v is p-measurable.

\

PROOF We may assume v(R™), u(R™) < oo, as we could otherwise consider
p and v restricted to compact subsets of R™.
1. Claim #I: D v exists and is finite p a.e.

Proof of Claim #1: Let I = {z | wﬁuy_(:z:) = 400}, and for all 0 < a < b,
let R(a,b) = {z | D w(x) <a <b< D,v(z) < oo}. Observe that for each
a>0,IC {z|D,v(z)> a} Thus by Lemma I,

() < é—U(I).

Send a — oo to conclude p(I) =0, and so D, v is finite p a.e.
Again using Lemma 1, we see

bu(R(a,b)) < v(R(a, b)) < ap(R(a, b)),
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whence p(R(a, b)) =0, since.b > a. Furthermore,

{z|D wv(T) < E”U(x) < oo} = U R(a, b),

0<a<h
a,b rational

and consequently D,,v exists and is finite p a.e.
2. Claim #2: For each z € R™ and r > 0,

limsup p(B(y, 7)) < p(B(z, 7))

Y—T
A similar assertion holds for v.

Proof of Claim #2: Choose y;, € R™ with yp — z. Set fi

= XB(ykaT)’
f = XB(z ry Then

limsup fx < f

k—oc

and so
liminf(1 - fi) = (1~ ).
Thus by Fatou’s Lemma,

/ (1—-f)dp < / liminf(1 — fx) dp
B(x,2r)

B(z,27r) k—o0

gliminff (1— f) dp,
B(z,2r)

k—o00

that 1s,
p(B(z,2r)) = p(B(z, 7)) < liminf(p(B(x,2r)) — p(B(yk, 7))

Now since p is a Radon measure, pu(B(x,2r)) < oo; the assertion follows.
3. Claim #3: D,v is p-measurable.

Proof of Claim #3: According to Claim #2, for all + > 0, the functions
x — p(B(z,r)) and z — v(B(z, 7)) are upper semicontinuous and thus Borel
measurable. Consequently, for every r > 0,

v(B(x,r .
; (x):{ ABE i p(B(z,r)) > 0
T 0

\ +00 if p(B(z,r)) =
)

1s p-measurable. But

D,v = l% fr= kl_i_.ff,‘o f,}g - a.€E.

and so D,v is p-measurable. |
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1.6.2 Integration of derivatives; Lebesgue decomposition

DEFINITION The measure v is absolutely continuous with respect to p, writ-
ten

v < WY,
provided p(A) = 0 implies v(A) =0 for all A C R™.

DEFINITION The measures v and p are mutually singular, written
v 1y,
if there exists a Borel subset B C R™ such that

p(R™ — B) =v(B) =0.

THEOREM 2 DIFFERENTIATION THEOREM FOR RADON MEASURES
Let v, p be Radon measures on R™, with v <K p. Then

V(A):/ D,vdu
A

for all p-measurable sets A C R™,

REMARK This is a version of the Radon-Nikodym Theorem. Observe we
prove not only that v has a density with respect to g, but also that this density
D, v can be computed by “differentiating” v with respect to p. These assertions
comprise in effect the Fundamental Theorem of Calculus for Radon measures
on R*. |

PROOF
I. Let A be p-measurable. Then there exists a Borel set B with A C B,

p(B— A) =0. Thus v(B — A) = 0 and so A is v-measurable. Hence each
p-measurable set is also v-measurable.
2. Set

Z = {z e R" | D,v(z) =0},
I={zeR"|D,(z)=+oo};

Z and I are p-measurable. By Theorem 1, p(I) = 0 and so v(I) = 0. Also,
Lemma 1 implies v(Z) < ap(Z) for all a > 0; thus v(Z) = 0. Hence

v(Z)=0 :/ D,vdp
z
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and
v(I)=0 = /IDuu du.
3. Now let A be p-measurable and fix 1 < ¢t < oo. Define for each integer m
An=AN{z e R* | t™ < Dw(z) < ™}

Then A, is p-, and so also v-, measurable. Moreover,

A-— G Am C ZUIU{z| Dyv(z) # D ,v(z)},

m=-—00

(1= 0 m) o (a- T 4o

m=—00 m=—0od

and hence

Consequently,

< Ztm+lu(Am) (by Lemma 1)

Similarly,

> Ztmu(Am) (by Lemma 1}

[V f
ek | = o |
™ 3

+

5 =

s £
=

0
!
o
®
<
QL
=
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Thus 1/t [, Dyvdp < v(A) <tf,Dw dpforall 1 <t < oo. Send
t— 1T,

THEOREM 3 LEBESGUE DECOMPOSITION THEOREM
Let v, p be Radon measures on R™.

(i) Then v = vy + v,, where v,., Vs are Radon measures on R™ with
Vae & [ and vs L op.
(ii) Furthermore,
D,v =D, vy and D,v,=0 poa.e.,

and consequently

=/ D“U dy + US(A)
A
for each Borel set A C R".

DEFINITION We call v,. the absolutely continuous part, and v, the singular
part, of v with respect to [L.

PROOF

1. As before, we may as well assume p(R?), v(R") < oo.
2. Define

£ ={ACR"| ABorel, u(R" — A) =0},

and choose Bi € € such that, for k=1...,

v(By) < Ai]éfe v(A) +

& =

Write B = N2, By. Since

p(R* ~ B) < L\:M(R"—B,c =0,

we have B € £, and so

v(B) = inf v(A). (%)
Define
Vgc =V L B,

vs =v L (R" — B);

these are Radon measures according to Theorem 3 in Section 1.1.
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3. Now suppose A C B, A is a Borel set, ;t(A) =0, but v(A) > 0. Then
B— A € € and v(B — A) < v(B), a contradiction to (x). Consequently,
Vac € p. On the other hand, ((R® — B) =0, and thus v; L p.

4. Finally, fix o > 0 and set

C={xe B|D.v(zx) > a}.
According to Lemma 1,
ap(C) <y (C) =0,

and therefore D, v5 =0 p a.e. This implies

DyVy = Dy pae. |

1.7 Lebesgue points; Approximate continuity
1.7.1 Lebesgue—Besicovitch Differentiation Theorem

NOTATION We denote the average of f over the set E' with respect to p by

]{de E;(l,ﬁ-—)-fEfdu,

provided 0 < p(E) < oo and the integral on the right is defined.

THEOREM 1 LEBESGUE-BESICOVITCH DIFFERENTIATION THEOREM
Let p be a Radon measure on R™ and f € L} (R™,p). Then

r—0 jB(a:,r)

for p ae. x € R,

PROOF  For Borel B C R*, define v*(B) = [, f* dp, and for arbitrary
A CR*, v%(A) =inf{v%(B)| A C B, B Borel}. Then v* and v~ are Radon
measures, and so by Theorem 2 in Section 1.6, Nl e

V+(A)=[4D#V+ dp,:/Af"' dp

and

(W)= [ D du= [ £ dp
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for all p-measurable A. Thus D”ui = f* pae. Consequently,

im = lim : vt (B(z,r)) — v~ (B(z,r
i f  J = fim sl (B@r) v (Bl )

= Dul‘/+(a’3)—'DuU~(CL‘)
=ft(z)—f(z) = f(z) for pae. z. |

COROLLARY 1
Let p be a Radon measure on R*, 1 <p < oo, and f € Ly, (R",p). Then

lim][ If — f(z)|Pdp =0 ()
B{z,r)

r—0

for p ae. x.

DEFINITION A point x for which (%) holds is called a Lebesgue point of f
with respect to .

PROOF Let {r;}$2, be a countable dense subset of R By Theorem 1,

=1

im [ 17 P du = ()~ P
r—0 B{z,r)

forpae.xandi =1,2,.... Thus there exists a set A C R™ such that u(A) =0,
and ¢ € R® — A implies

imf 1f =il dp = |f(2) - P
=0/ B(z,r)

for all 7. Fix * € R* — A and € > 0. Choose 7; such that | f(x) — r;|P < ¢/2P.
Then

imsup{ |f = (&) du
B{x,r)

r—0

-

 r—0 B{z,r)

1

< P~ limsup]f |f—ri|pdp+][ |f(z)— P dp}
B(z,T)

= 2p—1

—

f@)—=rifP +f(@) = rif] <e |

For the case p = L™, this stronger assertion holds:

COROLLARY 2
If f € LY for some 1 < p < oo, then

lim — f(x)|Pdy =0 for L™ ae. x.,
Jim f 1f - 1@ dy =0
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where the limit is taken over all closed balls B containing r as diam B - 0.

The _point 1s that the balls need-net-be_centered at x.

PROOF  We show that for each sequence of closed balls { By };2, with £ € By
and dj = diam By -- 0, |

f f— f(@)P dy —0
By

as k -+ oo, at each Lebesque point of f. Choose balls { B }$2, as above. Then
By C B(z,dk), and consequently,

fr-s@pays<zf - s a
By B(z,dy)

The right-hand side goes to zero if x 1s a Lebesque point. |

COROLLARY 3

Let E C R™ be L™-measurable. Then
i L*(B(z,r)N E)
"% L (B(z, )

=1 for L"ae.x € E

and

lim L*(B(z,r)N E)

= " a.e. n— B,
N~ (B(z, ) 0 for LM ae.x €R

PROOF Set f =Xp = L™ in Theorem 1. |

DEFINITION Let E C R*. A point x € R" is a point of density 1 for E if
£
lim L*(B(z,7)NE)
r—0 Ln (B (CL‘, 7‘))
and a point of density 0 for E if

lim L*(B(z,r)N E) _
r—( En(B(CC,T'))

=1

0.

REMARK We regard the set of points- of density 1 of £ as comprising the
measure theoretic interior of F; according to Corollary 3, £™ a.e. point in an
L™-measurable set £ belongs to its measure theoretic interior. Similarly, the
points of density O for £ make up the measure theoretic exterior of E. In
Section 5.8 we will define and investigate the measure theoretic boundary of
certain sets E. See also Section 5.11. |
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DEFINITION Assume f € L} _(R™). Then

(z) = { lim, g fB(x’r) f dy if this limit exists
1 0 otherwise

Is the precise representative of f.

REMARK Note that if f, g € L, (R™), with f = g L™ a.e., then f* = g* for
all points £ € R™. In view of Theorem 1 with g = £, lim,_,g fB(x’r) f dy
exists L™ a.e. In Chapters 4 and 5, we will prove that if f is a Sobolev or
BV function, then f* = f, except possibly on a “very small” set of appropriate
capacity or Hausdorff measure zero.

Observe also that it is possible for the above limit to exist even if z is not a
Lebesgue point of f; cf. Theorem 3 and Corollary 1 in Section 5.9. |

1.7.2 Approximate limits, approximate continuity

DEFINITION Let f : R* — R™. We say { € R™ is the approximate limit of
f as y — x, written

ap lim f(y) =1,

y-—-—v.’l:

if for each € > 0,

L LBEn0f 1 > )
r—0 Ln(B(CE,T))

= 0.

So if [ is the approximate limit of f at z, for each € > 0 the set {|f —I| > €}
has density zero at .

THEOREM 2
An approximate limit is unique.

PROOF Assume for each ¢ > 0 that both

LBz, r) N {|f -l > €})
Lr(B(z,r))

— 0 (%)

and

CBEANI -2
L7(B(z,r)) 0 ()
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asr — 0. Thenif [ # ', we set e = |l —1'| /3 and observe for each y € B(z, r)

3e=|l—U'| < [f(y) —t+If(y) =11

Thus
B(z,r) C{lf -1l > e} U{|f =] > €}
Therefore
L™(B(z,r)) < L*(B(z,r) N {lf =l 2 €})
+L™(B(z, ) N {| f(y) = '] > €}),
a contradiction to (), (x%x). |

DEFINITION Let f :R™ — R We say | is the approximate lim sup of f as
y — x, written

ap limsup f(y) =,

y—T
if  is the infunum of the real numbers t such that

i LM B(z,r)N{f > t})
r—0 C”(B(:c,r))

= (.
Similarly, 1 is the approximate lim inf of f as y — x, written

ap liminf f(y) = (,

Yy—zx

if L is the supremum of the real numbers t such that

i LM B(z,r) N{f < t})
r—0 L™(B(z,r))

= 0.

DEFINITION f :R™ — R™ is approximately continuous at x € R" if

ap lim f(y) = f(z).

Yy—x

THEOREM 3

Let f : R® — R™ be L™-measurable. Then f is approximately continuous L"
a.e.

REMARK Thus a measurable function is “practically continuous at practically
every point.” The converse is also true; see Federer [F, Section 2.9.13].
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PROOF
1. Claim: There exist disjoint, compact sets {K;}5°, C R™ such that

(e (5s))

flk, is continuous.

and foreach:1=1,2,...

Proof of Claim: For each positive integer m, set B, = B(0,m). By Lusin’s
Theorem, there exists a compact set K; C B such that £L*(B, — K,) < | and
f K, 1s continuous. Assuming now K,,..., K., have been constructed, there
exists a compact set

K41 C By — U K;
i=1

such that

and f |k, ., is continuous.
2. For L™ ae. z € K,

lim L™(B(z,r) — K;)
r—0 Ln(B(CC,T'))

= 0. (%)

Define A = {z | for some %, x € K; and (%) holds}; then L*(R™ — A) = 0.
Let x € A, so that z € K and (%) holds for some fixed 7. Fix ¢ > 0. There exists
s >0 such that y € K; and |z — y| < s imply |f(z) — f(y)| < e. Then if 0 <
r<s, Bz, )N {y | |f(y) - f(z)| > €} C B(z,7)—K;. In view of (%), we see

ap lim f(y) = f(e). !

REMARK If f € L] (R"), the proof is much easier. Indeed, for each ¢ > 0

LY B(z,r)N{|f - f(z)| >¢€}) 1 .
)ty -1 < ]f i@l

and the right-hand side goes to zero for £L" a.e. x. In particular a Lebesgue
point is a point of approximate continuity. |

REMARK In Section 6.1.3 we will define and discuss the related notion of
approximate differentiability. |
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1.8 Riesz Representation Theorem

In these notes there will be two primary sources of measures to which we will ap-
ply the foregoing abstract theory: these are (a) Hausdorff measures, constructed

in Chapter 2, and (b) Radoq measures characterizing certain linear functionals,
generated as follows.

THEOREM ! RIESZ REPRESENTATION THEOREM
Let L: C.(R™;R™) — R be a linear functional satisfying

sup{L(f) | f € Cc(R™; R™), [fI < 1, spi(f) € K} < o0 (%)

for each compact set K C R™. Then there exists a Radon measure p on R"*
and a p-measurable function o : R* — R™ such that

(i) |o(z)| = 1 for p-ae. x, and
i) L(f) = o £ -0 dp
for dll f € C.(R™; R™),

DEFINITION We call p the variation measure, defined for each open set
V C R™ by

p(V) = sup{L(f) | f € Cc(R"R™),[f| < 1, spe(f) C V).

PROOF
1. Define p on open sets V' as above and then set

p(A) = inf{p(V)| A C V open}

for arbitrary A C R™.
2. Claim #1: p is a measure.

Proof of Claim #1I: Let V, {V;}{2, be open subsets of R*, with V C U;’olV
Choose g € C.(R*;R™) such that |g| < 1 and spt(g) C V. Since spt(g) is
compact, there exists an index k such that spt(g) C U%_,V;. Let {(; }’”'_1 be a
ﬁmte sequence of smooth functions such that spt(¢;) C Vj for 1 < 7 < k and

Z]_l ¢; = 1 on spt(g). Then g = ZJ 1 9C;, and s0

k k fo')
L(g)l =D _L(9¢) Z (96)| < D _n(Vi)

Then, taking the supremum over g, we find p(V) < Z 1 p(Vi). Now let
{A;}352, be arbitrary sets with A C U$2, A;. Fix € > 0. Choose open sets V
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such that A; C V; and p(A;) + €/27 > p(V;). Then

pA) <l UV <D opW)
j:l 1=1
< Z#(AJ) + €
=1

3. Claim #2: p is a Radon measure.

Proof of Claim #2: Let U, and U, be open sets with dist(U, U,) > 0. Then
p(Uy ul,) = u(U,) + p(U,) by definition of u. Hence if A;,A> C R™ and
dist(A;, A2) > 0, then p(A4, U A3) = p(A;) + p(A,). According to Carathe-
ordory’s Criterion (Section 1.1.1), u is a Borel measure. Furthermore, by its
definition, g is Borel regular; indeed, given A C R™, there exist open sets Vj
such that A C Vi and p(V;) < p(A)+1/k for all k. Thus p(A) = p (N, V).
Finally, condition (x) implies u(K) < oo for all compact K.

4. Now, let CH (R*) = {f € C(R™) | f >0}, and for f € CF(R™), set

A(f) =sup{|L(g)| | g € C.(R™; R™),|g| < f}.

Observe that for all f, f, € CH(R™), fi < f, implies A(f}) < A(f2). Also
AMcf) =cA(f) forall c >0, f € CFH(R™).
5. Claim #3: For all fy, f2 € CH(R™), \(fi + f2) = M) + M f2).

Proof of Claim #3: If g;, g2 € C.(R™; R™) with |g,| < f; and |g;| < f2, then
191 + ¢2| < f1 + f2. We can furthermore assume L(g, ), L(¢2) > 0. Therefore,

[L(g1)| + | L(g2)| = L(91 + ¢2) = [L(g1 + g2)| < A(fi + f2)-
Taking suprema over ¢; and ¢, with g3, g, € C.(R™"; R™) gives
M) +A(f2) < Mfi + f2)-
Now fix g € C.(R™;R™), with |g |< fi + fo. Set

wo{ TR Hheh>0
* 0 iffi+f=0

for ¢ = 1,2. Then g,,9, € C.(R*; R™) and g = g1 + g2. Moreover, |g;| < f;,
(¢=1,2), so that

IL(g)| < [L{g)l + | L(g2)] < A(f) + Alf)-

Consequently,

Mfi+ f2) S M) + A(fH)
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6. Claim #4: M\(f) = [, f dp for all f € CF(R™).

Proof of Claim #4: Let ¢ > 0. Choose 0 = t; < {; < -+ < tn such that
tn = 2||fllze, 0 <t —t;_; < ¢ and p(f~H{t;}) =0fori =1,..., N. Set
Uj = f~'((tj-1,t5)); U; is open and p(U;) < oo.

By Theorem 4 in Section 1.1, there exist compact sets K; such that K; C U;
and p(U; — K;) < ¢/N, 7 = 1,2,..., N. Furthermore there exist functions
g; € Cc(R™ R™) with [g;| <1, spt (95) C Uj, and |L(g;)| = p(U;) — ¢/ N.
Note also that there exist functions h; € CF(R™) such that spt (h;) C Uj,
0 < h; <1,and h; =1 on the compact set K; U spt (g;). Then

A(h;) > |L{gs)| = p(U;) — €¢/N
and

A(h;) =sup{|L(g)| | g € C.(R*;R™),|g| < h;}
< sup{|L(g)| | g € C.(R*;R™),|g| < 1, spt (g) C Uj}
= u(Uy),

whence p(U;) — ¢/N < A(k;) < p(Uj).
Define

N
A=<z | f(x) I—Zhj(m) >0,;

j=1
A is open. Next, compute

r

N N
M F=Fd ks | =supQIL(9)l | g€ Co(RSR™),IgI < F— ) by
j=1

\ 7=l

< sup{|L(g)| | g € Cc(R*;R™),|g| < [|f]lc=x ,}
= || fllz sup{L(g) | g € C.(R*;R™), 9| < x ,}
= || fllzeop(4)

N

= || fllLeo pp U(Uj —{h; = 1})

j=1

N
< Ifllze D wU; - K;) < ellfll e
j=1
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Hence
N N
Af)=A f—fzhj) + A (fzhj)
=1 j=1
N
<ellflles + 3 AR
j=1
N
<ellfllpe + > tin(Uy)
j=l1
and

Finally, since

we have

N
| A(f) - / fau] < S0t — ti)u(Uy) + el fllpe + ety
j=1

< ep( spt (f)) + 3el| f|| e

7. Claim #5: There exists a p-measurable function ¢ : R* — R™ satisfy-
ing (ii).
Proof of Claim #5: Fix e € R™, |e] = 1. Define A\.(f) = L(fe) for
f € Cc(R™). Then ). is linear and
[Ae (F)I = |L(fe)l
< sup{|L(g)| | g € Cc(R™;R™),|g| <[]}

=M= [ 17l dw
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thus we can extend A to a bounded linear functional on L!(R";p). Hence
there exists g, € L°°(gt) such that

Ae(f) = o foedp  (f € C(R™)).

Let €,...,€n be the standard basis for R™ and define o
Then if f € C.(R™; R™), we have

D i) Te; €5

Ms

L(f) = L((f- €;j)€;5)

Q.
Il
——

/(f 1€j)0e; dpt

/f o dp.

Proof of Claim #6: Let U C R™ be open, #(U) < oo. By definition,

I
nME

8. Claim #6: |o| =1 p ae.

u(U)zsup{/f-adeeCC(R";Rm), If] < 1, spt(f)CU}. (5x)

Now take fr € C.(R*;R™) such that |f;| < 1, spt (fx) C U, and f;, - 0 —
|o| 1 a.e.; such functions exist by Corollary 1 in Section 1.2. Then

/ lo| dp = klim /f,yc o dp < p(U)
U 00

by (**).
On the other hand, if f € Cc(R™; R™) with |f| <1 and spt (f) C U, then

/f-adus/ o] dy.
U

Consequently (**) implies

w(U) < / o] dp.
Thus p(U) = [, |o| dp for all open U C R"; hence || =1 p a.e. I

An immediate and very useful application is the following characterization of
nonnegative linear functionals.

COROLLARY 1
Assume L : C°(R™) — R is linear and nonnegative, so that

L(f) > Oforall f € C(R"), f >0. (%)
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Then there exists a Radon measure p on R" such that

L(f)= fdu for all f € CZ°(R™).

Rﬂ,

PROOF Choose any compact set K C R"™, and select a smooth function ¢ such
that ¢ has compact support, { = 1 on K, 0 < ¢ < 1. Then for any f € C°(R?)
with spt (f) C K, set g = ||f||r~¢ — f > 0. Therefore (%) implies

0 < L(g) = [|fllz=L(¢) — L(f),

and so

L(f) < Cl|fllzee

for C = L(¢). L thus extends to a linear mapping from C.(R™) into R, sat-
isfying the hypothesis of the Riesz Representation Theorem. Hence there exist
i, o as above so that

L(f) =/n fodp  (f € C®(R™Y)

with o = 11 p a.e. But then (%) impliesc =1 u a.e. |

1.9 Weak convergence and compactness for Radon measures

We introduce next a notion of weak convergence for measures.

THEOREM 1
Let p, pu (k= 1,2,...) be Radon measures on R". The following three state-
ments are equivalent:

(i) limg_.oo fga f dpr = [gn fdpforall f e C.(R™).
(ii) limsup,_,  pr(K) < p(K) for each compact set K C R™ and p(U) <
liminfy_, o px(U) for each open set U C R™.

(iii) limg_,o px(B) = p(B) for each bounded Borel set B C R™ with
p(0B) = 0.

DEFINITION If (i) through (iii) hold, we say the measures [, converge weakly
to the measure i, written

i = fi.
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PROOF

1. Assume (i) holds and fix ¢ > 0. Let U C R"™ be open and choose a compact
set K C U. Next, choose f € C.(R") such that 0 < f < 1, spt (f) C U,
f=1on K. Then

WK< [ fdu=tim [ fdu < timintm, (U)
Thus
p(U) = sup{p(K) | K compact ,K C U} < l;lcminfuk(U).

This proves the second part of (ii); the proof of the other part is similar.
2. Suppose now (ii) holds, B C R" is a bounded Borel set, u(9B) = 0. Then

w(B) = p(B°) < 1'}cm inf p i ( B)

< lim sup p(B)

k—»00

< u(B) = u(B).

3. Finally, assume (iii) holds. Fix e > 0, f € CF(R™). Let R > 0 be such that
spt(f) C B(0,R) and p(0B(0, R)) = 0. Choose 0 =t3 <t < --- <ty such
that tn = 2||f||pe, 0 < t; —t;—) <e¢ and p(f~'{t;}) =0fori=1,...,N.
Set B; = f~!(t;-1,t;]; then p(8B;) =0 for ¢ > 2. Now

th \er(B / fdpy < thﬂk ) + i (B(0, R))

and

N
Zti-lﬂ(Bi) S/ fdp < th# ) + tip(B(0, R));
=2 .

so (i) implies

lim sup < 2eu(B(0,R)). |

k—+ro0

Rﬂfduk“/nfdu

The great advantage in studying the weak convergence of measures is that
compactness is had relatively easily.

THEOREM 2 WEAK COMPACTNESS FOR MEASURES
Let {py}32 | be a sequence of Radon measures on R™ satisfying

sup g (K) < oo for each compact set K C R".
k

Then there exists a subsequence {p, ; };’?__1 and a Radon measure p such that

i, = b
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PROOF
1. Assume first

sp;p e (R™") < 0. (%)

2. Let {fc}?2, be a countable dense subset of C.(R™). As (%) implies
f fi dp; is bounded, we can find a subsequence {u; ;-";, and a; € R such that

Ve AT 1
SO J /f1 d/_j,) —)a,l,

Continuing, we choose a subsequence {y,;? j= of {p,;?“ 22, and a; € R such
that

/fk duf — ag.

Set v; = ,ug.; then

/fk dl/j — A

for all & > 1. Define L(fx) = ak, and note that L is linear and |L(f;)| <
|| fll o M by (%), for M = sup;, uix(R™). Thus L can be uniquely extended to
a bounded linear functional L on C.(R™). Then according to the Riesz Repre-
sentation Theorem (Section 1.8) there exists a Radon measure £ on R™ such that

fU%=/fdu

for all f € C.(R™).

3. Choose any f € C.(R™). The denseness of {fi}7>, implies the existence
of a subsequence {f;}{2, such that f; — f uniformly. Fix € > 0 and then
choose 1 so large that

€
Hf szLOO < AM .
Next choose J so that for all 7 > J

/fz dl/j "‘/fz dﬂl < 6/2.
Then for 7 > J

‘/dej‘“/fdﬂ

<

[ - as| |- 10 du

+‘/fz-dz/j—/fidp‘

€
<S2M|If = fillpe + 5 <e
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4. In the general case that (%) fails to hold, but

sup pi(K) < 00
k

for each compact K C R*, we apply the reaéoning above to the measures
wh = e L B(0,1) (k,1=1,2,...)

and use a diagonal argument. |

Assume now that U C R™ is open, | < p < .

DEFINITION A sequence {f}32, in LP(U) converges weakly to f € LP(U),
writien

fo = f in LP(U),
provided

k—oo Jy U
for each g € LY(U), where 1/p+ 1/g=1,1< q < 0.

THEOREM 3 WEAK COMPACTNESS IN L?
Suppose 1 < p < co. Let {fi}32, be a sequence of functions in LP(U) satis-

fying
S‘;Pllfklle(U) < 0. (*)

Then there exists a subsequence { fx,}32, and a function f € LP(U) such that

fi, =~ in LP(U).

REMARK This assertion is in general false for p = 1. |

PROOF

1. 1If U # R™ we extend each function fi to all of R™ by setting it equal to
zero on R™ — . This done, we may with no loss of generality assume U = R*.
Furthermore, we may as well suppose

fe 20 L™ ae.;

for we could otherwise apply the following analysis to f,; and fr -
2. Define the Radon measures

ue = L™ L fy (k=1,2,...).
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Then for each compact set K C R™

uk(K)-——/ka dz < (/Kf;’ d:c)%z:n(x)*—%,

Supp,k(K) < 0.
k

and so

Accordingly, we may apply Theorem 2 to find a Radon measure ;4 on R™ and
a subsequence pi, — .
3. Claim #1: p < L".

Proof of Claim #1: Let A C R"™ be bounded, £L"(A) = 0. Fix ¢ > 0 and
choose an open, bounded set V' O A such that £*(V) < €. Then

p(V) < liminfp, (V)

J—00

lim inf/ f,; dx

J—0Q

< hrnlnf(/ fk da:) LTV
J—0C

IA

Thus u(A) = 0.
4. In view of Theorem 2 in Section 1.6.2, there exists an L}oc function f
satisfying

p(A) =/Afd:v

for all Borel sets A C R".
5. Claim #2. f € LP(R"™).

Proof of Claim #2: Let ¢ € C,(R™). Then

/ pfdz = / P dp
= lim / © Apt,
J—*o0 JRn
= hm / (Pfk, dx
j—0o JjRn

< sup [l fell s llell

_<_ C“(t‘olqu
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Thus
1fllo =  sup [ of dz < oo
) T

(PECC(Rn
llellpa !

6. Claim #3: fi — f in LP(R™).
Proof of Claim #3. As noted above,

fspdz— [ fpda
R~ Jre

for all ¢ € C.(R*). Given g € L%(R™), we fix € > 0 and then choose
© € C.(R™) with

Hg ~ ‘Plqu(Rn) < €.
Then

/ fk_?gdx:/ fk:,(Pda:+ fkj(g_(p) dSC,
n n Rn
and the last term is estimated by

1k, ollg = ol < Ce |
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Hausdorff Measure

We introduce next certain “lower dimensional” measures on R™, which allow
us to measure certain “very small” subsets of R™. These are the Hausdorff
measures H¥, defined in terms of the diameters of various efficient coverings.
The idea is that A is an “s-dimensional subset” of R™ if 0 < H*(A) < oo, even
if A is very complicated geometrically.

Section 2.1 provides the definitions and basic properties of Hausdorff mea-
sures. In Section 2.2 we prove n-dimensional Lebesgue and n-dimensional
Hausdorff measure agree on R™. Density theorems for lower dimensional Haus-
dorff measures are established in Section 2.3. Section 2.4 records for later use
some easy facts conceming the Hausdorff dimension of graphs and the sets
where a summable function is large.

2.1 Definitions and elementary properties; Hausdorff dimension

DEFINITIONS

(i) Let ACR", 0<s<00,0<6<o00. Define

= inf Za <d1amC’) IACUCJ,dlamC’ <6,

7=1

where
s/2
™
Q(S) = F("g:?)' .
Here T'(s) = f0°° ez~ dz, (0 < s < 00), is the usual gamma
function.

60
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(i) For A and s as above, define

H(A) = lim H;(A) = sup Hi(A).
6—0 §>0

We call H® s-dimensional Hausdorff measure on R".

REMARKS

(i) Our requiring 6 — 0 forces the coverings to “follow the local geometry”
of the set A.

(1i) Observe
LY B(z,r)) = a(n)r"

for ail balls B(z,r) C R™*. We will see later in Chapter 3 that if s = k is
an integer, HH agrees with ordinary “k-dimensional surface area” on nice
sets; this is the reason we include the normalizing constan. afs) in the
definition. |

THEOREM 1
H° is a Borel regular measure (0 < s < 00).

Warning: H° is not a Radon measure if 0 < s < n, since R™ is not o-finite
with respect to H°.

PROOF
1. Claim #1: 'Hj is a measure.

Proof of Claim #1: Choose {Ax}%2, C R™ and suppose A C U?‘i__lC'-“,
diam C;‘ < 6; then {C';c };ok:} covers U2 | Ag. Thus

2. Claim #2: 'H?® is a measure.
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Proof of Claim #2: Select {A;}72, C R™. Then

’Hg(UAk)SZ H3(Ar) sZ

Let 6 — 0.
3. Claim #3: 'H® 1s a Borel measure.

Proof of Claim #3. Choose A, B C R™ with dist(A, B) > 0. Select 0 < 6 <
1/4 dist(A, B). Suppose AU B C U2, Cy and diam Cj < 6.

Write A = {C; | C;NA # 0}, and let B = {C; | C;NB # 0}. Then
A CUc,;eaCjand B C Uc,epCy, C:NCj = 0 if Ci € A, C; € B: Hence

Soi (239) 2 5 o(#5%) s 5 e (25%)

j=1 C;€B

> Hi(A) + Hs(B).

Taking the infimum over all such sets {C;}%2,, we find H3(AU B) 2>
HE(A) + HI(B), provided 0 < 48 < dist(A, B). Letting 6 — 0, we obtain
H (AU B) > M°(A) + H*(B). Consequently,

H° (AU B) = H*(A) + H*(B)

for all A, B C R™ with dist(A4, B) > 0. Hence Caratheodory’s Criterion, Sec-
tion 1.1.1., implies ?{° is a Borel measure.
4. Claim #4: H’ is a Borel regular measure.

Proof of Claim#4: Note that diam C = diam C for all C: hence

ocC
Hs(A Z (dlam i ) | AC U Cj,diam C; < 6, C; closed

: J =1
Choose A C R™ such that H*(A) < oo; then H:(A) < oo for all 6 > 0. For

each k > 1, choose closed sets {CF}32, so that diam C"c < 1/k, A CU2,CF,
and

> als)

j=1

diam CF\° s 1

Let Ay = U, C%, B = NP, Ay; B is Borel. Also A C Ay, for each k, and
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so A C B. Furthermore,

. > diam C"'c B

J=1

Letting k — oo, we discover H*(B) < H°(A). But A Z 3. and thus
H(A) =H*(B). |

THEOREM 2 ELEMENTARY PROPERTIES OF HAUSDORFF MEASURE
(i) HY is counting measure.

) H' =L onR.
(iii) H° =0on R™ forall s > n.
(iv) H°(AA) = MHP(A) forall N >0, ACR".

(v) H°(L(A)) = H°(A) for each affine isometry L : R* — X7, 2 Z X"
PROOF

1. Statements (iv) and (v) are easy.

2. First observe a(0) = 1. Thus obviously H°({a}) =1 for al. - = ", and

(i) follows.
3. Choose A C R! and § > 0. Then

L'(A) =inf{ Y diamC; | Ac | C;

< inf < Zdiam Cj|AC U Cj,diam C; < l

\j:l J=l J

= H;(A).
On the other hand, set Iy = [ké,(k + 1)8] (k = ... — 1.0.2...). Then

diam (C; N 1) < 6 and

Z diam (C; N I) < diam Cj.

k=—o0
Hence
£H(A) = inf{ Y diam C; | A C | C;
~.j=l 7=1
> 1inf < Z Z diam (C; NI) | A C UC}
~.j=l k=-—o0 9= )

v
5
=
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Thus £! = X} for all 6 > 0, and so £! = H' on R'.
4. Fix an integer m > 1. The unit cube @ in R™ can be decomposed into m™
cubes with side 1 /m and diameter n!/?2 /m. Therefore

aym(@ Z )(n'72/m)* = a(e)n/'m" =,

and the last term goes to zero as m — oo, if s > n. Hence H*(Q) = 0, and so
HS(Rn) = 0. I

A convenient way to verify that H° vanishes on a set is this.

LEMMA 1
Suppose A C R™ and 'H;(A) = 0 for some 0 < 6 < 0o. Then H*(A) = 0.

PROOF  The conclusion is obvious for s = 0, and so we may assume s > 0.
Fix € > 0. There then exist sets {C;}72, such that A C U$2,Cj, and

ia(S)(-c}Em-z—gi)sﬁe-

In particular for each ¢,

Hence
Hso(A) <€

Since 6(¢) — 0 as ¢ — 0, we find

We want next to define the Hausdorff dimension of a subset of R™.
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LEMMA 2
Let ACR"and 0 < s <t < oo

i) If H*(A) < oo, then H'(A) = 0.
(i) If H'(A) > 0, then H¥(A) = +o0.

PROOF Let H*(A) < oo and § > 0. Then there exist sets {C } 72 such that
diam €', < 6, AC U2 ,C; and

S a(s) <dla“; CJ) <HI(A)+1 < HI(A) + 1.

J=1

Then

a(s) o 2
< Zzzizs'tét”(ﬂsm) +1).

We send 6§ — 0 to conclude H* EA) = 0. This proves assertion (i). Assertion
(ii) follows at once from (i).

DEFINITION The Hausdorff dimension of a set A C R" is defined to be
Hdaim(A) = inf{0 < s < oo | H*(A4) =0}.

REMARK Observe Hgim(A) < n. Let s = Hgim(A). Then H'{A) = 0 for
all £ > s and HY(A) = +oo for all t < s, H°(A) may be any number
between 0 and oo, inclusive. Furthermore, Hgym(A) need not be an integer.
Even if Hgm(A) = k is an integer and 0 < H*(A4) < oo, A need not be a
“k-dimensional surface” in any sense; see Falconer [FA] or Federer (F] for

examples of extremely complicated Cantor-like subsets A of <". with 0 <
H*(A) < 00. |

2.2 Isodiametric Inequality; H" = L"

Our goal in this section is to prove H™ = L™ on R™. This is nontrivial: L£" is
defined as the n-fold product of one-dimensional Lebesgue measure £!, whence
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£ = inf{d 00, L(Q:) | Qi cubes, A C US2,Q;}. On the other hand H"(A)
is computed in terms of arbitrary coverings of small diameter.

LEMMA 1

Let f : R* -» [0,00] be L™-measurable. Then the region “under the graph
Of f'n

A={(z,y) |z e Ry €RO <y < fla)},
is Lt -measurable.

PROOF Let B={z €R"| f(z)=o0}and C = {z € R" | 0 < f(z) < o0}.
In addition, define

: - |
Cjkz{x60|%§f(x)<z—};-} (7=0,..5k=1,...),

so that C' = U22,Cjk. Finally, set

Dk = U (Cjk X 0,%]) U (B X [0, OO]),
7=0 -
Ey = JL=J0 (Cjk X _O,-]—-:I:—I—J> U (B x [0, 09)]).

Then Dy and Ej, are £L*"!-measurabie and Dy C A C Ex. Write D = U2, Dy
and £ = N° Ex. Then also D C A C E, with D and F both £™F!-
measurable. Now

1

L™ ((E - D)n B(0, R)) < L™!((Ekx - Di) N B0, R)) < L L™(B(0, R)),

and the last term goes to zero as k — co. Thus, L"T!((E - D)NB(0,R)) = 0,

and so L""(E — D) = 0. Hence £L™"!(A — D) = 0, and consequently A is
L£"~!-measurable.
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FIGURE 2.1
Steiner symmetrization.

NOTATION Fix a,b € R", |a| = 1. We define
7 = {b+ta|t€R}, the line through b in the direction a,

P, = {z € R" | z- a = 0}, the plane through the origin
perpendicular to a.

DEFINITION Choose a € R™ with |a| = 1, and let A C R". We define the
Steiner symmetrization of A with respect to the plane P, to be the set

S.(= | {b+ta|ltl§%H‘(AﬁL‘g)}.

bEP,
ANL2#0

LEMMA 2 PROPERTIES OF STEINER SYMMETRIZATION
(i) diam S,(A) < diam A.

(i) If A is L™-measurable, then so is S,(A); and L™ (S.(A)) = L™(A).

PROOF
1. Statement (i) is trivial if diam A = oo; assume therefore diam A < oo.
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We may also suppose A closed. Fix ¢ > 0 and select . y € S,(A) such that
diam S, (A) < |z -yl +e

Write b=z — (z-a)aand c =y — (y - @)a; then b,c € P,. Set

r = inf{t | b+ ta € A},
s =sup{t|b+ta € A},
w = inf{t| c+ta € A},

v=sup{t|c+ta €A}
Without loss of generality, we may assume v — 7 > s — u. Then

1 1

V—T E-(v—r)—l—i(s—-u)
1 ]

= 5(3—-7‘)4--2—(?)#11)

1 1
> SHI(ANLE)+ EH’ (ANLY.

AV

Now, |z -a| < 1/2 HY(ANLE), ly-a| < 1/2 HY(ANLS), and consequently,
v—r 2 |x-a +|y-al > |z-a-y- al
Therefore,

(diam S,(A) — €)* < |z — y/?

b—-c|2+|ar:-a,—-y-a|2

<|b—c?+@w-r)
=|(b+ra) - (c+ va)?
< (diam A)?,

since A is closed and so b+ ra,c + va € A. Thus diam S,(4) — ¢ < diam A.

This establishes (1).

2. As L is rotation invariant, we may assume a = e, = (0,...,0,1). Then
Py = P, = R*!. Since £! = H! on R!, Fubini’s Theorem implies the
map f: R*™! — R defined by f(b) = H!(AN Lg) is L~ '-measurable and
L™(A) = [ga_, f(b) db. Hence

sua) = {6 | L0 <y < U g0y 250 a =)
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is L™ -measurable by Lemma 1, and

L7 (S, (A)) = /R f(b)db = c*(A). |

REMARK In proving ‘H" = L" below, observe we only use statement (i1)
above in the special case that a is a standard coordinate vector. Since H" is
obviously rotation invariant, we therefore 1n fact prove L™ is rotation invariant.

THEOREM 1 ISODIAMETRIC INEQUALITY
For all sets A C R™,

£(4) < atm) (52

REMARK This is interesting since it is not necessarily the case that A is con-
tained in a ball of diameter diam A. |

PROOF If diam A = oo, this is trivial; let us therefore suppose diam A < oo.
Let {e;,...,e,} be the standard basis for R*. Define A, = S, (A4), Ay =
Se, (A1),..., An = Se, (An—1). Write A* = A,,.

1. Claim #1]: A* is symmetric with respect to the origin.

Proof of Claim #1: Clearly A, is symmetric with respect to F,,. Let 1 <
k < mn and suppose Ag 1s symmetric with respect to £, ,..., P.,. Clearly
A = Se, ., (Ax) 1s symmetric with respect to P,

. Fix 1 € 3 <k and let
S; : R* — R™ be reflection through F;,. Let b € P, Since S;(Ax) = Ag,

ket
HY (A N L) = HY (Ax N L‘”’S‘;El);
consequently
{t b+ tegss € A} = {t | Sjb+ texss € A1}

Thus S;j(Ak4,) = Aky; thatis, Ak, is symmetric with respect to P . Thus

A* = A, is symmetric with respect to P, ,.... P._ and so with respect to the
ongin.

d. * n

2. Claim #2: L™(A%) < o(n) (-3’-“2--4—> .
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Proof of Claim #2: Choose £ € A*. Then —z € A* by Claim #1, and so
diam A* > 2|z|. Thus A* C B(0, diam A*/2) and consequently

. * d; x\ T
£n(A*)§Ln <B (O, dlaﬁzlA >> ==a(n)< 13.1121/-1 > .

3. Claim #3: L*(A) < o(n)(diam A/2)".

Proof of Claim #3: A is L™-measurable, and thus Lemma 2 implies

LM((A)*) = LM(A) , diam (A)* < diam A.
Hence
L"(A) < L™M(A) = L™((A)")
< a(n) (diamz(A) > by Claim #2
< a(n) (dlam A)
2
diam A\"
= B |
a(n)( 5 )
THEOREM 2
n — [:’n on Rn.

1. Claim #1. L™"(A) < H™(A) forall A C R™.

Proof of Claim #1: Fix § > 0. Chonse sets {C} 52, such that A C U2, C}
and diam C; < 6. Then by the Isodiametric Inequality,

ﬁ”(A)Sé ia (‘hamc> .

j=1

Taking infima, we find £L"(A) < HF(A), and thus L*(A) < H™(A).
2. Now, from the definition of £™ as £! x---x £}, we see that for all A C R"
and 6 > 0,

mf{z L™"(Q;) | Qi cubes, A C UQ;,dmm Q; < 6}

1=1

Here and afterwards we consider only cubes parallel to the coordinate axes
in R™,
3. Claim #2: 'H™ is absolutely continuous with respect to L™,
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Proof of Claim #2: Set C,, = a(n)(v/n/2)™. Then for each cube Q C R”,

a(n) ( diam Q>n = C.L(Q).

2
Thus

i=1

) < inf {Z diam Q") | @Q; cubes, A C U Q;,diam @Q; < 6}
L™(A)

Let 6 — 0.
4. Claim #3: H™"(A) < L*(A) forail A C R™.

Proof of Claim #3: Fix 6 > 0, e > 0. We can select cubes {Q; }32, such that
A C U2, Q;, diam Q; < 6, and

ch ) < LM(A) + e

By Corollary | in Section 1.5, for each 1 there exist disjoint closed balls
{B:}%2., contained in Q9 such that

diam B < §, L™ (Qi— O B;;) =L" <Q;?- G B,;) = 0.

k=1 k=1

By Claim #2, H™ (Q; — U2, B;) = 0. Thus

2.3 Densities

We proved in Section 1.7

L*(B(z,t)NE) _ { | forLtaez€FE

lim 0 forL™ae x€eR™ —-F,

r—( a(n)’rn
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provided £ C R™ is L"-measurable. This section develops some analogous
statements for lower dimensional Hausdorff measures. We assume throughout
0<s<n

THEOREM I
Assume E C R™, E is H%-measurable, and H°(E) < co. Then

H(B(z,7) N E)

S

lim =0

r—0 a(s)'r
for H® a.e.z € R* — F.

PROOF Fix t > 0 and define

(B
Ay = {azERn—-EHimsupH( (z,7) 0 E) >t}.

r—0 O!(S)Ts

Now H*® L E is a Radon measure, and so given € > 0, there exists a compact
set K C E such that

HY(E - K) <e (%)
Set U =R"* — K; U is open and A: C U. Fix 6 > 0 and consider

H:(B(z,r) N E)
a5 t} '

F = {B(a:,r) | B(z,7) CU,0< r <,

By the Vitali Covering Theorem, there exists a countable disjoint family of balls
{Bi}$2, in F such that

A, C U Bi.
1=1

Write B; = B(x,7;). Then
105 At < Za 57‘7, t HS(BZH E)

<-5—H5(UOE) > ~H(E - K) <576

by (%). Let § — 0 to find H*(A4;) < 53t_‘e. Thus H°(A;) = 0 for each t > 0,
and the theorem follows. |

THEOREM 2

Assume E C R*, E is H*-measurable, and H*(E) < oco. Then
1 , H*(B(z,7) N E)
— < <]
> SISP T ale S

for H®° ae. x € F.
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REMARK It is possible to have

. H(B(z,m)NE)
lim sup
r—0 a(s)re

<1

and
HS
lim inf (Bz,r) O E)
r—0 a(s)rs
for H® a.e. € E, even if 0 < H*(E) < oco. |

=0

REMARK - . - .
1. Claim #1: lim sup - (B&:7) )
r—0 a(s)rs

Proof of Claim #1: Fix € > 0, t > 1 and define
HS(B(z,r)NE
BtE{erllimsup (Ble,r) )>t}.
r—0 OZ(S)'I‘S

Since ‘H® L E is Radon, there exists an open set U containing B¢, with

H (U N E) <HY(By) +e. (%)

<] for H° ae.z € FE.

Define

F= {B(:v,r) | B(z,r)C U, 0<r<§, " (Blz,r) O B) >t}.

a(s)rs

By Corollary 1 of the Vitali Covering Theorem in Section 1.5.1, there exists a
countable disjoint family of balls {B;}{24 in F such that

BthBu U B;

i=m-+!

for each m = 1,2,.... Write B; = B(x;,7:). Then

10s(B:) <D als)r] Z )(57:)°

1=1 i=m+!
< Z s s §
< 3 'E_l H*(B; NE) + z=§m+1H (B;:NE)

] 58 >
< —H5(UN — H° B; N .
_t’H(U E)+tH<U E)

t=m-+l
This estimate is vaiid for m = 1,...; thus our sending m to infinity yields the
estimate ‘
s ] ]
106(Bt) < ?H UNE)< E(H (Bt) +€)
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by (x). Let 6 — 0 and then € — 0
1
H*(Bt) < *t'HS(Bt)-

Since H*%(B;) < HS(E) < oo, this implies H*(B¢) = 0 for each ¢ > 1.

1
2. Claim #2: lim sup Hoo(B(z, 1) N E) > - for H® ae. z € E.

r—0 OZ(S)TS 2

Proof of Claim #2: For § > 0, 1 > 7 > 0, denote by E(6, 7) the set of points
x € F such that

diam C’> s

H(CNE) _<_7'oz(s)( )

whenever C C R*, ¢ € C, diam C < 6. Then if {C;}32, are subsets of R™
with diam C; < §, E((S T) CUR,C;, C;NE(6,T) # 0, we have

'M8

HAEG,7) < ) HE(C:inE(5, 7))

1=1

Hg(C,; NE)

ols) (diar; C,;)s.

NE

1

1

<T

e

1

1

Hence H3(E(6,7)) < THE(E(6, 7)), and so Hi(E(6,7)) =0, since 0 < 7 < 1
and H{(E(6,7)) < Hi(E) < HS( ) < co. In particular,
H(E(6,1=6))=0. (%)
Now if z € E and
limsup HE (B(z,r)NE) < 1 |
r—0 a(s)rs 28

there exists 6 > O such that

s (B(z,))NE) _1-6
< —;

a(s)rs
forall0 < r < 6. Thus if z € C and diam C < 4,

HI(CNE)=HL(CNE)
< H:, (B(z,diam C) N E)

< (1-9)a()(22)

2
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by (**); consequently x € E(,1 — 6). But then

{sc € E | limsup Heo(B(z,r) N E) < %} C U E(1/k,1-1/k),
k=1

r—0 a(S)TS

and so (%) finishes the proof of Claim #2.
3. Since H*(B(z,7)NE) > H: (B(z,r) N E), Claim #2 at once implies
the lower estimate in the statement of the theorem.

2.4 Hausdorff measure and elementary properties of functions

In this section we record for later use some simple properties relating the be-
havior of functions and Hausdorff measure.

2.4.1 Hausdorff measure and Lipschitz mappings

DEFINITIONS

(i) A function f : R®™ — R™ is called Lipschitz if there exists a constant C
such that

f(z) = f(y)| < Clz —y| for all z,y € R™.

f(z) - f(v)

T~y

(@) Lip (f)Esup{ | x,yGR"',x#y}-

THEOREM 1
Let f:R* — R™ be Lipschitz, AC R",0 < s < co. Then

H*(£(A4)) < (Lip (£))*H°(A).

PROOF Fix 6 > 0 and choose sets {C;}$2, C R® such that diam C; < 6,
A C U2,C;. Then diam f(C;) < Lip(f) diam C; < Lip(f)6 and f(A) C
1f( ) Thus

Hiio (36 (f( Sia (d‘amf( ))

1=1

< Lip(f)' Y als) (dial‘; & )

i=1
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Taking infima over all such sets {C; }2,, we find

Hiip s (F(A)) < (Lip () H3(A).

Send § — O to finish the proof. |

COROLLARY 1
Suppose n. > k. Let P : R* — R* be the usual projection, A C R*,0 < s < 0.
Then

He(P(A)) < H°(A).

PROOF Lip(P)=1. |

2.4.2 Graphs of Lipschitz functions
DEFINITION For f :R* - R™ A C R", write

G(f; A) = {(z, f(z)) | z€ A} C R* x R™ = R**™;

G(f; A) is the graph of f over A.

THEOREM 2
Assume f :R™ — R™, L"(A) > 0.

(i) Then Ham(G(f; A)) > n.
(i) If f is Lipschitz, Ham(G(f; A)) = n.

REMARK We thus see the graph of a Lipschitz function f has the expected
Hausdorff dimension. We will later discover from the Area Formula in Sec-
tion 3.3 that H*(G(f; A)) can be computed according to the usual rules of
calculus.

PROOF

1. Let P: R*t™ — R™ be the projection. Then H*(G(f; A)) > H"(A) >
0 and thus Hgm(G(f; A)) > n.

2. Let @ denote any cube in R* of side length 1. Subdivide @ into k™

subcubes of side length 1/k. Call these subcubes @, ..., Qx~. Note diam @Q; =
v/n/k. Define

aj = min f'(z) and b = max f'(z) (E=1,...,mj=1,...,k").
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Since f i1s Lipschitz,

b — a}| < Lip (f)diam Q; = Lip (f)

T

Next, let C; = Q; x []i%,(a%,b:). Then

3073
{(@ f(z)) |z €Q;NA} CC;
and diam C; < C/k. Since G(f; ANQ) C UJIC _,Cj, we have

ek (G(f; ANQ)) < Za(n) (dlam C; )

=1

wa) () =am (S)"

Then, letting k — oo, we find H*(G(f; AN Q)) < oo, and s0 Hgim (G f: AN
@)) < n. This estimate is valid for each cube @) in R™ of side length 1. and
consequently Haim(G(f; A)) <n. |

2.4.3 The set where a summable function is large

[f a function is locally summable, we can estimate the Hausdorff measure of
the set where it is locally large.

THEOREM 3
Let f € Li.(R"), suppose 0 < s < n, and define

ASE{.’L‘ERn“lmSUp—j |f|dy>0}.
Then
H*(As) = 0.

PROOF We may as well assume f € L'Y(R™). By the Lebesgue—Besicovitch
Differentiation Theorem (Section 1.7.1)

lim ][ fldy = |f (@),
=0/ B(z,r)

and thus

1
lim — |fldy=0
r—0 7° B(z,r)
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for L™ a.e. x, since 0 < s < n. Hence
L"(As) =0.

Now fix e > 0,8 > 0,0 > 0. As f is L™-summable, there exists 7 > 0 such
that

L"(U) <7 implies / |f| dxz < 0.
U
Define

r—0 77 JB(z,r)

1
AZE{:CER”Himsup—; |f|dy>6};
by the preceding
L*(AS) = 0.
There thus exists an open subset U with U D A§, L*(U) < 7. Set

.7-'_=_{B( Tz €A, 0<r < b B(z,r) CU, |f|dy>ers}.

B(zx,r)

By the Vitali Covering Theorem, there exist disjoint balls {B;}$2, in F such

that
')
€ C U B
i=1

Hence, writing r; for the radius of B;, we compute

o

fos(A%) < D_a(s)(57s)°

a(s)ssz / Fl dy

a(s)5
<

IA

a(s
<
€

g.

Send § — 0, and then ¢ — 0, to discover

H (A =0. |
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Area and Coarea Formulas

In this chapter we study Lipschitz mappings
f:R* - R"

and derive corresponding “change of variables” formulas. There are two essen-
tially different cases depending on the relative size of n, m.

If m > n, the Area Formula asserts that the n-dimensional measure of f (A),
counting multiplicity, can be calculated by integrating the appropriate Jacobian
of f over A.

If m < n, the Coarea Formula states that the integral of the n — m dimen-
sional measure of the level sets of f is computed by integrating the Jacobian.
This assertion 1s a far-reaching generalization of Fubini’s Theorem. (The word
“coarea” is pronounced, and sometimes spelled, “co-area.”)

We begin in Section 3.1 with a detailed study of the differentiability properties
of Lipschitz functions and prove Rademacher’s Theorem. In Section 3.2 we
discuss linear maps from R™ to R™ and introduce Jacobians. The Area Formula
is proved in Section 3.3, the Coarea Formula in Section 3.4.

3.1 Lipschitz functions, Rademacher’s Theorem
3.1.1 Lipschitz functions
We recall and extend slightly some terminology from Section 2.4.1.

DEFINITION

(i) Let A C R™. A function f : A — R™ is called Lipschitz provided

£(2) ~ f(y)| < Clz —y (%
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for some constant C' and all x,y € A. The smallest constant C' such that
(x) holds for all x,y is denoted

|f(z) — f(y)
|z — vl

(ii)) A function f : A — R™ s called locally Lipschitz if for each compact
K C A, there exists a constant Ck such that

[f(z) = f(y)| < Cklz — 9l

Lip(f)-:—sw{ Ill‘ayeA,m#y}-

forall z,y € K.

THEOREM 1 EXTENSION OF LIPSCHITZ FUNCTIONS
Assume A C R", and let f : A — R™ be Lipschitz. There exists a Lipschitz

function f : R — R™ such that
(i) f=fonA.
@) Lip (f) < vmLip (f).

PROOF
1. First assume f : A — R. Define

f(z) = inf {f(a) + Lip (f)lz - al}.
If b€ A, then we have f(b) = f(b). This follows since for all a € A,
f(a) +Lip (f)lb—a| > f(b),
whereas obviously f(b) < f(b). If z,y € R™, then
f(z) < inf {f(a) +Lip (f)(ly ~ ol + |z - y])}
= f(y) +Lip (f)lz -y,

and similarly

F(y) < F(2) + Lip (f)lz — .

2. Inthe generalcase f : A - R™, f = (f‘,...,fm),deﬁnef‘—_: (fla---,fm)
Then

1f(@) - FW))* =1 (z) - Fiw)[? <m(Lip (f))z -y |

1i=1

REMARK Kirszbraun’s The_orem (Federgr [F, Section 2.10.43]) asserts that there
in fact exists an extension f with Lip (f) = Lip (f).
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3.1.2 Rademacher’s Theorem

We next prove Rademacher’s remarkable theorem that a Lipschitz function is
differentiable L™ a.e. This is surprising since the inequality

|[f(z) — f(y)| < Lip(f)lz -y

apparently says nothing about the possibility of locally approximating f by a
linear map.

DEFINITION The function f : R* — R™ is differentiable at © € R™ if there
exists a linear mapping

L:-R* - R™
such that
im @) = S@) Lyl
y—x |z — Y|

or, equivalently,

f(y):f($)+L(y_$)+0(|y“$|) as 1y — Z.

NOTATION If such a linear mapping L exists, it is clearly unique, and we write

Df(z)

for L. We call Df(x) the derivative of f at z.

THEOREM 2 RADEMACHER’S THEOREM L
Let f:R™ — R™ be a locally Lipschitz function. Then f is differentiable L™
a.e..

PROOF

1. We may assume m = 1. Since differentiability is a local property, we may
as well also suppose f is Lipschitz.

2. Fix any v € R™ with |v| = 1, and define

D.f@)= iy {EHW =S (g ey,

provided this limit exists.
3. Claim #1. D, f(z) exists for L™ a.e. .
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Proof of Claim #1: Since f is continuous,

, f(z + tv) — f(z)
lim sup ;
t—0
- f(z + tv) — f(x)
= lim  sup

k—oo o<|tl<i/k t
t ralional

D, f(z)

i1s Borel measurable, as is

D f(z) = limint LET )~ @)

t—0 t

Thus
A, = {z € R* | D, f(z) does not exist}
= {z € R" | D ,f(z) < D,f(x)}

is Borel measurable.
Now, for each z,v € R", with |v| = 1, define ¢ : R — R by

e(t) = f(z + tv) (t € R).

Then ¢ is Lipschitz, thus absolutely continuous, and thus differentiable Ll ae.
Hence

H' (A,NL)=0
for each line L parallel to v. Fubini’s Theorem then implies
L"(A,) = 0.
4. As a consequence of Claim #1, we see

0
grad f(x) = (ggl—(x),, -5;%(58 )

exists for L™ a.e. Z.
5. Claim #2. D, f(z) = v-grad f(z) for L™ ae. z.

Proof of Claim #2: Let ( € C°(R™). Then
TSI PRy PRS0 Y

t t

Let ¢ = 1/k for k= 1,... in the above equality and note

‘ﬂx t20) = J@) ¢ g (g)jel = Lip ().

]

k
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Thus the Dominated Convergence Theorem implies

f D.f(z)c(z) dz =~ | f(z)Duc(z) de

Rn Rn

S, f(:v)%(x) iz
S [ U

1=]

= /n (v - grad f(z))((z) dz,

I

where we used Fubini’s Theorem and the absolute continuity of f on lines. The
above equality holding for each ( € C.(R™) implies D, f = v - grad f L" a.e.
6. Now choose {vi}3°, to be a countable, dense subset of dB(0, 1). Set

A = {z € R" | D, f(z), grad f(z) exist and D,, f(z) = vk - grad f(z)}

for k=1,2,..., and define

Observe
LMR™ — A) =

7. Claim #3: f is differentiable at each point = € A.

Proof of Claim #3: Fix any z € A. Choose v € 9B(0,1),t € R, t # 0, and
write

ﬂw+ﬂ?-f@)_vgmdﬂ$)

Rz, v,t) =
Then if v € 9B(0, 1), we have

Qe 0,1) ~ Qv )] < |LEHELZIEX) 4y ) graa (a)

< Lip (f)lv —v/'| + |grad f(z)] [v — v'|
< (Vn+ DLip (f)lv —2'|. ()

Now fix € > 0, and choose N so large that if v € B(0, 1), then

v —vi| < for some ke {l,...,N}. (3

~ 2(yn + )Lip (f)
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Now
tlir%Q(mavk;t):O (k:l,,N),
and thus there exists & > 0 so that

IQ(J%’Uk,t)|<§f0r3110<|t|<6, k=1...N. (% * %)

Consequently, for each v € OB(0, 1), there exists k € {1,..., N} such that

|Q($,'U, t)l S |Q($yvk, t)l + IQ(xa v, t) o Q(IE, 'Uk,t)l < €

if 0 < |t| < 6, according to () through (x x ). Note the same § > O works for
all v € 0B(0, 1).
Now choose any y € R*, y £ z. Write v = (y—z)/|y—1/, so that y = z+tv,
t = |z —y|. Then
f(y) — f(z) — grad f(z) - (y — z) = f(z + tv) - f(z) — tv - grad f(z)
= o(t)

=o(|lz ~ y|), as y — .
Hence f is differentiable at z, with
Df(z) = grad f(z). |

REMARK See Theorem 2 in Section 6.2 for another proof of Rademacher’s
Theorem and Theorem 1 in Section 6.2 for a generalization. In Section 6.4 we
prove Aleksandrov’s Theorem, stating that a convex function is twice differen-
tiable a.e. |

We next record a technical lemma for use later.

COROLLARY 1
(i) Let f:R™ — R™ pe locally Lipschitz, and

L
%

Z ={z e R*| f(z) =0}.

Then Df(x) =0 for L™ ae. T € Z.
(i) Let f,g:R™ — R™ be locally Lipschitz, and

Y = {z € R" | g(f()) = z}.
Then

Dg(f(z))Df(z)=1 for L"ae z€Y.



3.1 Lipschitz functions, Rademacher’s Theorem

PROOF
1. We may assume m = | in assertion (i).
2. Choose z € Z so that D f(x) exists, and

- L*(Z N B(z,r)) _
r—0 En(B(CC,T))

L™ ae. x € Z will do. Then
fy)=Df(z)-(y—z)+o(y—z|) as y -z

Assume D f(x) = a # 0, and set

1;

SE{UE@B(O,I)IG-’UZ%I&I}.

Foreach v € Sand ¢t > 0, set y = = + tv in (xx):

flz+tv) = a-tv+ o(|tv])

t
> —I—;—|+0(t) as t -— 0.

Hence there exists ty > O such that

flzx+tv) >0for0< t < tyg, v ES,

a contradiction to (x). This proves assertion (1).
3. To prove assertion (i1), first define

dmn Df = {z | Df(z) exists },,

dmn Dg = {z | Dg(z) exists }.

Let
X =Y Ndmn DfN f~}(dmn Dy).
Then
:;" Y - X C(R* —dmn Df)U g(R™ — dmn Dg).

This follows since

z€Y — f~(dmn Dg)
implies

f(z) € R* —dmn Dg,
and so

z = g(f(z)) € g(R* — dmn Dg).

85

(% % *)
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According to (* % x) and Rademacher’s Theorem,
LMY ~ X) =0.
Now if £ € X, Dg(f(z)) and D f(z) exist, and so
Dg(f(z))Df(z) = D(go f)(=)
exists. Since (go f)(z) —z =0 on Y, assertion (i) implies

D(gof)=1I Lt ae.onY. |

3.2 Linear maps and Jacobians

We next review some basic linear algebra. Our goal thereafter will be to define
the Jacobian of a map f : R* — R™.

3.2.1 Linear maps

DEFINITIONS
(i) A linear map O : R* — R™ is orthogonal if (Ox)- (Oy) = z -y for all
z,y € R,
(ii) A linear map S : R* — R" is symmetric if - (Sy) = (Sz) - y for all
x,y € R,
(iii) A linear map D : R* — R" is diagonal If there exist dy,...,d, € R such

that Dx = (d)x1,...,dnTy) for all x € R™,

(iv) Let A:R* — R™ pe linear. The adjoint of A is the linear map A* :
R™ — R™ defined by x - (A*y) = (Azx) -y for all x € R, y € R™.

First we recall some routine facts from linear algebra.

THEOREM 1

(i) A*™ = A.

i) (AoB)* = B*o A*.
(@ii)) O*=0"'ifO:R* = R" is orthogonal.
(v) S*=SifS:R* — R" is symmetric.

(v) IfS:R* — R"™ is symmetric, there exists an orthogonal map O : R —

R"™ and a diagonal map D : R* — R" such that
S=00DoO"%.
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(vi) If O:R* — R™ js orthogonal, then n < m and
O*oO0 =1 on R*,
OocO*=1 on O(R™).

THEOREM 2 POLAR DECOMPOSITION

Let L : R* — R™ be a linear mapping.

(i) If n < m, there exists a symmetric map S : R® — R" and an orthogonal
map O : R* — R™ such that

L=0oS.

(ii) If n > m, there exists a symmetric map S : R™ — R™ and an orthogonal
map O : R™ — R"™ such that

L =S500*

PROOF
1. First suppose n < m. Consider C = L* o L : R* — R™. Now
(Cz)-y=(L*oLzr)-y= Lz - Ly
=z-L*o Ly

=T- Cy
and also

(Cz)-z=Lz-Lz > 0.

Thus C' is symmetric, nonnegative definite. Hence there exist py,...,pun > @
and an orthogonal basis {zy}7_; of R* such that

Czk = upTk (k=1,...,n).

Write pux = A2, A >0 (k=1,...,n).
2. Claim: There exists an orthonormal set {z;}7_; in R™ such that

N Lz, = Ap2x (k‘— i,...,'n).
Proof of Claim: If Ay # 0, define
1

= —Lzx..
Zk )\k Tk
Then if A\g, \; #0,
1 1
zj = ——Lzy - Lz = ——(Cxzk) -
2K 2] o z - Lz )\k)\l( Tk) - Ty
pY; Ak
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Thus the set {zx | Ax # 0} is orthonormal. If Ay = 0, define z; to be any
unit vector such that {z;}7_, is orthonormal.
3. Now define

S:R* - R* by Sz = ATk (k=1,...,n)
and
O:R* - R™ by Oz = 2 (k=1,...,n).
Then O o Sz, = MOz = A2, = Lz, and so
L=0oS.
The mapping S is clearly symmetric, and O is orthogonal since
Oz - Oz = 2k - 21 = Oy

4. Assertion (ii) follows from our applying (i) to L* : R™ —» R*, |

DEFINITION Assume L :R™ — R™ s linear.

(i) If n <m, wewrite L =005 as above, and we define the Jacobian of

L to be
[L] = |det S|.
() If n>m, we write L = 5 0 O* as above, and we define the Jacobian of
L to be
[L] = |detS]|.
REMARKS

(i) It follows from Theorem 3 below that the definition of [L] is independent
of the particular choices of O and S.

(ii) Clearly,

(L] =1r+). |
THEOREM 3
() Ifn<m,
[L]? = det(L* o L).
(ii) Ifn > m,

[L]* =det(L o L*).
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PROOF
1. Assume n < m and write

L=0oS,L*=58"00"=S500%
then
L*oL=800*0008=5?
since O is orthogonal, and thus O* o O = I. Hence
det(L* o L) = (det S)* = [L]>
2. The proof of (i) is similar. |

Theorem 3 provides us with a useful method for computing [L], which we
augment with the Binet-Cauchy formula below.

DEFINITIONS
(i) If n < m, we define
A(m,n) ={X:{1,...,n} = {1,...,m} | X is increasing}.
(ii) For each A € A(m,n), we define Py : R™ — R"™ by

P,\((IZ},...,:Em) = (a:A(l),...,x,\(n)).

REMARK For each A € A(m,n), there exists an n-dimensional subspace
Sx = span{ex(1),...,exrn)} CR™

such that P, is the projection of R™ onto Sy. |

THEOREM 4 BINET-CAUCHY FORMULA )
Assume n < mand L: R" — R™ is linear. Then

T ';14
I"‘ A
drA

Fords

[L]*= ) (det(Pxo L))

AEA(m,n)
REMARK

() Thus to calculate [[L]]2, we compute the sums of the squares of the deter-
minants of each (n x n)-submatrix of the (m x n)-matrix representing L
(with respect to the standard bases of R* and R™),

(ii) In view of Lemma 1 in Section 3.3.1, this is a kind of higher dimensional
version of the Pythagorean Theorem. |




90 Area and Coarea Formulas

Rm

FIGURE 3.1
The square of the "-measure of A equals the sum of the squares of the
H"-measure of the projections of A onto the coordinate planes.

PROOF

1. Identifying linear maps with their matrices with respect to the standard
bases of R™ and R™, we write

L= ((li))mxn, A= L*oL = ((a’ij))nx'n;

so that
m
ai; = Z il (2,7 =1,..., n).
k=1

2. Then

n
[L]?> = det A = Z sgn (o) H @i o (i)
!

OEY 1=

% denoting the set of all permutations of {1,...,n}. Thus

0’62 1=1 k=I
n

= Z sgn (o) chp(i)il‘»o(i)a(i)’
ADY pEP 1=l

® denoting the set of all one-to-one mappings of {1,...,n} into {1,...,m}.
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3. For each ¢ € ®, we can uniquely write ¢ = A o 6§, where 6 € ¥ and
A € A(m,n). Consequently,

[[L]]z = Z sgn (o) Z Z H[Aoa(i),ilxoo(i),a(i)
oEY AEA(m,n) 0L =]
- Z sgn (o) Z Z Hlx(e‘).o-‘(i)lxm,aoe-*(z‘)
TEL AEA(m,n) €T i=]
= Z E Z sgn (o) | | Uni),008) Ia(),008(4)
AeA(m,n) BEL o i=]
n
= Z Z Z sgn ()sgn (p) H Ex@),8() Eace) e (i)
AEA(m,n) PET BET i=l

(where we set p = ¢ o 6)

= ) (Z sgn (H)Hlx(i),o(i)>

AeA(m,n) \BEZ 1=]
= Z (det(PyoL))% |
AeA(m,n)

3.2.2 Jacobians

Now let f : R® — R™ be Lipschitz. By Rademacher’s Theorem, f is differ-
entiable L™ a.e., and therefore Df(x) exists and can be regarded as a linear
mapping from R" into R™ for L™ ae. z € R".

NOTATION If f:R™ = R™, f=(f',..., f™), we write the gradient matrix

;: i Q_Jil_ . of I ]
A1, oz,
Df=1 .
of" . of”
. 6171 BIEn A mxn

DEFINITION The Jacobian of f is
Jf(z) = [Df(z)] (L™ ae. x).
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3.3 The Area Formula

Throughout this section, we assume

n < m.

3.3.1 Preliminaries

LEMMA 1
Suppose L : R® — R™ s linear, n < m. Then

H™(L(A)) = [L]L"(A)
for all AcC R™.

PROOF

1. Write L = O o § as in Section 3.1; [L] = |det S|.

2. If [L] = O, then dim S(R*) < n — 1 and so dim L(R") < n — 1. Conse-
quently, H™(L(R™)) = O.

3.1f [L] > O, then [

H™(L(B(z,7)) ' L"(O0*o L(B(z,r)) _ L*(0*00 0 S(B(z,1))

Lv(B(z,r))  Lr(Blz,7)) L(B(z,T))
_ L(S(B(z, 7)) _ L7(S(B(0, 1))
L (B(z,T)) a(n)
= |detS| = [L]-

4. Define v(A) = H™(L(A)) for all A C R*. Then v is a Radon measure,
v <L L" and

Denv(e) = iy 2o el = I2)

Thus for all Borel sets B C R™, Theorem 2 in Section 1.6.2 implies
H™(L(B)) = [L]£"(B).

Since v and L™ are Radon measures, the same formula holds for all sets A C R™.

Henceforth we assume f : R* — R™ is Lipschitz.
LEMMA 2
Let A C R® be L™-measurable. Then

(i) f(A) is H™-measurable,
(i) the mapping y — H°(A N f~'{y}) is H™measurable on R™, and




3.3 The Area Formula 93

(i) [z HO(AN 7 {y}) dH™ < (Lip (£))"L™(A).

REMARK The mapping y — H°(ANf~'{y}) is called the multiplicity function.

PROOF

1. We may assume with no loss of generality that A is bounded.
2. By Theorem 5 in Section 1.1.1, there exist compact sets K; C A such that

VKD > CA) -~ (i=1,2,..)

(2

As L*(A) < oo and A is L*-measurable, L*(A — K;) < 1/i. Since f is
continuous, f(K;) is compact and thus H"-measurable. Hence f (USS,K;) =
U, f(K;) is H™-measurable. Furthermore,

He (f(A)—f @K)> =7 (f (A"QKiD

e (o () o

Thus f(A) is H™-measurable: this proves (i).
3. Let

Bi = {Q 1Q = (a1, b1] X - x (an, bal,

C; ’ 1 . .
a; = e b; = Q: , C; Integers, 1 =1,2,... ,n},
and note
R"= | | @
QEBy
NQW
"= D Xj(ang) 18 H"-measurable by (i),
QEB;
and

9k (y) = number of cubes Q € Bi such that f~'{y} N (AN Q) # 0.
Thus

ge(¥) THOAN S Hy)  ask— oo
for each y € R™, and so y — H°(AN f~{y}) is H"-measurable.




94 Area and Coarea Formulas

4. By the Monotone Convergence Theorem,

HY(AN f~{y}) dH™ = lim / 9 dH™

R™ k—oo
lim > HM(f(ANQ))
QEBg

<limsup ) (Lip (f))"L™(ANQ)

= (Lip () L(4). |

LEMMA 3

Let t > 1 and B = {x | Df(x) exists, Jf(z) > 0}. Then there is a countable
collection {Ey}$2., of Borel subsets of R™ such that

(i) f |g, is one-to-one (k= 1,2,...); and

(iti) for each k = 1,2,..., there exists a symmetric automorphism T} : R* —
R™ such that

Lip (f lg) o To) <t,  Lip(Tho(fle)™Y) <,

t7 " detTx| < Jf |g < 7| det Ty |.

PROOF
1. Fix ¢ > 0 so that

1
?+e<1<t-e.

Let C be a countable dense subset of B and let S be a countable dense subset
of symmetric automorphisms of R".

2. Then, foreachc e C, T € S, and i = 1,2,..., define E(c,T,1) to be the
set of all b€ B N B(e, 1/1) satisfying

(% + e) Tv| < |Df(b)v| < (t — €)|Tv] (%)

<

for all v € R™ and
[f(a) = f(b) — Df(b) - (¢ —b)| < €|T(a — b)| (%)

for all @ € B(b,2/i). Note that E(c,T,i) is a Borel set since Df is Borel
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measurable. From (x) and (xx) follows the estimate
|
S| T(a = b)[ < |f(e) = Fb)| < t|T(a ~b)] (% % %)

for b € E(c,T,1), a € B(b,2/1).
3. Claim: If b € E(e,T,1), then

l n
(z+e> |detT| < Jf(b) < (t—€)™|detT].
Proof of Claim: Write Df(b) = L = O 0 5, as above;

Jf(b) = [Df(b)] = | det 5.

By (%),

{

for v € R™, and so

(1 +e) o] < [(00 S)ol = |S0] < (¢ - )T

(% + ) o] S[(SoT Y| < (t-9h]  (veR).

Thus
(SoT™1)(B(0,1)) C B(0,t— ¢);
whence
|det(S o T~")la(n) < L(B(O, ¢ - €)) = a(n)(t — )",
and hence

[det S| < (¢t —¢)™| det 7.

The proof of the other inequality is similar.
4. Relabel the countable collection {E(c,T,7) |c € C,T € S,i = 1,2,...}

as {Er}2,. Select any b € B, write Df(b) = O 0 S as above, and choose
T € S such that

1 ~1
Lip (ToS™) < (-t-+e) , Lip (SoT ') <t—e.

Now select i € {1,2,...} and ¢ € C so that |b— €| < 1/,

£ (a) = £(b) = Df(B) - (@~ b)| € ——r ryla = bl < dT(a — )

Lip (T-
for all a € B(b,2/i). Then b € E(e¢,T,1). As this conclusion holds for all
b € B, statement (i) is proved.
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5. Next choose any set E, which is of the form F(c, T, 1) for some c € C,
TeS,1i=1,2,.... Let T = T. According to (* % ),
1
(e - )] < [f(@) - F6)] < HTx(a - )

for all b € Ex, a € B(b,2/i). As Ex C B(c,1/i) C B(b,2/1), we thus have

S|Te(a = b)| < |f(2) - £O) < tTu(a - ) (5% %)

for all @, b € Eg; hence f |g, is one-to-one.
6. Finally, notice (x * % %) implies

Lip (f |g,) o Ty <t,  Lip(Teo(flp)™") <t,

whereas the claim provides the estimate
t"| detTk| < Jf |g, < t"™| detTy|.

Assertion (iii) is proved. |

3.3.2 Proof of the Area Formula

THEOREM 1 AREA FORMULA

Let f : R™ — R™ be Lipschitz, n < m. Then for each L™-measurable subset
AcCR®,

/Jf de= [ H(AN f~'{y}) dH" (y).
A R™

PROOF

1. In view of Rademacher’s Theorem, we may as well assume Df(z) and
J f(z) exist for all £ € A. We may also suppose £™(A) < oc.

2. Case 1. AC {Jf > 0}. Fix t > | and choose Borel sets {£;}32, as in
Lemma 3. We may assume the sets {Fy}$2 , are disjoint. Define By as in the
proof of Lemma 2. Set

‘F;:EJQQ‘LHA (Q‘iEBkajzlaza"‘)‘

Then the sets F7 are disjoint and A = UgS_, F?.
3. Claim #1.

Rm

fim 32 HGE) = [ RN )

L,J=

Proof of Claim #1: Let

00
gk = z Xf(F;)

2,7=1
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RH

FIGURE 3.2
The Area Formula.

so that g¢(y) is the number of the sets {F}} such that Fz N f~H{y} # 0.

Then gi(y) T H°(A N f~H{y}) as & — oo Apply the Monotone Convergence
Theorem.

4. Note

HM(f(F})) = H™(f |, oI o T;(Fy)) < t"L™(T5(F)))

J

and
LT (F) = HT;o (£ |g, )™ 0 F(F) S EHM(A(F)
by Lemma 3. Thus
RN (F(F) < ¢ LN (T(F)))
=t"| detfjll_:n(F;)

< /_Jf dzx
F]
< % detTj| L™ (F})

= t"LY(T3(F}))
< EPHR(F(FY)),
where we repeatedly used Lemmas 1 and 3. Now sum on ¢ and j:

Y HGE) S [ I da i > HUED)

t,5=1 1,5=1
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Now let £ — oo and recall Claim #1:

t72 | H(AN fFH{y)) dH”g/Jf dz
R™ A

<™ | HYAN Yy} dH™.
Rm

Finally, send t — 17.
5. Case 2. A C {Jf =0}. Fix ¢ > 0. We factor f = po g, where

g:R" - R™ x R”, g(z) = (f(z), ex) for z € R,
and
p:R™ xR* - R™, p(y,z) =y forye R™, 2z € R™
6. Claim #2: There exists a constant C' such that
0 < Jg(z) < Ce

for x € A.

Proof of Claim #2: Write g = (f‘,...,fm,exl,...,exn); then

200 (%57 )

Since Jf(z)? equals the sum of the squares of the (n x n)-subdeterminants of
D f(z) according to the Binet—Cauchy formula, we see

Jg(z)? = sum of squares of (n x n)-subdeterminants of Dg(z) > € > 0.

Furthermore, since |Df| < Lip (f) < oo, we may employ the Binet—Cauchy
Formula to compute

2 2 sum of squares of terms each | _ Oe2
Jg(a:) = Jf(a:) + {'mvolving at least one € = e

for each z € A.
7. Since p : R™ x R™® — R™ 1s a projection, we can compute, using Case 1
above,

HA(F(A)) < HM(9(A))
< [ Ang i zh i (wz)
Rn+m

- [

< eCL™(A).
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Let ¢ — 0 to conclude H™(f(A)) = 0, and thus

HO(AN £ {y)) dH™ =0
R‘n

since spt H*(A N f~{y}) c f(A). But then

[ 0 -1 no__ () — T
J. HOAN ) ann =0 /Ade.

8. In the general case, write A = A{UA; with A, C {Jf >0}, A, C{Jf=
0}, and apply Cases 1 and 2 above. |1,

3.3.3 Change of variables formula

THEOREM 2
Let f : R™ — R™ be Lipschitz, n < m. Then for each L™-summable function
g: R* =R,

| s@ir@ds= | Y | e

zef~y}

REMARK Using the Area Formula, we see f~1{y} is at most countable for
H™ ae. y e R™. |

PROOF
1. Casel. g > 0. According to Theorem 7 in Section 1.1.2 we can write

for appropriate L£™-measurable sets {A; }3° . Then the Monotone Convergence
Theorem implies

*Z | AN ST dH ()
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2. Case 2. g is any L™-summable function. Write g = g* — ¢~ and apply
Case 1.

3.3.4 Applications

A. Length of a curve (n = 1, m > 1). Assume f : R — R™ is Lipschitz and
one-to-one. Write

= f™,  DE=(f'\ s f™),

so that

I

. ) d
ir=of=15 (=3%):
For —o0 < a < b < oo, define the curve

C = f(la,b]) C R™.

/D/\C\

/

FIGURE 3.3
Length of a curve.
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Then
b
HY(C) = “length” of C = / | 7| dt.

B. Surface area of a graph (n > 1,m =n + 1). Assume g : R® — R is
Lipschitz and define f : R* — R+l by

f(z) = (z,9(2)).

Then
1 .- 0 -
Df=| ¢ ... | ;
99 .. 99
- Oz O, - (n+1)xn
so that

(Jf)? = sum of squares of (n x n)-subdeterminants
=1+ |Dg|*.
For each open set U C R™, define the graph of g over U,
G=0G(g:U)={(z,9(z)) |z € U} c R**!.
Then
H"™(G) = “surface area” of G = /U(l +|Dgl*)? dz.

C. Surface area of a parametric hypersurface (n > 1, m = n + 1). Sup-
pose f :R™ — R™"*! is Lipschitz and one-to-one. Write

f= ., ™,
oft ... oft
8$1 axn
Df=| 5
afn-i-l afn—H
so that . Oz Oz, d(n+1)xn

(J£)* = sum of squares of (n x n)-subdeterminants

;i[3(f1,...,fk-l,fkﬂ,...,fnﬂ) 2
k=1 O(T1,. -, Tn)
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FIGURE 3.4
Surface area of a graph.

For each open set U C R™, write
S = f(U)Cc Rt
Then

H™(S) = “surface area” of S

n+1 a(fl,...,fk-l,fk+l,...,f"’+1) 2 %
fU(Z[ e B

k=1

D. Submanifolds. Let M C R™ be a Lipschitz, n-dimensional embedded sub-
manifold. Suppose that U C R® and f : U — M is a chart for M, Let
Ac f(U), ABorel, B= f~1(A). Define

of Of
Ox; Oz;

g = det((g:5))-

9i5 = (1 S Za.? —<_ n)s

Then

(Df)* o Df = ((gij))nxns
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Rn RI’H' i

FIGURE 3.5
Surface area of a parametric hypersurface.

FIGURE 3.6
Volume of a submanifold.

and so

I
QQml--

Jf

Thus

NI §—

H™(A) = “volume” of Ain M = / gt ds
B
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3.4 The Coarea Formula

Throughout this section we assume

n > m.

3.4.1 Preliminaries

LEMMA 1
Suppose L : R* — R™ s linear, n > m, and A C R" is £L"-measurable. Then

(i) the mapping y— H* ™(ANL{y}) is L™-measurable and
@) Jgm H""™(ANL7Hy}) dy = [L]L™(A).

PROOF

1. Case 1. dim L(R™) < m.

Then AN L~'{y} = 0 and consequently ™™ (AN L~1{y}) = 0 for L™
ae. y € R*. Also, if we write L = S o O* as in the Polar Decomposition
Theorem (Section 3.2.1), we have L(R") = S(R™). Thus dim S(R™) < m and
hence [L] = |det S| = 0.

2. Case 2. L = P = orthogonal projection of R™ onto R™,

Then for each y € R™, P~1{y} is an (rn — m)-dimensional affine subspace
of R™, a translate of P~!{0}. By Fubini’s Theorem,

y+— H* (AN P~ Yy}) is L™-measurable

and

| HPT(ANPTMy)) dy = £7(A), ()

3. Case 3. L:R* - R™, dim L(R™) = m,
Using the Polar Decomposition Theorem, we can write

L=So00*
where
S:R" — R™ is symmetric,

O: R™ — R" is orthogonal,

[L] =|detS| > 0.

4. Claim: O* = P o (), where P is the orthogonal projection of R* onto R™
and Q : R* — R is orthogonal,
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Proof of Claim: Let QQ be any orthogonal map of R onto R™ such that
Q*(z1,...,Tm,0,...,0) = O(zy,...,24)
for all z € R™. Note
P*(zy,...,zm) = (21,.--1Zm,0,...,0) € R®

for all z € R™. Thus O = Q* o P* and hence O* = P o Q).

5. L='{0} is an (n—m)-dimensional subspace of R™ and L~! {y} is a translate
of L=1{0} for each y € R™. Thus by Fubini’s Theorem, y — H* ™(A N
L= '{y}) is L™-measurable, and we may calculate

L7(A) = L(Q(A))

=/ H™(Q(ANP Hyl)dy by ()

= [ Hm(anQT o P d.

Now set 2 = Sy to compute using Theorem 2 in Section 3.3.3

|det S| L™(A) = H™(ANQ™ ' o P71 0 S71{3}) d=.
Rm

But L=S00*=S80Po(),and so
[L]C™(A) = f Hm(AN L7 {2)) dz. |
Henceforth we assume f :R* — R™ is Lipschitz.

LEMMA 2
Let A C R™ be L™-measurable, n > m. Then

(i) f(A) is L™-measurable,
(i) AN f~H{y} is K" ™ measurable for L™ a.e. y,
(iii) the mapping y— H* ™(AN f~Yy}) is L™-measurable, and
() Jgm HP (AN f7Hy}) dy < (a(n — m)a(m))/a(n)(Lip f)™L"(A).

PROOF
1. Statement (i) is proved exactly like the corresponding statement of Lemma 2
in Section 3.3.1. :
2. For each j = 1,2,..., there exist closed balls { B}, such that
SO |
Ac|JB],  diam B} < -,
. -
1=l
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and

S £n(B)) < A+

1=1

Define

diam B!

gl = a(n—m) (-—-—2————~> Xf(p2y-

By (1), gf 1s L™-measurable. Note also for all y € R™,

HY (AN F{y}) <D 6l ().
=1

Thus, using Fatou’s Lemma and the Isodiametric Inequality (Section 2.2), we
compute

*

HP™(AN fH{y)) dy

Rm

_ /R C lim (AN £ ) dy

m J—*OO

= diam B\~ .
imiat ) o(n m>< : ) (£(B))

< liminfia(n~ ) (diarr21 B,{) ot (diam 2f(Bg')>
1=1

J—oo ~

VA

AT Lip gy imint 3 £(B)
1=1

a(n — m)a(m)

a(n)

IN

(Lip f)™L™(A).

Thus

*

n—m -1 a(n — m)a(m)
o ANy} dy < )

(Lip /)™L™(A). (%)

This will prove (iv) once we establish (iii).
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3. Case 1: A compact.
Fix ¢ > 0, and for each positive integer 1, let U; consist of all points y € R™
for which there exist finitely many open sets Sj,..., 5; such that

CANf Yy} c U;'=1 Sjs
diamSjS% (h=1,2,...,1),

l . n—m
S ]
Za(n—m)<d]anz] J) St+ -

. 2
. J=lI

4. Claim #1: U, is open.

Proof of Claim #1: Assume y € U;, ANf~H{y} C Ug-zlSj, as above. Then,
since f is continuous and A is compact,

!
Aﬂf_l{Z} C U Sj
j=1

for all = sufficiently close to y.
5. Claim #2.

{y| HP™(ANF ) < 8 = ) Ui
i=1

and hence is a Borel set.

Proof of Claim #2: If H* ™(AnN f~'{y}) < t, then for each § > 0,
M ™(ANfy}) <t

Given 14, choose 6 € (0,1/4). Then there exist sets {.S;}32, such that

Anf My c U Ss,
j=1
{ diam S; <6 < -1:,

oo

g
— diam S; \" ™ 1
— J ~
) a(n m)( 5 > <tt+ -

v J=1

We may assume the S; are open. Since AN f~!{y} is compact, a finite
subcollection {Si,...,S;} covers AN f~1{y}, and hence y € U;. Thus

(b (AN ) < ) € (U

i=1
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On the other hand, if y € N2, U;, then for each 1,

1==1

AN ) St
and so

HP™(AN fHy)) St
Thus

A0 €ty (AN - ) < 11
i=1

6. According to Claim #2, for compact A the mapping
y = H™AN v}

is a Borel function.
7. Case 2: A open.
There exist compact sets K; C Ky C - -+ C A such that

Thus, for each y € R™,
:Hn—m (A N f"‘ {y}) -= Ilm 7in-m(K?, N f-l {y})’

1—+00

and hence the mapping
y = H" (AN fH{y))

is Borel measurable.

8. Case 3. L™(A) < co.
There exist open sets V; D V5 D --- D A such that

im £o(V, — A) =0,  L*(V}) < 0.

11—+ 00

Now
H ™V f7{y}) S HP AN Yy} + H (Vi - AN ),
and thus by (%),

fmsup [ 1PV £ ) = HEAN £ )| dy

<timsup [ HPT(Vim A) 7 () dy

< lim sup a(n —m)a(m)
1—00 a(n)

(Lip /)™ L™(V; — A) =0.
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Consequently,
HY™Vin f~{y}) = HP (AN f~{y})
L™ a.e., and so according to Case 2,

y = M (AN H{y})

is £™-measurable. In addition, we see H*~™((V; — A)N f~{y}) - 0 L™
a.e. and so AN f~1{y} is H"~™ measurable for L™ a.e. y.
9. Case 4. L"(A) = 0.

Write A as a union of an increasing sequence of bounded L£™-measurable sets
and apply Case 3 to prove

AN f~Hy} is H® ™ measurable for L™ ae. y,
and

y = H (AN f{y})

is £L™-measurable.
This proves (ii) and (iii), and (iv) follows from (x). |

REMARK A proof similar to that of (iv) shows

R; HE (AN f~H{y)}) dMt < Z—((kk—)%%(up F)HETHA)

for each A C R™; see Federer [F, Sections 2.10.2S and 2.10.26]. |

LEMMA 3
Let t > 1, assume h : R™ — R"™ is Lipschitz, and set

B = {z | Dh(z) exists, Jh(z) > 0}.

Then there exists a countable collection { Dy}, of Borel subsets of R™ such
that

(i) L"(B-UX,Di)=0;

(ii) h|p, is one-to-one for k =1,2,...; and
(iii) for each k = 1,2,..., there exists a symmetric automorphism Si : R* —

R™ such that

Lip (S;'o(h|p,)) <t,  Lip ((h|p,) " o Sk) <t,

=" | det Sg| < Jhlp, < t™|det Si|.
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PROOF
1. Apply Lemma 3 of Section 3.3.1 with k in place of f to find Borel sets
{Ex}¢° , and symmetric automorphisms 7% : R® — R” such that

(a) B = U Eka
k=1

(b) h |g, is one—to-one,

Lip ((h |g,) o Ty") < t, Lip (Tx o (R |g,)7") < ¢
(©)
t'”|detTk|§Jh|Ek§ tn|detTk| (k: 1,2,)

According to (c), (h |g,)™! is Lipschitz and thus by Theorem 1 in Section 3.1.1,
there exists a Lipschitz mapping hy : R® — R™ such that hy = (h |g, )~
on h(Ek)

2. Claim #1: Jhy >0 L™ a.e. on h(Ey).

Proof of Claim #1: Since hy o h(z) = = for £ € Ey, Corollary 1 in Sec-
tion 3.1.2 implies

Dh(h(z)) o Dh(z) =1 L™ ae. on Ey,

and so
Jhi(h(z))Jh(z) =1 L™ ae. on Ey.

In view of (c), this implies Jht(h(z)) > O for L™ a.e. £ € Eg, and the claim
follows since k is Lipschitz.

3. Now apply Lemma 3 of Section 3.3.1 to hy: there exist Borel sets {FJ" il
and symmetric automorphisms {R;c };"3:, such that

d) L™ | h(Ex)— U ij = 0:
J=i

(e) hi | g+ is one-to-one;
Lip ((h« |F;=) o (R)™') <t, Lip (R o (s |FJ.‘=)_“1) <t

® .
t~"|det R¥| < Jhy |F;c5 tn|det RS| (k =1,2,...).

Set
Df = ExNk™'(FF), Sk = (R (k=1,2,...).
k) —
Dj) =0.

4. Claim #2: L™ (B — U,
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Proof of Claim #2: Note

hi (h(Ek) ~| | FF
Jj=l

38
II
/-——\
=
;E*’
C8

5!
x

Thus, by (d),

LM Ey—|JDF =0 (k=1,..).

j=1

Now recall (a).
5. Clearly (b) implies h |p« is one-to-one.
6. Claim #3: For k,j =1,2,..., we have

Lip (S5)" o (h[ps)) St Lip (R ]ps)™ 0 S¥) < ¢

- k
t™"| det SF| < Jh [pr< ¢*| det SF|.

Proof of Claim #3:
Lip ((SF) ™" o (b |pg)) = Lip (Rf o (h |ps))
< Lip (Rj o (h |p)™") <t
by (f), similarly,

Lip ((h [ps)™" 0 SF) = Lip ((h |ps) ™" o (RE)™")
< Lip ((he p) o (BRE) ™) < ¢

Furthermore, as noted above,
Jhi(h(z))Jh(z) =1 L™ ae. on D}.
Thus (f) implies

t™"| det S7| = t™"|det RY|™' < Jh |ps < t*|det RE|™! = ¢"| det S¥|. |
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3.4.2 Proof of the Coarea Formula /

THEOREM | COAREA FORMULA
Let f : R® — R™ be Lipschitz, n > m. Then for each L™-measurable set
AC R,

/AJf i :/m 2 AN F YY) dy

REMARKS

(i) Observe that the Coarea Formula is a kind of “curvilinear” generalization
of Fubini’s Theorem.

(ii) Applying the Coarea Formula to A = {J f = 0}, we discover
M ({Jf=0}Nf"{y}) =0 (%)

for L™ a.e. y € R™. This is a weak variant of the Morse—Sard Theorem,
which asserts

{(Jf=0tnfHy} =0
for L™ a.e. y, provided f € C*(R™; R™) for

k=1+n—m.

Observe, however, (x) only requires that f be Lipschitz. |

£ Ly)

FIGURE 3.7
The Coarea Formula.
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PROOF

1. In view of Lemma 2, we may assume that D f(z), and thus J f(z), exist
for all z € A and that L*(A) < oo.
2.Case 1. AC {Jf >0}

For each A € A(n,n ~ m), write

f =qohy,
where

ha i RY > R™ X RO™, by (2) = (f(0), Pa(@) (¢ € RY)

g: R xXR*"™™ S R™  q(y,2) =y (ye R™,z € R"™™),
and P is the projection defined in Section 3.2.1. Set
Ay = {z € A|detDhy # 0}
={z € A| Px |ips(z)]-1(0) is injective}.

Now A = UxeA(n,n—m)An; therefore we may as well for simplicity assume
A = Aj for some A € A(n,n — m)

3. Fix t > 1 and apply Lemma 3 to h = h) to obtain disjoint Borel sets
{D,}$2, and symmetric automorphisms {Sk}£2, satisfying assertions (i)—(iii)
in Lemma 3. Set G, = AN Dy.

4. Claim #1: t™"[qo Sk] < Jf | < t™[g o Sk]-

Proof of Claim #1: Since f = qo h, we have L™ a.e.
Df =qo Dh
::qoSkoSk_loDh
=goSko D(S; ' oh)

~qgoSkoC,
where C' = D(Sk"1 o h).
By Lemma 3,
t=' < Lip (S; ' o h) = Lip (C) < t on G. (%)
Now write
Df=800"
qgo Sk =T o P*

for symmetric S, 7 : R™ — R™ and orthogonal O, P : R™ — R",
We have then

SoO0*=ToP*oC. (3x)
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Consequently,

S=ToP*oCoO.
As Gy CAC{Jf >0}, detS # 0 and so detT # 0.

Thus, if v € R™,
77! o Su| = |P* o C o Ov|
< |C o Oyl
< t|Ov| by (%)
= t|v|.
Therefore
(T 0 8)(B(0,1)) C B(0, 1),
and so

Jf = |detS| < t™|detT| = t"[q o Sk].

Similarly, if v € R™, we have from (%)

1S~ o To| = |0* 0o C7' o Py

<|Cc7' o Py
< t| Pyl by (%)
= t|v|.

Thus
[go Sk] = |detT| < t*|det S| =t"Jf.

5. Now calculate:

t-3n+m R Hn—m(Gk ﬂf—l{y}) dy

_ j=3n+m / HA™ (R (R(Ge) N~ {v})) dy
<t fm M ™S (h(Gr) Ng™ {y})) dy

= t‘zn/ H™™(S;" o h(Gk) N (go Sx) ™' {y}) &
= t"2*[g o SKJL™(S; ' o h(Gk)) (by Lemma 1)
<t "[go Sk]L™ (Gk)

< Jf dx
Gy
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< t"[q o Sk]L™(Gk)
< t2[go Sk]L™M(S; " o h(Gk))

= [ (s o k(G N(go 87 (W) dy
<enm [ Hrm T (G N {u) dy

=t3"“"‘/ HP™(Gr N fH{y}) dy.

. /
Since

k=1

L" (A_ U Gk> =0’
we can sum on k, use Lemma 2, and let ¢ — 11 to conclude
/ H* (AN FH{y}) dy =/ Jf dz.

6. Case2. AC {Jf =0}
Fix € > 0 and define

g:R* xR™ - R, g(z,y) = f(z) + ey

piR* XR™ - BT, pla,y) =y @R, ye R™)
Then
Dg = (Df, eI)mx(ntm),
and
€™ < Jg =[Dg] =[Dg*] < Ce.
7. Observe

- H (AN~ {y}) dy

= H>™AN f{y —ew})dy forall we R™
Rm

= __1___/ H Y AN Yy - ew}) dy dw.
B(0,1) JR™

a{m)



116

Area and Coarea Formulas

8. Claim #2: Fix y € R™, w € R™, and set B = A x B(0,1) ¢ R**™. Then

Bﬁg_l{y}ﬁp"l{'w}:{ ( 0 if w¢ B(0,1)

AN fHy —ew}) x {w} if we B(0,1).

Proof of Claim #2: We have (z,2) € BNg~'{y}Np~'{w} if and only if

€A, z€ B(0,1), f(x)+ez=y, z=uw;

if and only if

t€A z=weB01), flr) =y —ew;

if and only if

w € B(0,1), (z,2)€ (AN f ' {y ~ ew}) x {w}.

9. Now use Claim #2 to continue the calculation from step 7:

[ reman ) dy

—
—

<

<

1

. H™(BNng Yyt Np~Hw}) dw d

a(m) /m R™ ( gk ne{wh) g

a(n —m) H*(BNg~{y}) dy (by the Remark after Lemm
a(n)  Jrm

a(n — m)

/ Jg dx dz
a(n) B

a(n — m)a(m)

() L*(A) Sl;p Jg

<CL™*(A)e.

Let € — O to obtain

H™(AN F~Yy}) dyzo=f Jf d.
JRm A
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10. In the general case we write A = A, U 4; where A; C {Jf > 0},
A C {Jf =0}, and apply Cases 1 and 2 above. |

3.4.3 Change of variables formula

THEOREM 2

Let f:R®™ - R™ be Lzlpschitz, n > m. Then for each L™-summable function
g R*" - R

glg-1gyy is H™™™ summable for L™ a.e. y

and

/n 9(z)Jf(z) dx = /m [/ﬁl{y}g dH"“mJ dy.

REMARK For each y € R™, f~!{y} is closed and thus A" ™-measurable.

e

PROOF
1 Case l. g > 0.

Write g = 3 o0, (1/2)x 4, for appropriate L™-measurable sets {A;}52,; thisis

i=1>
possible owing to Theorem 7 in Section 1.1.2. Then the Monotone Convergence
Theorem implies

/ ngda:zZ;l,— . Jf dz
" i=1 i
. 1 n—m —1
=27 L WA T dy
i=1
1
[ S e d
"=l

L [fyror] s
R | Sy}

2. Case 2. ¢ is any L"-summable function. Write ¢ = g+ — ¢~ and use
Case 1. |
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3.4.4 Applications

A. Polar coordinates.

PROPOSITION 1
Let g : R* — R be L™-summable. Then

/ gd:z::/ / gdH™ | dr
n 0 8B(0,r)

In particular, we see

for L! ae. 7 > 0.

PROOF Set f(z) = |z|; then

Df(x)=;—l, Jf(z)=1 (z#0). |

B. Level sets.

PROPOSITION 2
Assume f : R™ — R is Lipschitz. Then

[ pfiae= [t = a

prROOF Jf =|Df|. |

REMARK Compare this with the Coarea Formula for BV functions proved in
Section 5.5. |

PROPOSITION 3
Let f : R™ — R be Lipschitz, with

essinf|Df| > 0.

Suppose also g : R* — R is L™-summable. Then

f /m / g n—l)
g dz = —— dH ds.
j{f>t} ¢ (f=s} |Df]
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In particular, we see

(g2 ) =~
dt \ Jis>t) (5=t} | D

for L! a.e. t.

PROOF As above, Jf = |Df|. Write E; = {f > t} and use Theorem 2 to
calculate

g
g dx ::/ —Jf dx
/{f>t} R XE, 'Dfl 4
= g _
= X, dH" ‘) d
[-oo (/c'm |Df|XE‘ ®
0'0 g n—1
= —— dH ds. |
/t (/63 D] ) )
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Sobolev Functions

In this chapter we study Sobolev functions on R", functions whose weak first par-
tial derivatives belong to some LP space. The various Sobolev spaces have good
completeness and compactness properties and consequently are often proper
settings for the applications of functional analysis to, for instance, linear and
nonlinear PDE theory.

Now, as we will see, by definition, integration-by-parts is valid for Sobolev
functions. It is, however, far less obvious to what extent the other rules of
calculus are valid. We intend to investigate this general question, with particular
emphasis on pointwise properties of Sobolev functions.

Section 4.1 provides basic definitions. In Section 4.2 we derive various ways
of approximating Sobolev functions by smooth functions. Section 4.3 interprets
boundary values of Sobolev functions using traces, and Section 4.4 discusses
extending such functions off Lipschitz domains. We prove the fundamental
Sobolev-type inequalities in Section 4.5, an immediate application of which
is the compactness theorem in Section 4.6. The key to understanding fine
properties of Sobolev functions is capacity, introduced in Section 4.7 and utilized
in Sections 4.8 and 4.9.

4.1 Definitions and elementary properties
Throughout this chapter, let U denote an open subset of K",

DEFINITION Assume f € L| (U), 1 <i < n. We say g; € L\, .(U) is the
weak partial derivative of f with respect to x; in U if

0,
/f(dsod:c:—/g,«pdr (%)
U T U

for all p € CL(U).

120
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NOTATION It is easy to check that the weak partial derivative with respect to
xi, if it exists, is uniquely defined £" a.e. We write

of _

(7;:'(}' (r=1,...,n)

df 6f}
Df=1 —,..., :
f (0.’171’ 6SCu

provided the weak derivatives of [0xy,...,0 f/0x,, exist.

and

DEFINITIONS Letl < p < oo.
(i) The function f belongs to the Sobolev space
W' (U)

if f € LP(U) and the weak partial derivatives Of [0z; exist and belong
to L*(U).i=1,...,n.

(ii)) The function f belongs to W‘L;”(U ) if f € WIB(V) for each open set
VccU.

(iii) We say f is a Sobolev function if f € W;(I,'C"(U) for some | < p < oo.

REMARK Note carefully: if f is a Sobolev function, then by definition the
integration-by-parts formula

0p _ of
/Uf('):ltl dm— U('):ci@dx

is valid forall p € C'(U),:=1,...n. |

NOTATION If f € W'P(U), define

1/p
ey = () 117+ 10117 az)

for | <p < o0, and

1 iy = 55 sup(If] + (D).

DEFINITION We say

fo = f in WHP(U)
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provided
| fr ~ f”wl.n((/) -0,
and
fe = f in WI(U)
provided
1fi = flly gy = 0 for each V cC U
T ——

4.2 Approximation
4.2.1 Approximation by smooth functions

NOTATION (i) If € > 0, we write U, = {z € U | dist(z, dU) > €}.
(ii) Define the C°-function n: R* — R as follows:

( 1 )
cex if |z] < 1
n(z) = < b (|$|2—1 i
0 if |z| > 1,

/n n(z) dr = 1.

— 1 x n\.
ne(T) = 'é;,,"? (?) (e>0,zeR");

\

the constant ¢ adjusted so

Next define

ne is the standard mollifier.
@ii) 1If f € L} .(U), define

fE=nex f;

that is,

f‘(«'L‘)-:-/U ndz—y)f®) dy  (z € U

Mollification provides us with a systematic technique for approximating Sobo
lev functions by C*° functions.
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THEORIM 1
(i) Foreache>0, f € C>*(U.).

(ii) If f€C(U), then
ff=f

uniformly on compact subsets of U.
(iii) If f € Ll (U) for some | <p < 00, then

f— fin L (U).

(iv) Furthermore, f¢(x) — f(x) if x is a Lebesgue point of f; in particular,
fe—f L" ae.

(v) If feW ’”(U) for some | <p < oo, then

afc  of .
gz, =" *5g  C

on Uk.
(vi) In particular, if f € Wli;c”(U)for some | < p < o0, then

fe = fin WSP(U).

PROOF

I. Fix any point z € U, choose | < ¢ < n, and write e; to denote the ith

coordinate vector (0,...,1,...,0). Then for |h| small enough, z + he; € Uk,
and we may compute

fe(z + he;) — f(z) 1 V[ (z+hei—y) (m—y\'
> A L e ) "7\ /_f(y)dy

__1 _l_” :z:+hei—y\ :c—y\'
= vh_n( - /-n( - /df(y)dy

for some V CC U. The difference quotient converges as h — 0 to

1On (z—y o One
66.7,‘1'( € ) amz(xﬁy)

for each y € V. Furthemmore, the absolute value of the integrand i1s bounded by

1
“IIDnll Il € L'(v).
Hence the Dominated Convergence Theorem implies

afe fé(z + he;) — f¢(x)
0x; (z) = }LI-IR) h
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exists and equals

e
v Oz;

(z - ) f(y) dy-
A similar argument demonstrates that the partial derivatives of f¢ of all orders

exist and are continuous at each point of Ug; this proves (i).
2. Given V CC U, we choose V C W C U. Thenforz € V,

fé(z) = -;;/B(x’e) n <:E Z y) fly) dy = /13(0,1) 1(z)f(x - €2) dz.

Thus, since fB(O,I) n(z) dz =1,

F@ - @< [ el - e) - f(o)] da

B(0,1)

If f is unifoanly continuous on W, we conclude from this estimate that f¢ — f
unifoomnly on V. Assertion (ii) follows.

3. Assume | <p<ooand f € Lf:,c(U). Then for VCC W CC U, x €V,
and ¢ > 0 small enough, we calculate in case 1 <p < ©

L

1f(2)] < /B(Ol) W(Z)I‘Pn(z)%lf(:c — €2)] dz

1 )|

2)d ’ 2 —€2)|? dz ”
< (/B(O,l)n( ) 2) (/B(O‘”n( ) f(z — ez) d)
= (/ n(2)|f(z — €2)|P dz) ” .

B(0,1)

Hence for 1 < p < oo we find

/vlfe(x)lp dz < /B(O,l)n(z) (/vlf(:c—-ez)lp d.r> dz
< [ 1w dy (*)

for ¢ > 0 small enough.
Now fix § > 0. Since f € LP(W), there exists g € C(W) such that

||f - glle(W) < 0.

This implies, according to estimate (x),

1£ = 6l gy, < 6
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Consequently,

£~ fllggy S 26 119" = 0l < 36

provided ¢ > 0 is small enough, owing to assertion (ii). Assertion (iii) is proved.
4. To prove (iv), let us suppose f € L, .(U) and x € U is a Lebesgue point
of f. Then, by the calculation above, we see

x -y

@@l g [ on (52 1w - sl

<a@llill,. | 17~ 1) dy

B(z,¢)

= o(1) as € — 0.

5. Now assume f € W,2”(U) for some | < p < oo. Consequently, as
computed above,

ofc . _ [ One
mz_éf) =/, 8:z:i($ - y)f(y) dy
= [ Do y)fiy) oy
U UYi
=/m($~y)d—f ) dy
U Y;
= T * gﬂ,‘f; (.’E)

for x € U,. This establishes assertion (v), and (vi) follows at once from (iii).

THEOREM 2 LOCAL APPROXIMATION BY SMOOTH FUNCTIONS

Assume f € Wl’p(U ) for some | < p < oo. Then there exists a sequence
{fe}2, c Whe(U) N C=(U) such that

fe = f in WHP(U).

Note that we do not assert fr, € C* (U): see Theorem 3 below.

PROOF
1. Fix € > 0 and define

Ur = {:c g U | dist(z,dU) > %} NU(0, k) (k=1,2,...),

U()Ew.
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Set
Vi = Uiy — Up_y (k=1,2,...),

and let {(}32, be a sequence of smooth functions such that
G €CP(V),  0<Ge <1, (k=12,..),
Ez.;l Ck = ] on U.

Foreach k = 1,2,..., fCx € WbP(U), with spt (fCx) C Vi; hence there exists
€, > 0 such that

" spt (e, * (fCk)) C Vi

-

([ Vax ()= ral ) < 5, e

([ V(0076 - DG P o) <
\ \Ju

Define
= Znek * (f(k)
k=1

In some neighborhood of each point z € U, there are only finitely many nonzero
termns in this sum; hence

g C(U).

2. Since

f=> fG,
k=1

(x) implies

(/lnek (fCk) - va”da:)]<e

WK

?—
Il

1

and

101~ Dfll gy < 3 ( [ e (DG - DG ) < e
k=1

Consequently f. € WP(U) and

fe— f in WHR(U) as e—0. |
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» v(y)

Q(x,r) V

FIGURE 4.1
A Lipschitz boundary.

Our intention next is to approximate a Sobolev function by functions smooth
all the way up to the boundary. This necessitates some hypothesis on the
geometric behavior of AU.

DEFINITION We say QU is Lipschitz if for each point x € QU, there exist
r > 0 and a Lipschitz mapping v : R*~! — R such that — upon rotating and
relabeling the coordinate axes if necessary — we have

un Q(:Ca 7‘) = {Z/ | W(yls <oy yn—l) < yn} N Q(:C’ 7‘)7
where Q(z,7) = {y ||y —zil <mi=1,...,n}
In other words, near z, QU is the graph of a Lipschitz function.

REMARK By Rademacher’s Theorem, Section 3.1.2, the outer unit nommal v(z)
to U exists for H" ! ae.z € 0U. |

—————

THEOREM 3 GLOBAL APPROXIMATION BY SMOOTH FUNCTIONS

Assume U is bounded, OU Lipschitz. Thenif f € WP (U) for some 1 < p < oo,
there exists a sequence {fi}32, € WHP(U) N C°(U) such that fy, — f in
wlp(U).

PROOF
I. For z € U, take r > O and v : R*~! — R as in the definition above.

Also write Q = Q(z, 1), Q' = Q(z,r/2).
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B(yEe)

FIGURE 4.2
The small ball B(y®,¢) lies in U N Q.

2. Suppose first f vanishes near Q' NU. Fory € UNQ’, ¢ > 0 and o >0,
we define

Y =y + eae,.

Observe B(y¢,e) C U N Q for all € sufficiently small, provided « is large
enough, say o = Lip () + 2. See Figure 4.2.

We define
1 2
= — ~ c—2)d
f =5 | (3) 1 -2 ez
1 y—w )
= — n| =——+cae, | f(v)dw
€ B(y*,¢€) < €
foryeUNQ.

3. As in the proof of Theorem 1, we check
feeC®UNQ))
and
fe—f in WhP(UNQ').

Furtheamore, since f = 0 near Q' N U, we have f, = 0 near Q' N U for
sufficiently small ¢ > 0; we can thus extend f. tobe 0 on U — Q’.

4. Since OU is compact, we can cover OU with finitely many cubes Q; =
Q(z;,r;/2) (1 =1,2,...,N), as above. Let {¢;}}Y, be a sequence of smooth



4.2 Approximation 129

functions such that

0L G <, spt ¢ C @ (i=1,...,N)

0<Gp< I, spt G C U
N

ZC,- =1 on U

=0

L

and set
ff=f¢G (=0,1,2,...,N).
Fix 6 > 0. Construct as in step 3 functions g* = (f*),, € C*®°(U) satisfying
" spt(gh) CUNQ:

. . o
X lg* - f “WI-P(UF\Q,) < N

fori = 1,...,N. Mollify fO as in the proof of Theorem 2 to produce g° €
C°(U) such that

o
0 0
lg" — f “wlm(U) < 5

Finally, set

N
g=) g'€C®(U)
1=0

and compute

N
0 0 i__ gi |
Hg ~— f”Wl'P(U) < Hg —f HW!.p(U) + Z Hg f HW].p(UnQi) <.

i=1

4.2.2 Product and chain rules

In view of Section 4.2.1 we can approximate Sobolev functions by smooth
functions, and consequently we can now verify that many of the usual calculus
rules hold for weak derivatives.

Assume 1 < p < oo,

THEOREM 4

(i) (Product rule) If f,g € WHP(U) N L®(U), then

fg € WYP(U) A L®(U) and
d(fg) _ Of

85132' - 6£Cz'g+ f

a9
6$,'

Lae (1=12,...,n).
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(ii) (Chain rule) If f € W'P(U) and ¥ € C'(R), I € L*(R). F(0) =0,
then F(f) € W' (U) and

ag:!(:;f) — F’(f)b%f; L" a.e. (z: l,...,n)-

(If L*(U) < oo. the condition F(0) = 0 is unnecessary.)
(iiiy If f € Wh(U), then f*. f~, |f| € W' (U) and

[ Df L"ae on{f>0}
Df+—{ 0 L"ae. on{f <0}

Df"={ 0 " a.e.on {f >0}

—~Df L™a.e. on{f <0}

0 L™ae. on{f=0}
~Df L™ ae. on{f <0}

Df LMae.on{f>0}
D|f| =
(iv) Df=0L"ae on{f =0}
REMARK Assertion (iv) generalizes Corollary 1(i) in Section 3.1.2. If F is

only Lipschitz, the chain rule is valid but more subtle.

PROOF
1. To establish (i), choose ¢ € C!(U) with spt () C V cC U. Let

fe = Ne * f, g¢ = ne * g as in Section 4.2.1. Then

Oy
/fgdxt /fgdxl dzx

= lim / Fege 22 ay

e—0 v (9331
3 . dfc éd €
———flgr(l)/ (dm,g +J r,)(pdx

of
_/V<a$z +faxz)
(¥
"ﬁL(axz +fd:c1) > dz,

according to Theorem 1.
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2. To prove (ii), choose p, V', and f° as above. Then

off

= — lim F'(fe€ da:
im | P(7) 5 da

=‘/F(f)§isodm

_ ooy Of
/UF(f)axiso dz,

where again we have repeatedly used Theorem 1.
3. Fix € > 0 and define

2 4 2\} -
F.(r) = (" +e )1 —¢ ifr>0
(r) { 0 if r < 0.

131

Then F, € C'(R), F! € L*(R), and so assertion (ii) implies for ¢ € C!(U)

Oy _ af
/UFC(f)axidm- /UF(f)dxtgod:c

Now let ¢ — 0 to find

0
/f+ (pd:c-—/ afgad:z:.
U &Cz Un{f>0} a-'Ci

This proves the first part of (iii); the other assertions follow from the formulas

=0 fl=Ff+f.
4. Assertion (iv) follows at once from (iii), since

Df=Df*-Df~. |

4.2.3 W" and Lipschitz functions
THEOREM 5

Let f : U — R Then f is locally Lipschitz in U if and only if

fe Wl ().
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PROOF
1. First suppose f is locally Lipschitz. Fix | < i < n, Then for each
VccWccU, pick 0 < h < dist (V,dW), and define

f(z + he;) - f(z)
h

i

g; () (z € V).

Now

sup|g;'| < Lip (f [w) < oo,
h>0

so that according to Theorem 3 in Section 1.9 there is a sequence fz; — 0 and
a function g; € L2 (U) such that

gh’ — g; weakly in LP (U)

forall 1 < p < co. But if p € C!(V), we have
U

We set h = hj and let 7 — oo:

/fdﬂcz /%ww

Hence g; is the weak partial derivative of f with respect to z; (z = 1,...n),
and thus f € W_°(U).

2. Conversely, suppose f € W,L;OO(U ). Let BCCU be any closed ball con-
tained in U. Then by Theorem | we know

sup |IDfEIl, o, .. < 00
0<£<€0|| L (B)

for €y sufficiently small, where f¢ = 7, * f is the usual mollification. Since f*
is C*°, we have

fo(z) — f(y) = /0l Df*(y +t(z —y)) dt - (z — y)
for z,y € B, whence
£ (=) = FW| < Cle -y,
the constant C' independent of €. Thus
[f@) = fWI < Clze—yl  (z,y €B)

Hence f |g is Lipschitz for each ball BCCU, and so f is locally Lipschitz
in U.
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4.3 Traces

THEOREM 1
Assume U is bounded, QU is Lipxchitz, | < p < oo.

(1) There exists a bounded linear operator
T:WhP(U) — LP(0U; H* ")
such that
Tf=f on OU

for all f € W'»(U) N C(D).
(ii) Furthermore, for all p € C'(R";R") and f € W'P(U),

/fdivcp d:z::-/Df-cp d:c-i—/ (p-v)TfdH™ 1
U U U

v denoting the unit outer normal to OU.

DEFINITION The function T f, which is uniquely defined up to sets of H™ ! L
OU measure zero, is called the trace of f on OU. We interpret Tf as the
“boundary values” of f on OU. -

REMARK  We will see in Section 5.3 that for H™~! a.e. point € 9U,

lim][ f = Tf(z)| dy = 0,
B{z,r)nU

r—0

and so

Tf(x)= limf fdy. |
B(zx,r)ynU

r—0

PROOF

I. Assume first f € C'(U). Since AU is Lipschitz, we can for any point
z € OU find r > 0 and a Lipschitz function v : R*~! — R such that — upon
rotating and relabeling the coordinate axes if necessary —

UﬂQ(IE,T‘) = {yI'Y(yl’---,yn—l) < yn}nQ(x’T)'

Write @ = Q(z, ) and suppose temporarity f =0 on U — Q. Observe

L

~en-v > (I+Lip(y)H)2>0 H''ae.onQNaoU. (%)

2. Fix € > 0, set

b=

Be(t)= (2 +e¥)2—-€¢  (t€R),
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and compute

,B((f) dHn-—l — Lnauﬁe(f) d,Hn-I

oU
<C B (f)(=ey - v) dH"™! by (%)
QNoU
=-C 9 (f)) dy
QNU yné&

(by the Gauss—Green Theorem; cf. Section 5.8)

<C 1B (HIIDF| dy
onuU

<C / Df] dy,
U

since |G:'| < 1. Now let € — 0 to discover

[ n—1
| nart<c /U Df| dy ()

3. We have established (%) under the assumption that f = 0 on U — Q for
some cube @ = Q(z,r), x € JU. In the general case, we can cover U by
a finite number of such cubes and use a partition of unity as in the proof of
Theorem 3 in Section 4.2.1 to obtain

/ fldnt <C [ Df| +|f] dy (% %)
eUu U

for all f € C'(U). For | < p < oo, we apply estimate (xx+) with |f|P
replacing |f| to obtain

/ FP At < © / DFIIFIP~ + |£P dy
ov U
gC/ IDfI? + |f|? dy (% % % %)
U

for all f € C' (D).
4. Thus if we define

Tf=flou

for f € C'(U), we see from (x «««) and Theorem 3 in Section 4.2.1 that T
uniquely extends to a bounded linear operator from W'?(U) to LP(OU; H™1).
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Clecarly,
Tf=flou

for alt f € W' »(U)NC(U). This proves assertion (i); assertion (ii) follows by
a routine approximation argument from the Gauss-Green Theorem.

4.4 Extensions

THEOREM |
Assume U is bounded, QU Lipschitz, | <p < o0o. Let U CC V. There exists a
bounded linear operator

E:W' () - Whe(R")
such that
l'f =f on U
and
spt (EfyCV
for all f € WhHhe(U).

DEFINITION Ef is called an extension of f 1o R™.

PROOF
I. First we introduce some notation:

(a) Given z = (zy,...,Z,) € R, let us write z = (2',z,) for 2’ =
(z1,...,Zn-1) € R*, 2, € R Similarly, we write y = (', yn).
(b) Given z € R™, and r, h > 0, define the open cylinder

Cle,r,h) = {y €R™| |y — 2’| <7, [yn — 2| < h}.

Since QU is Lipschitz, for each x € AU there exist — upon rotating and
relabeling the coordinate axes if necessary — v, h > 0 and a Lipschitz function
v: R*~! 5 R such that

h
!/
max —Zn|l < —,

UNC(z,r,h)={y| |z’ —¥| <n9Y) < Yo < zn + L},
~ C(z,r,hy V.

.y
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FIGURE 4.3
A region U* above, and a region U~ below, a Lipschitz boundary.

2. Fix £ € 0U and with r, h, v as above, write

C = C(z,r,h), C'=C(z,1/2,h/2)
Ut=C'nUu, U-=C'-T.

3. Let f € CY(U) and suppose for the moment spt (f) C C'NU. Set

fr) =fly) if yeU',
W) =fW,29¥)—yn) if yeU .

Note f-=f*=fon U NC",

4. Clalm #1: ||f—~||Wl,p(U-) S C||f||wl.p(u)‘

Proof of Claim #1: Let ¢ € CL(U™) and let {yx}$2, be a sequence of C™
functions such that

S W27

Ve — Y uniformly
1 Dyx — Dy L1 ae.,
supg [|Dvkl] oo < 00
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Then, for | <:<n -1,

_0Op

/- f Oy, Y
= ,,2 y') — " i‘"‘" l

. f . 29" -y )e)y,- dy
—im [ f0 29l — ) 22
—k—--oo ”- Y, ek \Y Yu (.)“ Y
_ . af . ' af / / 87&' !
= kl—l—.ngo/(‘]_ (6—?1:(?/ :21k(y )_y:l)+2ayu(y ) 27&(7/ )-y") 63/: (y ) (pdy

—_ af ' / af / / 8'7 /
= /U*< yléy,%/(y)—yn)+28yn(y,27(y)—yrl)éT(y) p dy.

Similarly,
_d d ,
f —(f)—(p- d =f ——f—-(y’,Zv(y ) = Yn)p dy.
U- Yn v- OYn
Now recall
1P|} o < 00,
and thus

/ IDf(y' . 29(Y) — ya)| dysC/ |IDfI” dy < o0
U- U

by the change of variables formula (Theorem 2 in Section 3.3.3).
5. Define

' i on U
Ef=f=¢ f~ onU
0 onR~(UTUT),

\

and note f is continuous on R".
6. Claim #2: E(f) € Whp(R™), spt (E(f)) c C'C V, and

||E(f)||wi,p(mn) S C'HfHW"P(U)'

Proof of Claim #2: Let p € C}(C'). For1 <i<n

-0y + 0y _ 0y
X dy = L d — d
o To V= J e Ty oy
of * of~
- dy— | Y4
g+ Oy © YT - o 7

n [ (T(FH) = T(F s dH!
au
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by Theorem 1 in Section 4.3. But T(f+) = T(f7) = f lav, and so the last
term vanishes.

This calculation and Claim #1 complete the proof in case f is C'', with support
in C'NU.

7. Now assume f € C'(U), but drop the restriction on its support. Since QU
is compact, we can cover JU with finitely many cylinders Cy, = C(x4., r, ht)
(k = 1,...,N) for which assertions analogous to the foregoing hold. Let
{Ck}i, be a partition of unity as in the proof of Theorem 3 in Section 4.2.1,
define E(Ci.f) (k= 1,2,...,N) as above and set

N
Ef =) BE(Gf)+f.
A=1

8. Finally, if f € W"?(U), we approximate f by functions f; € W'?(U)N
(U) and set

(jl

Ef = lim Efg |

4.5 Sobolev inequalities
4.5.1 Gagliardo—Nirenberg-Sobolev inequality

We prove next that if f € W"p(IR") for some | < p < n, then in fact f lies in
LP" (R™).

DEFINITION For | < p < n, define

p* is called the Sobolev conjugate of p. Note 1/p* = 1/p — 1 /n.

THEOREM 1 GAGLIARDO-NIRENBERG-SOBOLEV INEQUALITY
Assume 1 < p < n. There exists a constant Cy, depending only on p and n,

such that
. 1/p* 1/p
(/ | fIP dfl?) <G </ |Df|pa’x)
n Rn

for all f € WHLP(R™).
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PROOF

1. According to Theorem 2 in Section 4.2.1, we may as well assume f €
C!(R"). Then for | < i < m,

T af
f(:l'lv ,lu 1“"71): ~ Ly, ,t“ y Ty (l(,
- 00 dil,‘z( l )
and so
(e @]
/()] s/ D@1 st dte (1 <i<n)
-0
Thus

Integrate with respect to x;:

[t o= (o™ [ ([ ona) ™

1

< (/:IDfI dtl)r’ (H/Z /z Df| dzs dt,-) o

1=

[ ]

Next integrate with respect to x; to find

/ / FIY dzy day
<[ [Cpnanan)” ([ [ ionandn)”
xH(/ / / |Df| dx; dx; dti) o .
i3 —00 J —00 J —00

We continue and eventually discover

[ \ n oo oo T
R i=1 =00 — 00

=(/ |Df|da:)“"'.
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This immediately gives

( [ da:)ﬁs [ 1ns1as ()
R Jre

and so proves the theorem for p = 1.
2.If | < p<mset g=|f]" withy > 0 as selected below. Applying (*) to
g we find

n—I|

([ Vs d:v) "

<o [ UPinside

p-i 1
(r-np P z
<o [n=a) " ([ 1o ae)”.
Choose ~ so that
Mmoo P
Then
mo_ p np_ _ «
n—l_(7 l)p—l#n—p P
Thus
3 5t :-,
([ e d:c) sc(] I d:c) (/ |Df|*’dsv)
n R"’ Qn
and so

'G‘[__,

([ﬁmp'dm) £C<fn|Dfl”dm)$

where C depends only on n and p. |

4.5.2 Poincaré’s inequality on balls
We next derive a local version of the preceding inequality.
LEMMA 1

For each | < p < oo there exists a constant C, depending only on n and p,
such that

/ () - F(2)IP dy < Crnte! / DF)Ply — '™ dy
B(z,r)

B(z,r)

for all B(z,r) C R*, f € C'(B(z,r)), and z € B(z.r).
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PROOF
If y,2 € 13(z,7), then

d

| |
f(?l)*f(3)=/o a";f(:’-’Jff(y'Z))dt:/O Df(z+tly —2))dt (y—z),

and so

|
fy) - f()" <y - z|?'/0 IDf(z + t(y — 2))|” dt.

Thus, for s > 0,

[ F(5) - F(2)P dH(y)
B(z.7)N@B(z,s)

1
<o [ [ Df(z + ty — )P dH*(y) d
0 JB(z,r)N@B(z,3)

'l
S Sp/ —m/ |Df(lU)|p dHn—l('IU) dt
0 L B(z,r)N@B(z,ts)

!
= gntPI / / |Df(w)|Plw— z|'~" dH™ ' (w) dt
0 JB(z,r)N@B(z,ts)

= s"“’”?’/ |Df(w)|P|lw - 2|' ™" dw.
B(z,r)NB(z,8)
Hence Proposition | in Section 3.4.4 implies

/ @) - f2)P dy < Crmte= / Df(w)Plw - " dw. B
B(z,r)

B(z,r)

THEOREM 2 POINCARE’S INEQUALITY
For each | < p < n there exists a constant C,, depending only on p and n

such that

1/p’ 1/p
(f f = (Fzrl? dy) < Cor (f |DfIP dy)
B(z,r) B(:I:,T')

for all B(zx,7) C R*, f € WHP(U(x,1)).

Recall (f)z,r = JCB(,,.,,,) f dy.
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PROOF
1. In view of Theorem 2 in Section 4.2.1 we may assume f € C'(B(z, r)).

We recall Lemma | to compute

foor= ey = fouf - s dal dy
B(z,r)

B(x,r) B(r,r)

][ ][ f(2)" dz dy
B(x,r)JB(x, r)

<c{ / DSy ~ 2" d= dy
B(z,r) B(x,r)

o], o
B(z,r)

2. Claim: There exists a constant C = C(n, p) such that

L t

Pr P
foigray) <c(rf  Dgrdy+s lgrdy
B(z,r) B(z,r) B(z,r)

for all g € W'P(U(z,T)).

Proof of Claim: First observe that, upon replacing g(y) by (1/r)g(ry) if
necessary, we may assume 7 = |, Similarly we may suppose :c = 0. We next
employ Theorem | in Section 4.4 to extend g to g € W!-P(R") satisfying

g < Cllgll

||g||wi.p(mn) Wl.p(U(O‘I))' (**)

Then Theorem 1 implies
1

(f IQI”*dy) 5(/ il )
B(0,1) n
< (f |D'g'|*’dy)”
.

<C (/ |Dgl” + |g|? dy) ,
B(0,1)
according to ().

3. We use (x) and the claim with g = f — (f).» to complete the proof of the
theorem.
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4.5.3 Morrey’s inequality

DEFINITION Let 0 < o < 1. A function f : R* — R is Holder continuous
with exponent o provided

x) — l
sup | f(x) f‘('.l)|<oo
syer” =yl
r#y

THEOREM 3 MORREY’S INEQUALITY
(i) For each n < p < oo there exists a constant C's, depending only on p and

n, such that
1/p»
D f|P dw)

for all B(z,r)C R*, f e WhP(U(z, 1)), and L" ae. y, z € U(z,7).
(ii) In particular, if f € WVP(R™), then the limit

1in?)(f)x,,. = f*(x)

T—

[f(y) — f(2)| < Car (fB

(1)

exists for all ¢ € R*, and f* is Holder continuous with exponent | —n/p.

REMARK See Section 4.2.3 for the case p = oo. i

PROOF
1. First assume f is C! and recall Lemma | with p = | to calculate

f(y) — f(2)l
< f £) = f(w)] + 1f(w) = £(2)| dw
B(z,r)

< c[ D f(w)l(y - w]'™" + |z = w|*™") dw
B(Iar)

——

2!

SC(/ (Jy—w/' " "+|z—w|' )7 dw) (
B(z,r)

/ |D f|P dw)
B(z.r)
1
< Cp(n=tn=nzE7) 55 ( / IDf P dw)
B(z,r)

L
_ Cri-3 (L( i dw)



144 Sobolev Functions

2. By approximation, we see that if f € W!'”(U(z, 1)), the same estimate
holds for L™ a.e. ¥,z € U(z, 7). This proves (i).

3. Now suppose f € WUP(R™), Then for L" a.e. x,y we can apply the
estimate of (i) with » = |z — y| to obtain

P

|f(y)“f($)|§cliv—y|t"% (/B |Df|”dw>

(.2,1°)

P ]

T—yl "

L)
13

< ClIDA,,

(R)

Thus f is equal £" a.e. to a Holder-continuous function f. Clearly f* = f
everywhere in R™,

4.6 Compactness

THEOREM 1
Assume U is bounded, OU is Lipschitz, | < p < n. Suppose {fr}2., is a
sequence in WP(U) satisfying

Sup”fk l.p < 0.
0P il

Then there exists a subsequence {fi,}3<, and a function f € W LP(U) such
that

fk_-,- -->f in Lq(U)
for each | < q < p*.
PROOF

. 1. Fix a bounded open set V such that U CC 1" and extend each f; to
fr € WHP(R™), spt (fr) C V, with

sl;P||fk||W1_,,(Rn) < CS‘;P||f’~'||W1.pu-, < 00. (%)

2. Let f_,g = 7 * fx be the usual mollification, as described in Section 4.2.1.
3. Claim #1: || f¢ — fk||L,,(Rn) < Ce, uniformly in k.
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Proof of Claim #1. First suppose the functions fi are smooth, and calculate

Fo(2) - fe()] < / 0(2) (e — €2) — fu(z)| dz

J 130, 1)

bd
= / n(2)| (—{?fk(il?—tfz) dt| dz
J o p @t

] -
<e / 71(2)/ | D fr(x — etz)| dt dz.
J 301 0
Thus
l
| fi — fill” o< Cfp/ 77(3)/ (/ |D fr(x — etz)|” d:c) dt dz
Lr(R) B(0,1) 0 .
< Ce||fill

Mll,p(mn)
< C¢e by (%).

The general case follows by approximation.
4. Claim #2: For each € > 0, the sequence {fi}72, is bounded and equicon-

tinuous on R™.

Proof of Claim #2. We calculate

fe(z)l < /B e =) dy

< CC—ank”Lp(Rn)

< Ce™

and

IDfé(z)] < [ . 1Dz =yl i)l dy
B(z,c
< Ce ™ H,

5. Claim #3: For each 6 > 0 there exists a subsequence {fk, }52; C {fk }7=;
such that

limsup”fki - fkj”Lp(U) S 6'

1,}—00

Proof of Claim #3:. Recalling Claim #1, we choose ¢ > 0 so small that

_ - o
SUP|f€“"fk pi{pn S_'
L | k ||L (R™) 3
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Next we use Claim #2 and the Arzela—Ascoli Theorem to find a subsequence
{f¢, 152, which converges uniformly on R". Then

|| f&; 'fk-”Lv(U)
< | fx; -
S— ||fk] - f’\?jHLI'(R") + ||f-,§] - fk‘:..lle(Ru) + ||f;\:: - fk-'”LP(IR")
20
< —+
3 1f5, -
<6

for i, large enough.

6. We use a diagonal argument and Claim #3 with § = 1,1/2,1/4, etc. to
obtain a subsequence, also denoted {f,}52,, converging to f in LP(U). We
observe also for 1 < q < p*,

155 = Fll pagery S Wiy = 1Sy 1y = 117

Lo (U)’

where 1/qg=6/p+ (1 - 0)/p* and hence 6 > 0. Since { fi }7=., is bounded in
LP" (U), we see

Jli.ngollfkj - f||LQ(U) =0

for each 1 < g < p*. Since p > 1, it follows from Theorem 3 in Section 1.9
that f € whe(U). |

REMARK The compacmess assertion is false for ¢ = p*. In case p = 1, the
above argument shows that there is a subsequence {fi,}>, and f € L' (U)
such that

llm ||fk - f||Lq(U)

foreach 1 < q < 1*. It follows from Theorem | in Section 5.2 that f € BV (U).
!

4.7 Capacity

We next introduce capacity as a way to study certain “small” subsets of R™.
We will later see that in fact capacity is precisely suited for characterizing the
fine properties of Sobolev functions. For this section, fix | < p < n.
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4.7.1 Definitions and elementary properties

DEFINITION K'={f:R"-R| f>0,feL? (R"), Dfe L"(R":R")}.

DEFINITION [f A C R". set

Cap,(A) = inf{/ |IDff’dz | fe KP,AC {f > I}O} .
We call Cap,(A) the p-capacity of A.

REMARK

(i) Note carefully the requirement that A lie in the interior of the set { f > 1}.

(i) Using regularization, we see

Cap,(K) = inf{/n DffPdz| fe CR"), f > X;{}

for each compact set K C R”.
(iii) Clearly, A C B implies

Cap,(A) < Cap,(B). |

LEMMA |
(i) If f € KP for some 1 < p < n, there exists a sequence {fi}32, C
W1P(R™) such that

||f o kaLp* (R") — 0
and
IDf = Dfill gy — O

as k — oo.
(i) If f e KP, then

I|f||Lp*(Rn) < ClHDfHLp(Rn):

where C, is the constant from Theorem 1l in Section 4.5.1.
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PROOF  Select ¢ € C}(R™) so that
0< (<, (=1 on B(0,I)
spt(¢) C B(0,2), |D¢| <2.

For each k = 1,2,..., set (x(x) = {(z/k).
Given f € KP, write f;. = f(x. Then f, € WY (R"),

/ f = fxl?” dy < / fIP" dy,
: R — B(0,k)

and

| 1Df =D dy

<o { [ 10D + 170G ay |

- 2P
< ‘{/ DS dy + 2 Tk dy}
R™ — B(0,k) B(0,2x)-B(0,k)

1~
<C / |DfIP dy + 4P (/ Fila dy)
R — B(0,k) R™ —B(0.k)

This proves assertion (i). Assertion (ii) follows from (i) and Theorem 1| in
Section 4.5.1.

LEMMA 2
(i) Assume f,g € KP. Then

h = max{f, g} € K?

and

_ [ Df L™ae.on{f>g}
Dh = { Dg L™ ae.on{f <g}.

An analogous assertion holds for min{{, g}.
(i) IffeKPandt >0,

h = min{f,t} € K?.
(iii) Given a sequence {fi}%>2,; C K7, define

g= sup fi
i<k<oc
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and

h= sup |Dfyl.
1<k<oo

If he LP(R"), then g € K? and |Dg| < h L" a.e.

PROOF
1. To prove (1) we note

h=max{f, g} =f+(g- "
Hence Theorem 4 in Section 4.2.2 implies

_ [ Df ae.on{f>g}
Dh = { Dg ae.on{f<g}

Thus Dh € L?(R"). Since 0 < h < f + g, we have h € L?" (R") as well.
2. The proof of (ii) is similar; we need only observe

OSh:min{f,t}S f,

and so h € L? (R").
3. To prove (iii) let us set

gi = sup fk.
1<k<I

Using assertion (i) we see g; € KP and

|Dgi| < sup |Dfx| < h.
1 <k<l

Since g; — g monotonically, we have
||g||Lp* (R™) = ll-fgo ||gI||Lp‘ (R™)
<G lilr}\-”i)r.}f||Dg1||L,,(Rn) by Lemma |

Thus g € LP’ (R™). Now, for each ¢ € C} (R™; R"),
~— 00

/gdivgody:llimf g1 div o dy

= - lim/ - Dg; dy

l— o0

< / [o|h dy.
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It follows that the linear functional [ defined by
L(p) = / gdiv p dy (p € CHR"; R"))
has a unique extension . to C..(R"; R™) such that

L) < [ lplhd

forp € C.(R™; R"). We apply Theorem | in Section 1.8 and note the measure
u constructed there satisfies

MMS/h®

A

for any Lebesgue measurable set A C R™. It follows that
L(yp) = / o kdy

< h L" ae. Thus g € K? and |Dg| = |k

where k € LP(R™; R") and |k <h

Lrae. |

THEOREM [
Cap,, is a measure on R™.

Warning: Cap, is nor a Borel measure. In fact, if A CR" and 0 < Cap,(4) <
oo, then A is nor Capp—measurable. Remember also that what we call a measure
in these notes is usually called an “outer measure” in other texts.

PROOF  Assume A C{Ji—, Ak, Y o, Cap,(Ay) < oo. Fix € > 0. For each
k=1,..., choose fr € K? so that

A C{fr 2 1}°
and

€
[ 1Dsl? dz < Capy(44) + 57

Define g = sup; ¢y oo fe- Then A C {g > 1}°, g € K? by Lemma 2, and

] IDgI”de/ sup | Dfil? dz
n R

n 1<k<oc
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Thus
Cap,(A) <) Cap,(Ax) I
k=l

THEOREM 2 PROPERTIES OF CAPACITY
Assume A, B C R",

(i) Cap,(A) = inf{Cap,(U) | U open, A C U}.

(ii) Cap,(AA) = A\"""Cap,(A) (A > 0).
(ii) Cap,(L(A)) = Cap,(A) for each affine isometry L : R* — R",
(iv) Capy(B(z,r)) =r""PCap,(B(0,1)).

(v) Cap,(A) < CH"P(A) for some constant C depending only on p and n.

(i) L"(A) < CCapp(A)"/ "=P for some constant C depending only on p
and n.

(vii) Cap,(AU B) + Cap,(AN B) < Cap,(A) + Cap,(B).
(viti) If At C...Ax C Akyy.... then

klingo Cap,(Ax) = Cap, (U Ak) ,

k=1

(ix) [f A1 D...Ax D Akyy... are compact, then

klingo Cap,(Ax) = Cap, (ﬂ Ak) .

k=1

REMARK Assertion (ix) may be false if the sets {A,}52, are not compact.
See Theorem 3 in Section 4.7.2 for an improvement of (v).

PROOF
1. Clearly Cap,(A) < inf{Cap,(U) | U open,U >-A}. On the other hand,
for each € > 0, there exists fe K™ such that A C {f21}°=U and

/ |Df|? dz < Cap,(A) +e¢
But then
Cap,(U) < / DfI? dr,

and so statement (i) holds.
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2. Fix ¢ > 0 and choose f € K? as above. Let g(x) = f(z/A). Then

ge K?", M cC {9 > 1}° and

[ | Dg|? dz = ,\""”/ |IDf|” dx.
e .
Thus Cap,(AA) < A"7P(Cap,(A) + ¢). The other inequality is similar, and so
(ii) is verified.

3. Assertion (iti) is clear.

4. Statement (iv) is a consequence of (ii), (iii).

5. To prove (v), fix 6 > 0 and suppose

AcC U B(x,Tk)
k=]

where 2rr < 6, (k= 1,...). Then

Cap,(A) < ZCapp(B(mk,'rk)) Cap,(B(0, 1) Z
k=i k=1

Hence
Cap,(4) < CH"P(A).
6. Choose ¢ > 0, f € K? as in part 1 of the proof. Then by Lemma |

. 1/p°
f? dz)
Rn

i/
<C (/ |Df|pd.r> ’

< Ci(Capy(A) +¢)"/P.

£rA) /P < (

Consequently,
L™(A) < CCap,(A)P'/7:

this is (vi).
7. Fix € > 0, select f € KP as above, and choose also g € KP so that

Bc {g>1}°, / |Dg|P dz < Cap (B) + ¢

Then
max{f,g},min{f,g} € K?

and

|D(max{f, g})|” + |D(min{f,g})I" = |DfIP + |Dg® L™ ae,
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according to Lemma 2. Furthermore,

AU B C {max{f, g} > 1}°,

AN D3 C {min{f, g} > 1}°.
Thus

n

Cap,(A U B) + Cap,(AN3) < / | D(max{f,g})|” +|D(min{f, g})I” dz

/ IDfIP +|Dgl” dz

N j R'n

< Cap,(A) +Cap,(B) + 2¢

and assertion (vii) is proved.

8. We will prove statement (viii) for the case | < p < n only; see Federer
and Ziemer [FZ] for p = 1. Assume limj .00 Cap (Aj) < oo and € > 0. Then
foreach k =1,2,..., choose f; € K7 such that

A C{z| fulz) 2 1}°
and
/n Dfi[? dz < Cap,(Ax) + 2—}
Define
hin = max{fy | 1 < k < m}, ho =0
and notice from Lemma 2 that h,, = max(hm-1, fm) € K7,
Am-i C {z| min(hm_1, fm) 2 1}°.

We compute

/ |Dhm|P dz + Capp(Am-l) < / | D(max(Am—i, fm))|P dzx
+/ | D(min(hop—, fn))|? dzx

_ / | Dhon [P + |Dfml? dz

< / |Dhm__1|?’d:c+Capp(Am)+-2%.

Consequently,

€

/n |Dhm|Pdz — /n |Dhm— | dz < Cap (Am) — Cap,(Am-1) + S
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from which it follows by adding that
/ |Dh,y, | dz < Cap (4,,) + € (m=12,...).

Set f = iMoo . Then (J2 Ay C {z | f(x) 2 1}". Furthermore,

1l ey = im0 llAmll e gy

< C] lfinnl’lgof I |Dhm||L;,(Rn )

t/p
< C[ lim Cap,(Am) +€| -

-+00

Since p > 1, a subsequence of {Dh,,}2_, converges weakly to Df in
LP(R™) (cf. Theorem 3 in Section 1.9); thus f € KP. Consequently,

Cap, (U Ak) < ||Df||ip(mn) < mlimoo Cap,(An) + €
k=1

9. We prove (ix) by first noting

Cap, (ﬂ Ak> < kgn;OCapp(Ak).
k=1

On the other hand, choose any open set U with {\,_, Ax C U. As{ oo, Ak

is compact, there exists a positive integer m such that A, C U for &£ > m.
Thus

kl_‘..“;‘o Cap,(Ax) < Cap,(U).

Recall (i) to complete the proof of (ix). |

4.7.2 Capacity and Hausdorff dimension

As noted earlier, we are interested in capacity as a way of characterizing certain
“very small” subsets of R®. Obviously Hausdorff measures provide another
approach, and so it is important to understand the relationships between capacity
and Hausdorff measure.

We begin with a refinement of assertion (v) from Theorem 2:

THEOREM 3
If H""P(A) < oo, then Cap (A) =0 (1 < p < n).

PROOF
1. We may assume A is compact.
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2. Clainr. There exists a constant (’, depending only on n and A, such that
if V is any open set containing A, there exists an open set 11" and f € I\'? such
that

(ACW C{f=1},
) spt(f)cV,
/‘IDdewS(I

Proof of Claim: Let V be an open set containing A and let § = 1/2 dist(A,
R" —V). Since H"~?(A) < oo and A is compact, there exists a finite collection
{U(zi,m)}i%, of open balls such that 2r; < 6, U(zs,m)N A # 0, A C
UiL, U(z;,7i), and

Za(n —pr! P <CH"P(A) + 1.
1=1
for some constant C.
Now set W = U’.';l U(x;,r;) and define f; € KP by

t

| if |T— i <y

— r — Ty .
fi(m)_ ¢ 2—-| " z| if 7 < |.’E—.’E,’| < 2r,
1

0 if 27'1' S |.’E - $i|.

Then
f |Dfi|P dxz < Crl 7P,

Let f = max;<i<m fio Then f € KP, W C {f =1}, spt(f) C V, and

/ IDf|P dg < Z/R Dfi|P dz < CY 7P < C(H™P(A) + 1).
n i:l n

1=1

3. Using the claim inductively, we can find open sets {V;}22, and functions
fi € KP such that

" AC Viy C Vi,
Vi C {fi = 1}°,
spt (fx) C Vi,

/ |Dfi|P dz < C.
k n

—_

Set
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and
_ 1 Ik
—s,k§ :

Then g; € K7, g; > 1 on V4. Since spt (|Dfi|) C Vi ~ Vkﬂ, we see

Cap,(4) < ] Dl de= 53 L IR

J k=1

égl Q

21

ZP — 0 as j — o0,
k=1

since p > 1. |

THEOREM 4
Assume A C R™" and 1 < p < oo. If Cap,(A) = 0. then H°(A) = 0 for all
s> mn—p.

REMARK We will prove later in Section 5.6.3 that Cap; (A) = 0 if and only if
=14y =0. |

PROOF
1. Let Cap,(A) =0 and n —p < s < co. Then for all i > 1, there exists
fie K? such that A C {fi > 1}° and

{
AL TS

Let g=>_., fi- Then

(i) < (o )"
" 9 T ——Z R ] T oo

—_—
—

and by the Gagliardo—-Nirenberg—Sobolev inequality,

(oo ae) ™ < ()™

00 i/
2.0 (/ Ifolde) <o

IA

Thus g € KP.
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2. Note A C {g>m}° for all m > I. Fix any a € 4. Then for r small

cnough that £(a,r) C {g > m}°, (g)a,r > m; therefore (g),, — o0 as T — 0.
3. Claim: For each a € A4,

|

limsup — |Dg|? dz = +co.
r—0 T7 JB(a,r)

Proof of Claim: Let a € A and suppose

|
lim sup — |Dg|? dz < co.
r—0 T 8(a,r)
Then there exists a constant M < oo such that

L |Dg|? dz < M

T B(a,r)

foral0<r<1. ThenforO<r<I,

][ 19— (g)ar]? dz < czrf’f Dl dr < Cr®.
B(a,r) B(a,r)

where § =s ~ (n — p) > 0. Thus

l(g)a.,r/Z - (Q)a,rl = Ln(B(glz, r/2))

] g — (g)a,r dr
B(a,r/2)

<2" f |g - (Q)a,rl dzr
B(a,r)

l/p
S 2" (][ lg - (g)a,rlp dIII)
B(a,r)

P
=Crbr.

Hence if k£ > 7,

k
1(9)a,i /2 = (9)anj2i| € Z 1(9)a,1/2t = (9)a,1/2-1]
l=j5+1

This last sum is the tail of a geometric series, and so {(g)a,1/2¢}5z, is a
Cauchy sequence. Thus (g), /2« 7+ 0o, a conradiction.
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4. Consequently,

oy 1
AC{aER IIlmsup-q |Dg|”dm=+oo
r—0 T B(a,)
' 1
C {aeR"|limsup — |Dg|” dx >0 = A,.
\ r—0 T B(a,r)
But since |Dg|” is £"-summable, H*(A;) = 0, according to Theorem 3 in

Section 2.4.3.

4.8 Quasicontinuity; Precise representatives of Sobolev functions

This section studies the fine properties of Sobolev functions.

LEMMA I
Assume f € KP? and ¢ > 0. Let

A={z €R" | (f)z,r > € for some r> 0}.
Then
C
Cap,(4) < ;5,/ |IDfI” dz (*)

where C depends only on n and p.

REMARK This is a kind of capacity variant of the usual estimate

ﬁ"{a:ElR"|f(:1:)>e}_<_-—1—/ IfP dz. |

c¢P

PROOF  For the moment we set € = 1 and observe thatif z € A and (f),,, > 1,
then

a(n)rn s </l;>’(m,r) f dy < (O”(”Y;")"'m)1_-;;17 (L(z‘r) fp' dy)

so that
r<(C

for some constant C.
According to the Besicovitch Covering Theorem (Section 1.5.2), there exist

an integer IV, and countable collections Fi,...,F,. of disjoint closed balls
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such that

and

(f)g > | foreach B € U]:i'

=1

Denote by Bg the elements of ; ¢ = 1,...,N,; 7 =1,..). Choose h;; € K"
such that

hi; = ((f)gi = f)* on B!

i

and
/ |thjlpd$§0/ |Df|pd32 (z:l,I\’n.J:l,2,)
n B':

where C depends only on n and p. This is possible according to Theorem 1 in
Section 4.4 and Poincaré’s inequality in Section 4.5.2. Note that

f+hi 2 (flg 2 1 in By
and hence, setting
h=sup{h;| i=1,...,Np, j=1,...} € KP,
that

f+h > 1 on A (%)

Now

/|D(f+h)|pda:§C / |Df|Pda:+ZZf |Dhi;|P dx

zl_',-l

<C |IDf|? dz.

Rn

Consequently, since A is open and so (%) implies

AcC{f+h > 1}°
we have

Copy(4) < [ ID(f +hPdz<C [ DfP da.
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Incase 0<e # !, wesetg=c¢~!fe K" so that

A= {z|(f)sr > € forsome r > 0}

= {z|(9)z,r > 1 for some 7 > 0}.
Thus
C )
Cap,(A) <C | |DglP dz = = / DfP dz. |
R

R (34

We now study the fine structure properties of Sobolev functions, using capac-
ity to measure the size of the “bad” sets.

DEFINITION A function f is p-quasicontinuous if for each ¢ > 0, there exists
an open set V' such that

Cap, (V) <e
and

f |rn-v is continuous.

THEOREM 1 FINE PROPERTIES OF SOBOLEV FUNCTIONS
Suppose f € WiP(R"), | <p < n.

(i) There is a Borel set E C R™ such that
Capp(E )=20
and

lim(f)zr = £*(2)

exists for each r € R" — F.
(ii)) In addition,

r—(0

im {17 - f@P dy=0
B{z,r)

for each € R"™ - E.

(i) The precise representative f* is p-quasicontinuous.

REMARK Notice that if f is a Sobolev function and f = g L™ a.e., then g is
also a Sobolev function. Consequently if we wish to study the fine properties

of f, we must turn our attention to the precise representative f*, defined in
Section 1.7.1. |
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PROOF
1. Set

r—(Q

l
A= (z €R"|limsup n__)/ |IDF|” dy > 0 ;.
ri 8(r,r)
By Theorem 3 in Section 2.4.3 and Theorem 3 in Section 4.7.2,
H"'™P(A) =0, Capp(A) = (.

Now, according to Poincaré’s inequality,

umf' 1 = (Faxl? dy =0
B(x,r)

r—0

for each = ¢ A. Choose functions f; € W'(R*) N C>°(R") such that

) ‘ :
/n |IDf — Df;|" dy < S (i=1,2,...),

and set

l
B;=(zreR"| |f = fil dy > 7 forsome r> 0.
B{z,r) 2

According to Lemma 1,

Capp ( Bi )

— |P
._<.. C - |Df Df‘l' dy ._<.. 2(7)—}-1)1: .

Consequently, Cap,(B;) < C/2". Furthermore,

Kﬂw~ﬁ@HSﬁ()U~UnA@+ﬁg f - £l dy

(z,r)

+{ fi - fil@)] dv.
B(a:,r)

Thus (x) and the definition of B; imply

limsup |(flz,r — fi(z)l < 57 (z € AUB).

r—0

Set B, = AU (U2, B;). Then

oo

Cap,(Ex) < Cap,(4) + ) Capy(B;) SC ) 5= .

j=k J=k

161
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Furthenmore, if z € R" ~ E¢ and 3, 7 > k, then

|fx(33) = f](x)l < limsupl(f)x.r - fi (:E)l

r—0
+limSUp|(f)m,1"fj(x)|
r—0
<S4l by (e
R TR

Hence {f; 72, converges uniformly on R™ — E,. to some continuous function g.
Furthennore,

limsup |g(z) — (f)z.r| <|9(z) = fi(z)| + limsup|fi(z) — (f)z.rl,

r—0 r—0

so that (%%) implies

g(z) = lim(f)z,, = f*(z)  (z€R* - Ey).

r—(

Now set £ = [, Ex. Then Cap,(F) < limy_,o Cap,(E}) = 0 and

f*(z) = tim(f), exists foreach z € R" - F.

r—0

This proves (i).
2. To prove (ii), note A C E and so (x) implies for z € R* — F that

rlii.no (][B(x,r) |f B f*(:c)|p dy)

<tim |(f)zr — £ ()| + lim (]{8( )lf = (f)erl? dy>

r—( r—(Q

= (.

3. Finally, we prove (iii) by fixing ¢ > 0 and then choosing k such that
Capp(Ek) < €/2. According to Theorem 2 in Section 4.7, there exists an open
set U D E). with Cap,(U) < e. Since the {fi}{2, converge uniformly to f* on
R* — U, f*|rn—yv is continuous. |

4.9 Differentiability on lines

We will study in this section the properties of a Sobolev function f, or more
exactly its precise representative f*, restricted to lines.
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4.9.1 Sobolev functions of one variable

NOTATION I[f /i : R — R is absolutely continuous on each compact subinterval,
we write i’ to denote its derivative (which exists £! a.e.)

THEOREM I
Assume | < p < 00.

(i) Iff e W1 P(R), then its precise representative {* is absolutely continuous
on each compact subinterval of R and (f*)' € L7 _(R).

(ii) Conversely, suppose f € Ly (R) and f = g L' a.e., where g is absolutely
contmuous on each compact subinterval of R and ¢ € LI _(R). Then
f € Wol(R).

PROOF

1. First assume f € W,.P(R) and let (d/dt)f denote its weak derivative.
For 0 < € < | define f€ =1, * f, as before. Then

F=r@+ [ "Vt d. (+)

Let T be a Lebesgue point of f and ¢, 6 € (0, 1). Since

1F(2) - f3(z)] < f (s Y (0)] dt + (o) — £ (o)l

for z € R, it follows from Theorem | in Section 4.2.1 that {f¢}.>¢ converges
uniformly on compact subsets of R to a continuous function g with g = f
L! a.e. From (x) we see

o(e) = gleo) + [ 10 d

To

and hence g is locally absolutely continuous with g’ = (d/dt)f L' a.e.
Finally, since (f)z.r = (9)z.r — g(z) for each =z € R, we see g = f*. This
proves (1). :
2. On the other hand, assume f = g L! a.e., g is absolutely continuous and
"€ LP (R). Then for each ¢ € C!(R),

/ fw'dx=/ gso'dr:~/ g'y dz,
—00 — 00 ~—00

and thus g' is the weak derivative of f. Since g’ € L (R), we conclude
few.rR). |
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L\

4.9.2 Differentiability on a.e. line

THEOREM 2
(i) If f € WLP(R™), then for each k = 1,...,n the functions

f’:(x” t) = f*(-'-,zk—-ht’sxk‘-{‘ls'-')
are absolutely continuous in t on compact subsets of R, for L™~ a.e. point
' = (1, T, Tt ls--- 1 Tn) € R L. In addition, (f,:)' € Ll (R™).
(ii) Conversely, suppose f € L (R") and f = g L" a.e., where for each

k=1,...,n, the functions

gk(x,’ t) = g( sy Lhk—1, ta xk-{-—lw--)

are absolutely continuous in t on compact subsets of R for L™ ! a.e.
point £’ = (x1,...,Tk—1,Tk41,-..Tn) € R* 7!, and g;. € L} (R™). Then
f € WJ;J’(R”).

PROOF
1. It suffices to prove assertion (i) for the case kK = n. Define f¢* = n. * f as
before, and recall

fe— f in WCP(R™).

By Fubini’s Theorem, for each L > 0 and L™ ! a.e. 2’ = (z|,...,Zn—y), the
expression

of P
5o (@) dt

t) =

L
[ 15 - £ P+
-L .
goes to zero as € — (. Thus the functions
falt) = f5(=',t) (teR)

converge in ML;"(R), and so locally uniformly, to a locally absolutely continu-
ous function f,, with f} (t) = (8f/dzn)(z',t) for L' a.e. t € R On the other
hand, Theorem 1 in Section 4.8, Theorem 2 in Section 5.6.3, and Theorem 4 in
Section 4.7.2 imply

fe—f* H* ! ae.
Therefore, in view of Corollary 1 in Section 2.4.1, for L*~! ae.
fr(t) — fr(&t)
forall t € R Hence for L7 ! a.e. 2’ and all t € R,

falt) = f*(2', ).

!

This proves statement (i).
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2. Assume now the hypothesis of assertion (ii). Then for each ¢ € C!(R"),

=/ (/ gr(z', 1) (', t) dt) dz’

Rt - 00

= —/ (/ g.(z', t)p(z', t) dt> dz’
R -1 —00

= ~/ gk tp dz.

Thus Of /Ozx = g, L™ a.e., k=1,...,n, and hence f € W, P(R). |




5

R
BV Functions and Sets of Finite Perimeter

In this chapter we introduce and study functions on R" of bounded variation,
which is to say functions whose weak first partial derivatives are Radon mea-
sures. This is essentially the weakest measure theoretic sense in which a function
can be differentiable. We also investigate sets E having finite perimeter, which
means the indicator function x g 18 BV.

It is not so obvious that any of the usual rules of calculus apply to functions
whose first derivatives are merely measures. The principal goal of this chapter
is therefore to study this problem, investigating in particular the extent to which
a BV function is “measure theoretically C'” and a set of finite perimeter has “a
C' boundary measure theoretically.”

Our study initially, in Sections 5.1 through 5.4, parallels the corresponding
investigation of Sobolev functions in Chapter 4. Section 5.5 extends the Coarea
Formula to the BV setting and Section 5.6 generalizes the Gagliardo—Nirenberg—
Sobolev Inequality. Sections 5.7, 5.8, and 5.11 analyze the measure theoretic
boundary of a set of finite perimeter, and most importantly establish a version
of the Gauss-Green Theorem. This study is carried over in Sections 5.9 and
5.10 to study the fine, pointwise properties of BV functions.

5.1 Definitions; Structure Theorem
Throughout this chapter, U denotes an open subset of R".
DEFINITION A function f € L'(U) has bounded variation in U if

Sup{/ fdivpdz | p € CHU;R™), |¢| < l} < 0.
U

166
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We write
BV (U)

to denote the space of functions of bounded variation.

DEFINITION An L"-measurable subset E C R™ has finite perimeter in U if

X € BV(U).

It is convenient to introduce also local versions of the above concepts:

DEFINITION A function f € L\ _(U) has locally bounded variation in U if
for each open set V CC U,

sup{/ fdivpdz | ¢ € CHV:RY), |p| < l} < 00.
|4

We write
BViee(U)

to denote the space of such functions.

DEFINITION An L™-measurable subset E C R™ has locally finite perimeter
in U if

Xg € BVioc(U).

Some examples will be presented later, after we establish this general structure

assertion.
/

THEOREM I STRUCTURE THEOREM FOR BV, FUNCTIONS
Let f € BWo(U). Then there exists a Radon measure pp on U and a p-
measurable function o : U — R"™ such that

() |o(z)|=1p ae., and
(ii) fU fdngodx=—fU<p~a du

for all p € CH{U;R™).

As we will discuss in detail later, the Structure Theorem asserts that the weak
first partial derivatives of a BV function are Radon measures.
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PROOF Define the linear functional
L:C}U;R*) — R
by
L(p) = */deivad.’C
for ¢ € CL(U;R™). Since f € BVioc(U), we have
sup {L(p) | p € C.(ViR™),|p| <1} =C(V) <0
for each open set V CC U, and thus
IL(e)] < C(V)lloll o (%)

for ¢ € C(V;R"™).

Fix any compact set K C U, and then choose an open set V' such that K C
V cc U. For each ¢ € C.(U;R"™) with spt ¢ C K, choose ¢ € Ci(V;R")
(k=1,...) so that ¢ — ¢ uniformly on V. Define

L(p) = lim L(pt);

according to (x) this limit exists and is independent of the choice of the sequence
{@K}52, converging to . Thus L uniquely extends to a linear functional

L:C.(U;R*) >R
and
sup{L () | ¢ € Cc(UsR™),lp| < |,spt o C K} < 00

for each compact set K C U. The Riesz Representation Theorem, Section 1.8,
now completes the proof. |

NOTATION
(i) If f € BVic(U), we will henceforth write

IDSI|

for the measure p, and
[Df] = ||Df|| Lo
Hence assertion (ii) in Theorem 1 reads

/deiwdfc=—/u<p-0d||0fll=-/U<p' d[Df)

for all ¢ € CH{U; R"™).
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(ii) Similarly, if f =X, and £ is a set of locally finite perimeter in U, we
will hereafter write

[[OL]
for the measure ¢, and
Vg = —0.

Conscquently,

/diwpdxz/ o - vg d||OE||
E U

for all ¢ € C(U;R").
MORE NOTATION If f € BVjo(U), we write
pt=||DfIILa’  (i=1,...,n)

?

Section 1.6.2), we may further set

for o = (¢',...,0™). By Lebesgue’s Decomposition Theorem (Theorem 3 in

ph= pae + s,

where
plo Lt opilLn
Then
ll':c =L" L f;
for some function f; € Li _(U) (i=1,...,n). Write
| g;; = f; G=1,...,n)
) Df = (%,...,;’m{l),
[Dfle = (ac)--->pa) = L™ L Df,
CDf)ls = (ks ).
Thus

[Df] = [Dflac + [Df]s = L™ L Df + [Df];,

so that Df € L. .(U:R™) is the density of the absolutely continuous part
of [Df].
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REMARK Compare this with the notation for convex functions set forth in
Section 6.3. |

\

REMARK

(i) ||Df]| is the variation measure of f; ||OE|| is the perineter measure of
E; ||OE||(U) is the perimeter of E in U.

(i) If f € BV,OC(U)HL‘(U), then f € BV(U) if and only if D fI(U) < oo,
in which case we define

1l gy, =11l + DA,

(i) From the proof of the Riesz Representation Theorem, we see

IDAI(V) = sup { [ ravpds | pecitvir lol < 1},
1%

1BENI(V) = sup{ [ dvods] o€ ClviRM, ol < 1}
E

foreach V cc U. |

Example 1
Assume f € W' (U). Then, foreach V CC U and ¢ € C}(V;R"), with
|| < 1, we have

/fdiv<pd:z:=~/ Df«(pd:c__<_/|Df]da:<oo.
U U |4

Thus f € BVje(U). Furthermore,

|Dfll = £ L |Df|,
and
Df .
—_—  if D 0
g=1<{ |Df| I# L ae.
0 if Df =0.
Hence

Wiee (U) C BVio(U),
and similarly

whi(U) c BV(U).
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In particular,

Wik (U) € BVioe(U) for 1 < p < o0.

oc

Hence, each Sobolev function has locally bounded variation. i

Example 2
Assume E is a smooth, open subset of R* and H"~!'(dE N K) < oo for each
compact set X C U. Then for V and ¢ as above,

/diwpdz::-/ @ -vdH"
E OE

v denoting the outward unit normal along OF.
Hence

/divwd:z:zf p-vdH" ' <H"HOENV) < o0,
E SENV
Thus E has tocally finite perimeter in U. Furthermore,
|OE||(U) = H" " (OEN )
and

VE = U H" 1 ae on OENU.

Thus [|OE||(U) measures the “size” of OF in U. Since x , ¢ W;:{c! (U) (ac-
cording, for instance, to Theorem 2 in Section 4.9.2), we see

WL (U) # BVie(U),

Wi (U) # BV(U)

That is, not every function of locally bounded variation is a Sobolev function.

(

REMARK Indeed, if f € BV (U), we can write as above
[Df] = [Dflac + [Df]s = L™ L Df + [Df}s.
Consequently, f € BVj.(U) belongs to W]f;cp (U) if and only if
fell (U), [Dfls=0, DfeLl (U). 1

The study of BV functions is for the most part more subtle than the study of
Sobolev functions since we must always keep track of the singular part (D f Js
of the vector measure Df.
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5.2 Approximation and compactness
5.2.1 Lower semicontinuity

THEOREM I LOWER SEMICONTINUITY OF VARIATION MEASURE
Suppose fr, € BV(U) (k=1,...)and fr, — f in L\ ,.(U). Then

IDFIV) < lim inf | D l|(D).

PROOF Let p € C!(U;R"), |¢| < 1. Then

/ fdivp dr = lim / fi div o dz
U k—oo Ju

— _ lim / o ok dl|Dfil
LT

k—o00

< liminf || D fi||().
Thus
1071W) = s { [ faivi de] € CUU:R) ol < ]

< tim inf || Del|(U). |

5.2.2 Approximation by smooth functions

THEOREM 2 LOCAL APPROXIMATION BY SMOOTH FUNCTIONS
Assume f € BV (U). There exist functions {fr.};2, C BV (U)NC>®(U) such
that
@) fr— fin LY(U) and
@) || Dfel|(U) — IDFII(U) as k — oo.

REMARK Compare with Theorem 2 in Section 4.2.1. Note we do not assert

I1D(fi = NHIIU) — 0. 1

PROOF
1. Fix ¢ > 0. Given a positive integer m, define the open sets

Il

Ukz{xéUldist(z,aU)> }ﬂU(O,kA—m)) (k

m+k

and then choose m so large

IDFI(U-Ui) <e (*)
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Set Uy = () and define
VkEUk.*.{-*Uk—{ (k: 1,...).

Let {Ci}72, be a sequence of smooth functions such that

(G €CT (Vi) 005G <1 (k=1,..)
< (e @]

}:Ckel on U.
\ k=l

Fix the mollifier ), as described in Section 4.2.1. Then for each k, select €, > 0
so small that

spt (17, * (f¢k)) C Vi

[ s (£ = il de < ()

.

|7)6k fDCk) fDCkl dz < 2L .
\ U

Define

Z Ne, * ka

In some neighborhood of each point z € U there are only finitely many nonzero
terms in this sum; hence

fe € C™(U).
2. Since also
f = Zf(ka
k=1
(xx) implies
||f€—f||LI(U Z/ |T)ek ka ka|d33<€.
k=1
Consequently,

fe— fin L'(U), as e — 0.

3. According to Theorem 1,

IDAIW) < timinflID£II(D). (%)



174 BV Functions and Sets of Finite Perimeter

4. Now let ¢ € CL(U;R"), || < 1. Then

/Ufediw,o dz =§Lnek * (f Q) divp dz
= ;/qukdiv(nek % ) dz
_ 2 [ £ Gl + o) dz
—I;/Ufnck-(mkw) dr
- g/u Fdiv (Ce(ne, * @) dx

- 90'(7)% *(fDC)_fDC) dr
,§/U +)— 1 DG
=1+ 1;.

Here we used the fact ).~ D(r = 0inU. Now [Ck(ne, *0)| < 1 (k= 1,...),
and each point in U belongs to at most three of the sets {Vi }$2 . Thus

I = /U £ div (cl(ne,w))dw’; /U £ div (e, *9) da

<IDAIW) + > _IIDAI(VA)
k=2
< IDAIIW) +31IDfIIU - Uy)
<IIDFINU) + 3¢, by (#).
On the other hand, (#%) implies
|| < e
Therefore

/ fdive dz < |DFIU) + 4e,
U

and so
IDSAI(U) < IDF|I(U) + 4e.

This estimate and (% + +) complete the proof. |
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THEOREM 3 WEAK APPROXIMATION OF DERIVATIVES

For each function f}, as in the statement of Theorem 2, define the (vector-valued)
Radon measure

lluk(B) Ef Df dz
BNy

for each Borel set B C R". Set also

B) = d|D f].
um)= [ dpy)
Then

B — [

weakly in the sense of (vector-valued) Radon measures on R".

PROOF Fix ¢ € C!(R™;R") and € > 0. Define U; CC U as in the previous
proof and choose a smooth cutoff function ( satisfying

¢(=1onU,spt(¢) CU,
0<¢< L

Then

/ p dpk

I}

/w-kad:cz/Crp-kadm+/(l—-C)cp-kada:
U U U

= —/ diV(Ccp)fk d.’t+/(1 — Q) Dfy dz. (%)
U U

Since fr — f in LY(U), the first term in (*) converges to
- [ aivico)s do= [ ¢o- diDS]
v v

=/l;cp- d[Df]-i—/((—l)‘P' d[D f). (*%)
U
The last term in (*x) is estimated by
el L IDFINU = Uy} < Ce.

Using Theorem 1 in Section 5.2.1, we see that for k large enough, the last term
in (%) is estimated by

lol| Lo 1D fll(U = Ur) < Ce.
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Hence

/ godpkmf (pd/t’ﬁCC

for all sufficiently large k. |

5.2.3 Compactness

THEOREM 4
Let U C R" be open and bounded, with OU Lipschitz. Assume {fi}3>, is a
sequence in BV (U) satisfying

SL’:p”fk”BV(U) < 0.

Then there exists a subsequence { fi;}52, and a function f € B V(U) such that

fr; = fin LY(U)

as j — oo.

PROOF For k =1,2,..., choose g, € C®(U) so that

’ 1
/ |fx = gk| dz < -
U
‘ (%)
sup/ |Dgy| dz < o0
. k U

such functions exist according to Theorem 2. By the remark following Theo-
rem | in Section 4.6 there exist f € L'(U) and a subsequence {gi, }72, such
that g, — f in L'(U). But then (*) implies also fi, — f in L'(U). According
to Theorem 1, f € BV (U).

5.3 Traces

Assume for this section that U is open and bounded, with U Lipschitz. Observe
that since QU is Lipschitz, the outer unit normal v exists H* ! ae. on OU,
according to Rademacher’s Theorem.

We now extend to BV functions the notion of trace, defined in Section 4.3
for Sobolev functions.
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THEOREM 1

Assume U is open and bounded, with OU Lipschitz. There exists a bounded
linear mapping

T:BV(U) — L'(6U; H*™ 1)

such that

/fdivgoda:——‘ -—/ - dDf] + (c,o-u)‘]‘de“_i (%)
U U

au

for all f € BV(U) and ¢ € C'(R*; R").

The point is that we do not now require ¢ to vanish near gU.

DEFINITION The function T f, which is uniquely defined up to sets of
H™! L OU measure zero, is called the trace of f on OU.

We interpret T f as the “boundary values” of f on OU.

REMARK If f € WII(U) c BV(U), the definition of trace above and that
from Section 4.3 agree.

PROOF
1. First we introduce some notation:

(a) Given £ = (z1,...,Z,) € R?, let us write z = (z/,z,) for 2’ =
(Z1y.-yTn) € R*! z, € R Similarly we write y = (v, Yn)-

(b) Given z € R™ and 7, h > 0, define the open cylinder
C(:U,T,h) = {y € R” | |y’ - x’| <, |yn - xnl < h}.

Now since JU is Lipschitz, for each point x € U there exist 7,h > 0 and a
Lipschitz function v : R*~! — R such that

h
!

max -z, < -
|z’ —y'|<r h(y ) nl 4

and — upon rotating and relabeling the coordinate axes if necessary —

UNC(z,mh)={y| |z’ - ¥'| <"7Y) < yn < zo +h}.

2. Assume for the time being f € BV(U) N C*®(U). Pick z € U and
choose 7, h, v, ctc., as above. Write

C = C(x,r,h).
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C (x,r,h)

FIGURE 5.1
A Lipschitz boundary within a cylinder.

If0<e<h/2and y € OU NC, we define

fe(y) = f(¥',7(y) +e).

Let us also set

Cse={yeC| 7(y') +6 <y, <v(y') +e¢}

for0 < 6§ < e < h/2, and define C, = Cy .. Write C* = (CNU) - C..
Then

|fs(y) — fe(¥)| < /; gg—-(y’,w(y’)ﬂ)‘ dt

< / Df(y',v(y') +t)| dt,
6

and consequently, since v is Lipschitz, the Area Formula. Section 3.3, implies

/ fs— fl dHm 1 < C f IDf| dy = C|ID £](Cs.0).
aunC

Cs.e

Therefore { f}e>o is Cauchy in L'(OU N C; H™™!), and thus the limit
Tf= lin}) fe

exists in this space. Furthermore, our passing to limits as & — 0 in the foregoing
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FIGURE 5.2
The ||D f|| measure of the shaded region C;s, goes to zero as €,6 — 0.

inequality yields also

f Tf — f.| dH™' < C|IDSII(C.). (+4)
aounC

Next fix ¢ € C!(C; R™). Then

fdiwdy:—/ o-Df dy+/ fope v dH,

auncC

<

O«

Let € — 0 to find

fdivpdy = -/

g0'0d||Df||+/ Tfo-vdH"™ . (x*%)
unC

uncC auncC

3. Since JU is compact, we can cover JU with finitely many cylinders C; =
C(x;,ri,h;) (i=1,..., N) for which assertions analogous to (%) and (* * *)
hold. A straightforward argument using a partition of unity subordinate to
the {C;}52, then establishes formula (). Observe also that (* * *) shows the
definition of “T f” to be the same (up to sets of H™~' L U measure zero) on
any part of QU that happens to lie in two or more of the cylinders C;.

4. Now assume only f € BV (U). In this general case, choose fr € BV (U)N
C>(U) (k=1,2,...) such that

fe = fin LI(U),  [IDfll(U) - ||DFI(V)
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and
Kk — [ weakly,

where the measures {p«}oo,, 1 are defined as in Theorem 3 of Section 5.2.2.
5. Claim: {T f.}22., is a Cauchy sequence in L' (U; H™™').

Proof of Claim: Choose a cylinder C as in the previous part of the proof.
Fix e > 0, y € U N C, and then define

i) =, [ A+

=1 [ o a

Then (xx) implies

_ 1 [€ _
/ ITfi = fE|dH ' < ~/ j[ IT fi. — (fi)el K™™' dt
aunc € Jo Jaunc

< ClIDfill(Ce).-
Thus
/ ITfr —Tfi]| dH* ' < / T fi. — fe| dH™!
auncC ounC
+/ ITf — fF| dH=!
auncC
+/ £ - Jfl dHn
alunC
< CUIDfell + [ID£i|[)(Ce)
C
+~—f |fr — fi] dy.
€ C.
and so

limsup/ ITfi — Tfi| dH™' < C||Df||(Cen U).
aUnC

k;l—o00

Since the quantity on the right-hand side goes to zero as ¢ — 0, the claim is
proved.
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6. In view of the claim, we may define
Tf = khm Tfk;

this definition does not depend on the particular choice of approximating sc-
quence.
Finally, formula (%) holds for each f; and thus also holds in the limit for f.

THEOREM 2
Assume U is open, bounded, with QU Lipschitz. Suppose also f € BV (U).
Then for H*~! a.e. T € OU,

in{ 1f-T@ldy =0,
B(z,7)nU

T—0

and so

T f(x) = limf f dy.
B(z,r)nU

r—0

REMARK  Thus in particular if f € BV(U)N C(U), then
Tf=flov H* ' ae |

PROOF
1. Claim: For H*" ! ae. z € OU,

< IDSI(B(,n 0 U)

rn"‘“ 1

= 0.

r—0

Proof of Claim: Fix v >0, 6 > € > 0, and let

DB NY) , |

Tn_" l

A, = {:c € 9U | limsup

r—0

Then for each z € A, there exists 0 < r < € such that

IDAIBE,NAY) (%)

Tn'_l

Using Vitali’s Covering Theorem, we obtain a countable collection of dis joint
balls { B(z;,7;)}°, satisfying (%), such that

i=1

A, c | B(z:,5m:).

i=1
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Then
0 (Ay) <D a(n - 1)(5r)"!
i=1
C oo
< —7—2||Dfn( (2:,7) NU)
< C||DfII(U*),
where

U¢ = {z € U|dist(z,0U) < €}.

Send € — 0 to find Hy;'(A,) = O for all § > 0.
2. Now fix a point x € OU such that

o IDSl(B(z,r) N U)

r—0 rn-1

=0,
lim ITf - Tf(z)|dH* ! =0.
r—0 B(zx,myN3U

According to the claim and the Lebesgue—Besicovitch Differentiation Theorem,
H* ' ae. z € QU will do. Let h = h(r) = 2max(1,4Lip (v))r, and consider
the cylinders

C(r) = C(z,m, h).

Observe that for sufficiently small =, the cylinders C(r) work in place of the
cylinder C in the previous proof. Thus estimates similar to those developed in

that proof show

/ TS — fu| dH™ < CIIDSII(C(r) N U),
aunC(r)

where

fey) = fF' () +€) (y € C(r)nol, 0<e< h(;))

Consequently, we may employ the Coarea Formula to estimate

/ T 7)) — F)] dy < CrIIDFN(C(r) N D).
B(z,r)NU
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Hence we compute

C n-—
f f(y) —Tf(z)| dy < —— ITf - Tf(x)| dH" !
B(z,r)nU r C(rnNdU
C , ,
+ = ITf(y',2(y) — f(y)l dy
" JB(z,r)nU
C

< o(1) + = IDAC(r) N V)

=o(l)as r — 0, by (xx). |

5.4 Extensions

THEOREM I
Assume U C R" is open and bounded, with QU Lipschitz. Let f; € BV (U)
f» € BV(R* - U).

De fine
- | fil=) rel
f(“")‘*“{ flz) zeR-T.
Then
f € BV(R")
and

IDAIR™) = [IDANU) + IDAIR® - T) + ]a TH=Thldr

REMARK In particular, under the stated assumptions on U,

(i) the extension

f onU
Ef =
0 onR®-U

belongs to BV (R") provided f € BV (U), and
(ii) the set U has finite perimeter and ||QU||(R*) = H*'(8U). |
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PROOF
1. Let p € CY(R™,R"), |p| < 1. Then

fdivwd:z:::/f;divnpda:%-/ _ fdivpdr
U

R* R —U

jusf? (D fi] /RH_U_‘P (D f,)
+ [ (TH-TfH)p vdH"
au

<|IDAIU) + |IDf||(R* - U) + /au ITfi — Tfa| dH™ .
Thus f € BV(R™) and
IDFIIR®) < [IDANIU) + IDAIR® - T) + /6 ATl dH .

2. To show equality, observe

v apf=- [ apri- [ o
Jou € d[Df] /U - d[Df] /R . o? d[D f,]
+ (TfHi=ThH)p vdH"! (%)
ou

for all o € CL{R™; R™). Thus

[Df[] on U

(DA = { [Dfy) onR*-T.

Consequently, () implies

_ / o dDf|= | (Tfi-ThH)p-vdH",
au ou
and so

||Df||(60):/ Tf - Tfol arn". |

ou



5.5 Coarea Formula for BV functions 185

5.5 Coarea Formula for BV functions
Next we relate the variation measure of f and the perimeters of its level sets.

NOTATION For f: U — R and t € R, detine

E,={zxeU] f(z) >t}

LEMMA I
If f e BV(U), the mapping

te |PE|U)  (teR)

is L'-measurable.

PROOF The mapping
(z,t) = xg (z)

is (L™ x L£')-measurable, and thus, for each ¢ € C!(U; R"), the function
t— divsodx:/xgdivwd:c
E, v

is L!-measurable. Let D denote any countable dense subset of C!(U;R™)
Then

tes OEN@) = sup [ divids
oeD YE
lpl <1

is £!-measurable. |

THEOREM I COAREA FORMULA FOR BV FUNCTIONS
Let f € BV(U). Then
(i) E, has finite perimeter for L' a.e. t € R and
@) |IDAIU) = JZ NOENI(U) dt.
(i) Conversely, if f € L'(U) and

/ 1OE|I(U) dt < o,

— 00

then f € BV (U).
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REMARK Compare this with Proposition 2 in Section 3.4.4. |

PROOF Let p € CH(U;R"), |p| < 1.
L Claim #I: |, fdivpdx = [ (fEt div ¢ d:r:) dt.

Proof of Claim #1: First suppose f > 0, so that

f(z) = /000 Xg, (z)dt  (ae z€U).

/dengod:z:::/U(/ooo X, (2) dt)diw(x) do
SAOO (/U X, (z) div o(z) d:n) dt
([ wvew)

0
f@= [ -1

/deivtp dx = /U ([_°W(X8t(x) —1) dt) div o(z) dzx
- f_:, (/[ g, - v et iz)
:/_L(/Etdivwdx) dt.

For the general case, write f = f* + (—f7).
2. From Claim #1 we see that for all ¢ as above,

Thus

Similarly, if f <0,

whence

[ fdivpdo s [ DEI(U) dt.
U - 00
Hence

I0710) < [ ORI e )

— 0O

3. Claim #2: Assertion (ii) holds for all f € BV (U) N C>=(U).
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Proof of Claim #2: Let

m(t)—z/ | D f| dx=/ |Df| dz.
Uk, {f<t}

Then the function m is nondecreasing, and thus m’ exists £! a.e., with

/oo m'(t) dtg/ |Df| dz. (k)
—o0 U
Now fix any —oo < t < oo, 7 > 0, and define 7 : R — R this way:

0 if s <t

ns)y={ S=° ift<s<t+r

7{ ifs>t+r.

Then
ft<s<t+r

1
n'(s)=4¢ 7
0 if s<t or s>t+r.

Hence, for all p € C(U;R"),

—-/ 7(f(z))div dx=/ 0 (f(z))Df - dz
U U

:-1-/ Df-pdz. (% * *)
Et"'Et+r

r

Now

T

m(t+7)—m(t) 1 3
T [/(;«Et+r lDfI o '/(‘J"Et IDfl i

1
Y Dfld
T jE,-E,+,

L] Df - dx
r jEz—EH»r

— /U n(f(z))divp dz by (% * %).

Il

IV

For those ¢ such that m'(t) exists, we then let r — O:

m'(t) > - / div ¢ dz L™ ae. t.
E,
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Take the supremum over all ¢ as above:
IOE:||(U) < m/(t),

and recall (»*) to find

/ 10E|(U) dt < /U Df| dz = ||IDFII(V).

This estimate and (%) complete the proof.
4. Claim #3: Assertion (ii) holds for each function f € BV (U).

Proof of Claim #3: Fix f € BV (U) and choose {f,}%°, as in Theorem 2 in
Section 5.2.2. Then

fr — f in L'(U) as k — oo,
Define
Ef={zec U] fu(z) > t}.

Now

00 max{ f(z),fr(z)}
[ gyl = xg @t = | dt = | fe(z) — F(2)];
— 00 t min{ f(z),fx ()}

consequently,

[ -r@ia= [ ([ [xp@ - xg @) @) @

Since fr, — f in L'(U), there exists a subsequence which, upon reindexing by
k if needs be, satisfies

Xpr = X, i LY(U), for £! ae. t.
Then, by the Lower Semicontinuity Theorem,
IOE:|(U) < tim inf ||OEF|(U).

Thus Fatou’s Lemma implies

/ ||6Et||(U)dt_<_1ikmL%f/ IBES|(U) dt
= lim [|Df[|(U)
= |IDf|(U).

This calculation and (x) complete the proof. |
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5.6 Isoperimetric Inequalities

We now develop certain inequalities relating the £™-measure of a set and its
perimeter.

5.6.1 Sobolev’s and Poincaré’s inequalities for BV

THEOREM 1
(i) There exists a constant C, such that

| /] < Gi|| Df|I(R™)

Lnjn--l(Rn)

for all f € BV (R™).

(ii) There exists a constant C, such that

”f - (f)x,T“Ln/n-l(B(z’r)) < CZHDf”(U(xv T))

for all B(z,r) C R*, f € BVioc(R"), where (f)z.r = f—B(x,r) f dy.

(iii) For each 0 < a < 1, there exists a constant C(a) such that

171 s rgiemyy < C3(@NIDAIU ()

for all B(z,7) CR™ and all f € BV;oc(R™) satisfying

[,n(B(.’E,T)ﬂ{f =0}) > o
C"(B(CC,T)) o

PROOF
1. Choose fi € C*(R™) (k= 1,...) so that

fi = f in L'(R™), fi—f L"ae.
| Dfill(R*) — [ Df||(R™).
Then by Fatou’s Lemma and the Gagliardo-Nirenberg—Sobolev inequality,

||f||Ln/n—-l(Rn) S l}g}li[o‘f“fk”[)n/n—l(ﬂgn)
< kl—i-.ngo C‘llka”Ll(Rn)
= Gi||Df||(R™).

This proves (i).
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2. Statement (ii) follows similarly from Poincaré’s inequality, Section 4.5.2.
3. Suppose

L*(B(z,r) N {f =0})
£ (B(z.1)) >a>0. (%)

Then
”f”L"/“""(B(x,r)) S “f - (f)x’r”L"/"“’(B(z:,r)) + ”(f)z’r”L"/""‘(B(:c,r))
< GIDAIU (7)) + (| (L™ (Bl 7)) 71" Go0)

But

|(f)z.|(L7(B(z,r))) Y7
1
< Lr(B(z,r))Y" /B'(I,r)ﬁ{f;éO}

l-—l/n 1/n
P L(B(z,r) 0 {f #0})
S(L(W)” | ‘“) ( £*(B(z,r)) )

S ”f”Ln/n-l(B(x,r))(l - a)i/n ?

|| dy

by (x). We employ this estimate in (»*) to compute

&
<
||f||Ln/n-!(B(x,r)) T (1-(1=a)m)

IDAIIU (=, 7). |

5.6.2 Isoperimetric Inequalities

THEOREM 2
Let E be a bounded set of finite perimeter in R™. Then

(i) L*(E)'-Y" < GOE||(R), and
(ii) for each ball B(x,r) C R",

min{L"(B(z,7) N E), L*(B(x,7) — E)}' ™= < 2G||0E||(U(x, ).
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FIGURE 5.3
Relative Isoperimetric Inequality.

REMARK Statement (i) is the Isoperimetric Inequality and (i1) is the Relative
Isoperimetric Inequality. The constants C; and C, are those from Theorems 1
and 2 in Section 4.5.

PROOF
L Let f = x in assertion (i) of Theorem 1 to prove (i).

2. Let f =¥ B(z,r)nE in assertion (ii) of Theorem 1, in which case

(Fles = L*(B(z,r) N E)

L(B(z,r))
Thus
_ n/n—1 — [’n(B(xar)_"E) nn! n T r
fr = e ar= (S5 5R) B0
L (B, r) N E)\"" oy
( T7(B(z, 1)) ) £(Blmr) - ).
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Now if L*(B(z,r) N E) < L*(B(z,r) — E), then

{—1/n
(/ |f - (-)‘.)17,r|71'/71--l dy)
B(z.)

LY B(z,r) - E)] .. o
2 { L™(B(z,7)) ] L*(B(z,r)N E)l 1
> % min{[l"(B(a:, r) N E),C'L(B(x,r) _ E)}l_*/",

The other case is similar. |

REMARK  We have shown that the Gagliardo—Nirenberg—Sobolev Inequality
implies the Isoperimetric Inequality. In fact, the converse is true as well.
To see this, assume f € C(R™), f > 0. We calculate

[ bl s = DA = [ loEIIR) d

- 00

- / 19EII(R") dt

0

1 o0
> L E) Y™ dt.
> & | e

Now let

I—1/n
fi = min{t, f}, x(t) = (/n ft"/n_l d:c) (t € R).

Then ¥ is nondecreasing on (0, co) and

1—1/n
lim x(t) = (/ Vit da:)

Also, for h > 0,
0 < x(t+h) - x()
1-1/n
< (/ | fe+n — J£t|n/m-l dfb‘)
S hEn(Et)l—l/n.
Thus x is locally Lipschitz, and

X'(t) < LHEY'"Yr [laet.
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Integrate from O to oo:

A VAL O
(/ Vi dm) = / x'(t) dt
R JO

< / ‘Cn([‘;t )u/n—l ot
JI

)

§Ch/‘|thw. |

/

5.6.3 H“! and Cap,

As a first application of the Isoperimetric Inequalities, we establish this refine-
ment of Theorem 4 in Section 4.7.2;

THEOREM 3
Assume A C R™ is compact. Then Cap,(A) = 0 if and only if H*~'(A) = 0.

PROOF According to Theorem 2 in Section 4.7.1, Cap,(A) =0if H"~'(A) =0.
Now suppose Cap,(A) = 0. If f € K'and A C {f > 1}°, then by Theo-
rem 1 in Section 3.5,

{
[ OE.||(R™) dt < [ Df| da
0 Rn

where E, = {f > t}. Thus for some t € (0, 1),

10E:|(R") s/ D] dx.

n

Clearly A C E,°, and by the Isoperimetric Inequality, £*(E;) < co. Thus for
each x € A, there exists a r > 0 such that

CYE,NB(z,1) 1
a(n)rr T4

In light of the Relative Isoperimetric Inequality, we have for each such B(z, r),

n—1

[;ia(n)rnr = (L™(E.N Blz,n)))*F < ClaE(B(z,r))

that is,

! < CllOE|I(B(z,T)).
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By Vitali’s Covering Theorem there exists a disjoint collection of balls
{B(z, TJ')}J?.;l as above, with x; € A and

A c | ] B(z;, 55).

=1

Thus

oo

S (515)"! < ClIBENIRY) < C / Df| dz.

j=1

Since Cap,(A) = 0, given € > 0, the function f can be chosen so that |

[ Ipnas<e
and hence for each 7,
r; < (CIIOE,||(R*))™T < Cenm.
This implies H"~'(A) =0. |

5.7 The reduced boundary

In this and the next section we study the detailed structure of sets of locally finite
perimeter. Our goal is to verify that such a set has “a C! boundary measure
theoretically.”

5.7.1 Estimates

We hereafter assume
E is a set of locally finite perimeter in R™.

Recall the definitions of vg, ||0E]||, etc., from Section 5.1.
DEFINITION Letx € R*. We say x € 0*E, the reduced boundary of E, if

(i) ||OE||(B(x,r)) >0 forall r >0,
(ii)) lim,_g fB(x,r) ve d||0E|| = vg(x), and
(iii) |ve(z)| = 1.

REMARK According to Theorem 1 in Section 1.7.1,

IOE||(R* = 0*Ey=0. |
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FIGURE 5.4
Normals to E and to B(z, r).

LEMMA 1
Let p € CH(R™;R™). Then for each = € R",

/ div ¢ da =/ Q- VE d||8E||+f @ vdH"!
ENnB(z,r) B(zx,r) ENOB(z.r)

for L' a.e. r > 0, v denoting the outward unit normal to dB(z, r).
PROOF Assume h ; R® — R is smooth, then
/ div (hy) dy = / h div dy+/ Dh - p dy.
E E E
Thus

/ ho-vge d||6E||=/hdivwdy+/Dh-t,ody. (%)
n E E

By approximation, (x) holds also for

he(y) = ge(ly - :BI),
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where
| if0<s<r
ge(5) = < r-ste ifr<s<r+e
€
. 0 if s>7r+e
Notice
0 if0<s<rors>r-+e
9.(5) I,
—— fr<s<r+e,
€
and therefore
0 ifly—zl <rorly—z|>r+e
Dh = l y—=x
«(¥) -4 ifr<|y—z|<r+e.
e ly — z|

Set h = he in (*):

1 y—x
hep-ve d||OF =/hed'v d——~/ - dy.
| hop-ve ol = | hedvpdy—= [ o =7y

Eﬂ{y|r<ly—x|<r+e}

Let € — 0 and recall Proposition 1 in Section 3.4.4 to find

f Q- VE d||3E||=/ diwdy—/ p-vdH"!
B(z,r) ENnB(z,r) ENdB(z,r)

for £' ae.r>0. |

LEMMA 2

There exist positive constants Ay, ..., As, depending only on n, such that for
each x € 0" EF,

() liminf,_go £ BE0E) 5 4 50,

(ii) liminf._o ZBE&N=F) 5 4, 5,
(iii) lim inf, _q 12EILBGT) 5 4, 5 0,

(iv) limsup__,, ]@Elrl,(‘f_zsm’r)) < Ag,

() limsup,_, IPENBEOI®) ¢ 4

PROOF
1. Fix x € 8*E. According to Lemma 1, for £! ae.r >0

I0(E N B(z,))||(R*) < ||OE||(B(z, 7)) + H*'(EN8B(z,r)). (%)
On the other hand, choose ¢ € C}(R™; R™) such that

© = vg(z) on B(z,T).
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Then the formula from Lemma | reads

[ ve@-vsdloBll == [ ug(e)-vdnl ()
B(z.r)

ENVB(z,r)

Since x € 0*E,

r—0

lim ve(z) f vg d||0E|| = lve(z)* = 1;
B(z.r)
thus for £! a.e. sufficiently small r > 0, say 0 < 7 < 19 = ro(z), (%) implies

%IlaEII(B(x,r)) <H"YENJB(z,T)). (% % *)
This and (x) give
|18(E 0 B(z, r))||(R*) < 3H®"Y(E N 8B(z,T)) (% % % %)

forae. 0 <r < 1.
2. Write ¢g(r) = L*(B(x,7) N E). Then

g(r) = /Of ‘H* 1 (0B(z,s)N E) ds,

whence g is absolutely continuous, and
g'(r) = H*Y(8B(z,r) N E) for ae. r > 0.
Using now the Isoperimetric Inequality and (% % x %), we compute

g(r)!=1/" = L*(B(z,r) N E)'~™ < C|l0(B(z,r) N E)||(R?)
< CH"'(B(z,7) N E)
=Ci¢'(r)  forae. T € (0,r9).

Thus

1

G, IO ) = (g ()"

and so
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and

,rn

g(r) 2 Cn)?

for 0 < r < rp. This proves assertion (i).
3. Since for all p € C}(R"; R")

/divcpda:+/ divy dzr = divyp dx =0,
E RN~ E R"
it is easy to check

I0EIl = llo(R™ — E)l, VE = —VRn_E-

Consequently, statement (ii) follows from (i).
4. According to the Relative Isoperimetric Inequality,

IPENEE) 5 ¢ in {‘5"(3(-’”’ r)NE) L'(B(z.r) ~ E) }*

,r.n—l rn ? rh

and thus assertion (iii) follows from (i), (ii).
5. By (%% %),

I6E|(B(z, 7)) < 2H*(ENJB(z, 7)) < Cr™™' (0 <1 <o)
this is (iv).

6. Statement (v) is a consequence of (x) and (iv). |

5.7.2 Blow-up
DEFINITION For each x € 0*F, define the hyperplane

H(z) = {y e R" | vg(z)- (y — ) = 0}
and the half-spaces

H*(z) = {y e R |vg(z) - (y — z) 2 0},

H™(z) = {y € R" | vg(z) - (y - 2) <0},

NOTATION Fix z € 0*F, r > 0, and set

E.={yeR"|r(y—2)+z€ E}.

REMARK Observe y € ENB(z,7) if and only if g,(¥) € E.NB(z, 1), where
o) =(y-2)/r)+= |
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FIGURE 5.5
Approximate tangent plane.

FIGURE 5.6
Blow-up.

THEOREM I BLOW-UP OF REDUCED BOUNDARY
Assume x € O*E. Then

Xg, = Xg-(z) 1 Lic(R™)

ast — 0.
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Thus for small enough + > 0, EN B(z, r) approximately equals the half ball
H-(z)N B(z,r).

PROOF
1. First of all, we may as well assume:

' fl::O, UE(O) =€, = (0,---303 l)’
)

2. Choose any sequence 1, — 0. It will be enough to show there exists a
subsequence {s;}52; C {rx}22, for which

XES - XH-(O) in LIIOC(RR).

3

3. Fix L > 0 and let

D.=E,NB(0,L), g-(y) = % :

Then for any ¢ € C}(R™; R*), |¢| < 1, we have

1
/ divpdz = — / div (¢ o gr) dy
D. T ENB(0,rL)
1
- rn-) / (pogr): YENB(0,rL) d||lo(E N B(0,rL))]l

16(E N B(0,7L))||(R")

Tn—l

<

<C <oo
for all r € (0, 1], according to Lemma 2(v). Consequently,
10D N(R*)<C <00 (0<T<),

and furthermore,

xp_lls e, = £4(D2) < LY(B(O,L)) <00 (r>0).
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Hence

X5l ey $ € <00

forall 0 < r < 1.

In view of this estimate and the Compactness Theorem from Section 5.2.3,
there exists a subsequence {s;}°, C {r¢}{2, and a function f € BV (R")
such that, writing E; = E, ,» we have

Xp — [ in L (R").

J

We may assume also x , — f L" ae. hence f(x) € {0,1} for L" ae. z and
2
SO

f=x F L" a.e.,
where

FcR" has locally finite perimeter.

Hence if ¢ € C!(R™; R"),

/d;w dy=/ o-vr d|oF|, (%)
F n

for some ||0F||-measurable function v, with |vp| =1 ||OF]|| ae.
We must prove F'= H~(0).
4. Claim #1: vr = e, ||OF]|| a.e.

Proof of Claim #1: Let us write v; = vg,. Then if ¢ € C}(R™; R"),

/ Q- v d||8EJ-||=/ div ¢ dy (7=12...).
n EJ

Since

ol
Xg, = Xp in L.,

we see from the above and (%) that

/ @ - vj d||0E;|| — - v d||[0F]|| as j — oo.
n Rﬂ.

Thus
v;|IOE;|| — vrl|OF||

weakly in the sense of Radon measures. Consequently, for each L > 0 for
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which ||0F|[(8B(0,L)) = 0, and hence for all but at most countably many
L >0,

f v; dI|OE;|| — v d||F]. (%)
B(0,L) B(0,L)

On the other hand, for all ¢ as above,

l
[ eevdioBll= == [ (vou)-ve dloEll

j

whence
( ]
1BV, 1) = == 1DEN(B(, ;L))
< ’ 1 (% % %)
[ wdiorl= = [ vedjoBl
{ J/B(0,L) 8; B(0,s; L)
Therefore
lim v; dl|OE;|| = lim f ve d||9E|| = vp(0) = e,
J—0° JB(0,L) J° JB(0,s; L)

since 0 € 0*E. If ||8F||(6B(0,L)) = 0, the Lower Semicontinuity Theorem
implies

10FII(B(0, 1)) < liminf 1253 |(B(O, L))

= lim / en - v; d||0E;||
B(0,L)

J—o00

/ en-vr dOFIl, by (x0)
B(0,L)

Since |vg| = 1 ||OF|| a.e., the above inequality forces
VEp = €n ||(9F|| a.c.
It also follows from the above inequality that

10FII(BO, L) = lim ||2E;lI(B(0, L)

whenever ||GF||(6B(0, L)) = 0.
5. Claim #2. F is a half space.

Proof of Claim #2: By Claim #1, for all p € C}(R";R"™),

/divcpdz=/ - en d||0F||
F n
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Fix € > 0 and let f© = n, x x ., where 7). is the usual mollifier. Then f* €
C>(R"), and so

_/[ fedivp dz = / div (9. * ) dz
Rgn f

!

- / 1o % (- €0) dIOF]].

But also
[ fedivey dz=—/ Df<.ypdz.
j[R“ n
Thus
of¢ of¢
=0 =1,...,n - 1), < 0.
52, (i=1,...,n—-1) 92 =

As fe = xp L" ae.as e — 0, we conclude that — up to a set of L"-measure
Zero —

F={yeR" |y, <} for some v € R.
6. Claim #3: F = H~(0).

Proof of Claim #3: We must show 7 = 0 above. Assume instead v > 0.
Since Xg, — X in Li,. (R™),

a(n)y™ = L*(B(0,7) N F) = lim £"(B(0,y)N E;)

J—o00

— tim L (B(O,Zsj)ﬂE)

J—00 33‘

b}

a contradiction to Lemma 2(ii).
Similarly, the case 7 < 0 leads to a contradiction to Lemma 2(i). |

We at once read off more detailed information concerning the blow-up of E
around a point z € 0*E:

COROLLARY 1
Assume z € O*E. Then

L*(B(z,7)NENH"(2))

(i) lirrb - =0
im ((B(z, ) ;—nE) NH™@) _ o g
G) lim IOE||(B(=,7)) _ L

r—0 O:(’n — 1)7‘""‘l

DEFINITION A unit vector vg(z) for which (i) holds (with H *(z) as defined
above) is called the measure theoretic unit outer normal to E at z.
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PROOF
1. We have

LM(B(z,r) N ENH*(z))
— L™(B(z, )N H () N H*(z)) =0as r — 0.

= L*(B(z, 1) N E. N H*(z))

The other limit in (i) has a similar proof.
2. Assume z = 0. By (x x %) in the proof of Theorem 1,

|0E]|(B(0,7))

rn—1

Since ||0H~ (0)||(8B(0, 1)) = ‘H*~(6B(0, 1)NH(0)) = 0, part 2 of the proof
of Theorem 1 implies

i 1OEI(BO,)

r—0 rn-l

= ||0E-|I(B(0,1))-

= [[0H~ (0)[|(B(0, 1))

= H""Y(B(0, 1) N H(0))
=a(n— 1) l

5.7.3 Structure Theorem for sets of finite perimeter

LEMMA 3
There exists a constant C, depending only on n, such that

H*~!(B) < C||0E||(B)
for all B C 0*F.

PROOF Lete, 6 >0, B C d*E. Since ||0E]|| is a Radon measure, there exists
an open set U D B such that

10E||(U) < [I0E||(B) + .

According to Lemma 2, if z € §*E, then
10E||(B(z, T))

Tn—l

liminf > A3 > 0.

r—0

Let

F= {B(:c,r) | x € B,B(z,r) CUr< 16—0 , |OE||(B(z. 1)) > A3r"”l} .

According to Vitali’s Covering Theorem, there exist disjoint balls { B(z;, r;) }52,
C F such that

B c | ) B(z,5m)).

i=1
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Since diam B(z;,5r;) <6 (i=1...)

n l Za 7 — 1 57*! n-1 < CZ"BE” (mi, 7'i))

1=1 1=1

< C||oEl|(U)
< C(IAEI(B) + ).

Let ¢ —» 0 and then 6 — 0. |

Now we show that a set of locally finite perimeter has “measure theoretically
a C' boundary.”

THEOREM 2 STRUCTURE THEOREM FOR SETS OF FINITE PERIMETER
Assume E has locally finite perimeter in R™.

(i) Then

= G KiLUN,
k=1

where
IGE||(N) =

and Ky is a compact subset of a C'-hypersurface S (k= 1,2,...).
(ii) Furthermore, vg |g, is normal to S (k =1,...), and
(i) ||0E||=H "' L &*E

PROOF
1. For each x € 8*E, we have according to Corollary 1

( n , ENH*
limo L"(B(z,T) ﬂn (z)) _o.
r— T

¢ *
o LB ~E)NH () _, )

\ r—0 ’rn

Using Egoroff's Theorem, we see that there exist disjoint ||0 E/||-measurable sets
{F;}$2, € 8*E such that

| IE]] (B*E— UF:-) =0, |l8E||(Fs) < oo, and

=1

the convergence in (x) is uniform forxz € F; (¢ =1,...).
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Then, by Lusin’s Theorem, for each 7 there exist dis joint compact sets {E'f 721 C
F; such that

IOE|l { i — | JE] | =0 and

=1
VE |gs  is continuous.

Reindex the sets { E? }£%-, and call them {K;}72,. Then

0*E = | J KcUN, [IDE((N) =0,
k=1
the convergence in (x) is uniform on Ky, and (3x)

—

| vg |k, is continuous (k=1,2...)

b "0'.

2. Detine for 6 > 0

pk(é)ssup{'”"’(‘;’;;(i,“ N o<le~yl <szye Kk}.

3. Claim: For each k =1,2,..., pr(6) = 0as § — 0.

Proof of Claim: We may as well assume kK = 1. Fix 0 < e < 1. By (%), (%)
there exists 0 < 6 < | such that if z € K; and r < 2§, then

LYMENB(z,r)NH"(2)) < 2:+2a(n)r"
< o (x4
n - ¢ n
‘ L*"(ENB(z,r)NH™ (2)) > a(n) (5 — 2n+2) .
Assume now Z,y € K;,0< |z —y| <.
Case I. vg(z) - (y — z) > €lz — 9.
Then, since € < 1,
B(y,elz — yl) € H*(z) N B(z, 2|z — yl). (% % %)
To see this, observe that if z € B(y, ez — y|), then : = y + w, where |w| <

€|z — y|, whence

ve(z) - (z—z)=ve(z) - (y—z) +ve(z) - w> ez—y| - |wl >0.
On the other hand, (* x x) with z = z implies

n

L7(E N B(z,2lz ~ y)) N H (2)) < 5za(m)2e — o)

e"a(n)

—_ ___n.
=7 |z — y|™,
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and (x x x) with 2 = y implies

L"(ENB(y,elz —yl)) > L (ENB(y,elz — yl) N 117 (y))
, a(n)ls - yI" (1- 2 )
- 2 2n+l

n

e"a(n)
4

However, our applying £ L E to both sides of (x x %) yields an estimate
contradicting the above inequalities.

Case 2. vg(z) - (y — z) < —€lz — yl-

This similarly leads to a contradiction.

4. Now apply Whitney’s Extension Theorem (found in Section 6.5) with

|z — y|".

f:O and d=l/E on Kk.

We conclude that there exist C*-functions f; : R* — R such that

Let

= = 1
SkE{.’EERnlfk:O, |ka|>§} (k=l,2,...).

By the Implicit Function Theorem, Sk is a C?, (n — 1)-dimensional subman-
ifold of R™. Clearly K C Sk. This proves (i) and (ii).
5. Choose a Borel set B C d*E. According to Lemma 3,

H*Y(BNN) <C||GE||(BNN)=0.

Thus we may as well assume B C |Jz.; K&, and in fact B C K. By (ii) there
exists a C'-hypersurface S| O K. Let

v=H"'LS,.

Since S, is C1,
i v(B(z,T))

r—0a(n —1)r"=!

=1 (z € B).

Thus Corollary 1(ii) implies

, v(B(z,T))
% TGEI(B(s, )

=1 (z € B).

Since v and ||0F|| are Radon measures, Theorem 2 in Section 1.6.2 implies

I10E||(B) = v(B) = H*"(B). |
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I

5.8 The measure theoretic boundary; Gauss—Green Theorem

As above, we continue to assume E is a set of locally finite perimeter in R".
We next refine Corollary 3 in Section 1.7.1.

DEFINITION Let 2 € R". We say x € 0, I, the measure theoretic boundary
of I, if
L*(B(z,r)N E)

' 0
imap ==L >
and
LY(B(zx,r) - F
lim sup (Blz,r) ) > 0.
r-—0 r"
LEMMA I

(i) 0*E C O, F.
(ii) H*'(4,E -0*E) =0.

PROOF
1. Assertion (i) follows from Lemma 2 in Section 5.7.
2. Since the mapping

L"(B(z,r)NE)

Tn

T +—

is continuous, if x € 9, E, there exists 0 < a < 1 and r; — 0 such that

En(B(.’I:, Tj) N E) _

= .
a(n)r}‘

Thus

min{L"(B(z,r;) N E),L"(B(z,7;) - E)} = min{a, | - a}a(n)r}

2 ?
and so the Relative Isoperimetric Inequality implies

b 10E1|(B(z, 7))

n—1i

lim su > 0.

r—0 T

Since ||OE||(R™ — 8*E) = 0, standard covering arguments imply
H YO, E - 8*E)=0. |

Now we prove that if £ has locally finite perimeter, then the usual Gauss—

Green formula holds, provided we consider the measure theoretic boundary
of E.
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THEOREM I GENERALIZED GAUSS—-GREEN THEOREM
Let E C R™ have locally finite perimeter.

(i) Then H"7'(9,E N K) < oo for each compact set K C R™.

() Furthermore, for H"~! a.e. £ € 3. E, there is a unique measure theoretic
unit outer normal vg () such that

/ divy dr = v vg dH" (%)
E d.E

for all ¢ € CH{R"; R").
PROOF By the foregoing theory,

/divgod:t,': o -vg d||0F]|
E R™
But
I0E||(R* — 8"E) =0
and, by Theorem 2 in Section 5.7.3 and Lemma |,
IOE|| =H""' LA.E.

Thus (x) follows from Lemma 1. |

REMARK We will see in Section 5.11 below that if £ C R" is L™-measurable
and H"~!(8,FE N K) < oo for all compact K C R", then E has locally finite
perimeter. In particular, we see that the Gauss-Green Theorem is valid for
E = U, an open set with Lipschitz boundary. |

5.9 Pointwise properties of BV functions

We next extend our analysis of sets of finite perimeter to general BV functions.
The goal will be to demonstrate that a BV function is “measure theoretically
piecewise continuous,” with “jumps along a measure theoretically C' surface.”

We now assume f € BV (R") and investigate the approximate limits of f(y)
as y approaches a typical point z € R",

DEFINITIONS

() p(z)=ap limsup f(y) = inf

y—T

{t i L™(B(z,7) N {f > t}) O}.

L
(ii)) A(z) = ap li;xl’igff(y) = sup {t | R_%
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REMARK Clearly ~00 < A(z) € pu(z) < o forallz € R*. |

LEMMA 1
The functions © — A(z), pu(z) are Borel measurable.

PROOF For each t € R, the set E; = {x € R" | f(z) > t} is L"-measurable,
and so for each r > 0, t € R, the mapping

L™ (B(z,r) N EY)

lrn

xr —

is continuous. This implies

[Ln
pe(z) = limsup (Blz,r) 0 EY)

n
r—0 T
r rational

is a Borel measurable function of = for each t € R
Now, for each s € R,

{z e R | p(z) < s} = [V{z € R* | pyyy(2) =0),
k=1

and so u is a Borel measurable function.
The proof that A is Borel measurable is similar. |

DEFINITION Let Jdenote {z € R™ | A(z) < u(z)}, the set of points at which
the approximate limit of f does not exist.

According to Theorem 2 in Section 1.7.2,
£(J) = 0.

We will see below that for H"~! a.e. point z € J, f has a “measure theoretic
jump” across a hyperplane through z.

THEOREM I
There exist countably many C'-hypersurfaces {Sy}$S_, such that

H! (J — D Sk) = 0.
k=1

PROOF Define, as in Section 5.5,
Ei={zeR"|f(z)>t} (teR)

According to the Coarea Formula for BV functions, E; is a set of finite perimeter
in R™ for £! ae. t. Furthermore, observe that if z € J and A(z) < t < u(z),
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then
L(B(z,T)N >t
lim sup (5 r)n i/ D >0
r—0 T
and
"(B(z,T)N <t
limsupL (Blz T)n L <t) > 0.
r—0 r
Thus

{xed| Mz)<t<p(z)) Co.E. (%)

Choose D C R! to be a countable, dense set such that E; is of finite perimeter
for each t € D. For each t € D, H"~! almost all of 0,F; is contained in a
countable union of C*-hypersurfaces: this is a consequence of the Structure
Theorem in Section 5.7.

Now, according to (x),

Jc |JaE,
teD

and the theorem follows. |

THEOREM 2
—00 < Az) < p(z) < 400 for H* ! ae. 2 € R™.

PROOF
L Claim#l: H* '({z | Mz) = +00}) =0, H* ! ({z | u(z) = —o0}) =0.
Proof of Claim #1: We may assume spt (f) is compact. Let
Fi={z € R" | A(z) > t}.

Since p(z) = Az) = f(x) L ae., E; and F; differ at most by a set of
L™-measure zero, whence

||3Et|| = ||8Ft||'

Consequently, the Coarea Formula for BV functions implies
o0
| NoRII®®) de = IDSI(RY) < oo

and so
lim inf |9 £3[| (R") = 0. ()

Since spt (f) is compact, there exists d > 0 such that

L™ (spt (f)N B(z,7)) < %a(n)r"’ for all z € spt (f) and r > d. ()
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Fix ¢t > 0. By the definitions of A and [y,

r—0 a(n)rm

= | fOI'(EGFt.

Thus for each = € F;, there exists » > 0 such that

L"(B(z,7)N Fy) !
a(n)rm 4"

(% % *)

According to (xx), r < d.
We apply Vitali’s Covering Theorem to find a countable disjoint collection
{B(zi,7;)}32, of balls satisfying (x x %) for x = z;, 7 =r; < d, such that

b C U B(z;, 57;).

i=1

Now (x % x) and the Relative Isoperimetric Inequality imply

(_a_@_)_)“ ¢ ClIORN(Bla:,))

4 T ’

1

that s,

r?~! < C||0F:||(B(z:, ;) (i=1,2,..).

Thus we may calculate

< CZIlaFtll(B(a:i,n))

< Cl|0F|(R™).
In view of (%),
oa ({z | Mz) = +oo}) =
and so
H* ™ ({z | Mz) = +o0}) =

The proof that H"~!({z | p(z) = —00}) =0 is similar.
2. Claim #2: H* '({z | p(z) — Mz) = o0}) =

Proof of Claim #2: By Theorem 1, J is o-finite with respect to H™~! in R",
and thus {(z,t) | z € J, A(z) < t < p(x)} is o-tinite with respect to H™ ! x L!
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in R"*! Consequently, Fubini's Theorem implies

/_ H" ' { M=) <t < pu(z)}) dt =/ u(z) — Mz) dH" "

oQ n

But by statement (x) in the proof of Theorem 1, and the theory developed in
Section 5.7,

(e o)

[ @ <i<u@pas [ wo.s)

- 00 — 00

= / IBEI(R") d
= ||DfI|(R"*) < oo.

Consequently, H™~!({z | u(z) — A(z) = 00}) =0. |
NOTATION F(z) = (A(z) + u(z))/2.

DEFINITIONS Let v be a unit vector in R", x € R". We define the hyperplane
H ={yeR"|v-(y-z)=0}
and the half-spaces

Hf={yeR |v-(y—z) 20},

H ={yeR"|v-(y—z) <L0}.

THEOREM 3 FINE PROPERTIES OF BV FUNCTIONS
Assume f € BV (R™). Then

(i) lim,_g fB(M) If = F(z)|*/* ' dy=0for H* ! ae. x €R" -],

and
(ii) for H™ ! a.e. x € ], there exists a unit vector v = v(z) such that

limf If = p@)™/" " dy=0
B(z,r)NH;

r—0

and

lim][ If = M) Vdy = 0.
B(z,r)nH}

r—0

In particular,

u(z)=ap lim f(y),  Az)=ap lim f(y).

y—zx

ved} vEH
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REMARK Thus we see that for H"~! a.e. x € J, f has a “measure theoretic
jump” across the hyperplane H, ;). |

PROOF  We will prove only the second part of assertion (i), as the other
statements follow similarly.

1. For H" ! a.e. ¢ € J, there exists a unit vector v such that v is the measure
theoretic exterior unit normal to E; = {f > t} at x for A(z) < t < p(z). Thus
for each € > 0,

’L%Buwwwf>A@%HﬁﬂHﬁ_q)
) r (+
LBz, r)N{f < Az)—¢€}) 0
\ " e
Hence if 0 < e < 1,
1
— — Mz |"/n_l dy
T B(z,r)NH} |f ( )
|
< 5a(n)fn/n—l
+i _ A In/n-—l d
. |f = A=) y
T JB(z.r)NHIN{f>A(z)+¢}
l —
L f= @)y )

" jB(x,r)nH,'fﬂ{f<)\(x)—€}
Now tix M > A(z) + €. Then

1 n/n—

T JB(z,r)nH}N{f>A(z)+¢€}

L (B(z,r)NHF N{f > A=) +¢})
rﬂ.

< (M~ Mz))"/!

1 .
+— |f = @)™ dy.
T B(:r:,r)ﬂ{f>M}

Similarly, if —-M < A(z) — ¢,

1 _
— f = A)|™/ ™! dy

rr B(z,r)n{f<A(z)—¢€}
< (M + Mg))/n-1 ELBE@ T Of < Mz) = €))

Tﬂ.

1
t— |f = Az)|"/™ 7 dy.

T JB(z,r)n{f <— M}
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We employ the two previous calculations in (x%) and then recall (x) to compute

. 1 n/n—
lim sup — If = Ma)|["/"! dy
r—0 T JB(z,r)nH}

|
< lim sup — If = Ax)|"/"~" dy (% * %)
r—0 T Jp(er)n{|f|>M}

for all sufficiently large M > 0.

2. Now
| P C n/n—
Fj/l;( (s M}If—)\(x)l / ldys?”_"/u( )(fﬂM)+ "y
z,r)N{ > £,r
L*(B(z,r)N
4+ (M - \z))™/™! (Blz.r) N{f > M})) :

r?l

If M > p(zx), the second term on the right-hand side of this inequality goes to
zero as © — (. Furthermore, for sufficiently small r > 0,

LBz, r)n{f>M}) 1
Ln(B(z,T)) )

and hence by Theorem I(iii) in Section 5.6.1 we have

n—|

—

(fB( )(f“ M)+n/n—1 dy) < C |D(f — M)+||(B(:l:,r)),

,rn—l

This estimate and the analogous one over the set {f < —M} combine with
(*x % x) to prove

n—1

lim sup ({ |If — )\(a;)|n/n—1 dy) m
r—0 B(:c,r‘)ﬁH:
|ID(f = M)*||(B(,T))

< Climsup :
r—0 U
-M - f)*||(B
+C lim sup 1D( T{L)_i”( (z,7)) (% % % %)
r—0

for all sufticiently large M > 0.
3. Fix ¢ > 0, N > 0, and define

ID( = MYIBE. ) | g 1 > N},

rrin""‘!

r—0

AN = {:z: € R™ | limsup

1 (AY) < CIID(S - M)YIR) = C [ " [l0BI(RY) d
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for all M > N. Thus

Hn_l(AiV) =0,
and so
_ +
Lim 1‘.msup”D(f M)*lI(B(z.7) _,

M—oo . _,qg rn-1

for H*~! a.e. z € J. Similarly,

M — f\+ .

M—oo ._,g 7‘""

These estimates and (x x x x) prove

r—0

limj[ If = Az)"*tday=o0 |
B(x,r)ﬂH;"

COROLLARY 1
(i) If f € BV(R"), then

f*(z) = im(f)y,r = F(2)

r—{)

exists for H" ™! a.e. z € R™.

(ii) Furthermore, if 1. is the standard mollifier and f¢ =0, x f, then
f*(z) = lim £*(z)

for H" ! ae. x € R",

5.10 KEssential variation on lines

We now ascertain the behavior of a BV function on lines.

5.10.1 BV functions of one variable

We first study BV functions of one varjable.
Suppose f: R — R is £'-measurable, ~co < a < b < x.

DEFINITION The essential variation of f on the interval (a,b) is

ess VO f = sup Zlf(th) — f(t5)]
J=1
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the supremum taken over all finite partitions {u < t| < -+ < ty+; < b} such
that each t; is a point of approximate continuity of f.

REMARK  The variation of f on (a,b) is similarly detined, but without the
proviso that each partition point ¢, be a point of approximate continuity. Since
we demand that a function remain BV even after being redefined on a set of L'
measure zero, we see that essential variation is the proper notion here.

In particular, if f =g L' a.e. on (a, b), then

ess VP f =ess V. 1

THEOREM 1
Suppose f € L'(a,b). Then | Df||(a,b) = ess V"f. Thus f € BV (a,b) if and
only if ess V2 f < oo.

PROOF

1. Consider first ess V?f. Fix € > 0 and let f* = 1, * f denote the usual
smoothing of f. Choose any a + € < t; < .-+ < ;41 < b — e Since L! ae.
point is a point of approximate continuity of f, {; — s is a point of approximate
continuity of f for L' a.e. s. Hence

m

PBUACIESHOIEDY

It follows that

b—e m
[ (FY) do = supd SO 1F< (i) = F(E)] b < ess VO F.
a 13 ]

+

=1

Thus if p € Cl(a,b), |¢| < 1, we have

b b b—¢
/f‘¢'dm=—/(f‘)'godm§/ 1(f9)| dz < ess V.2 f

+€

for € sufficiently small. Let ¢ — O to find

b
/ fo' dx < ess VF.
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Hence

b

Q

1D f1|(a,b) = SUP{ fo'dx | o € Ci(a,b),lp] < l}

<ess V,)f < oo.
In particular, if f ¢ BV (a,b),
| Df]|(a, b) = ess V! f = 4o0.

2. Now suppose f € BV (a,b) and choose a < ¢ < d < b. Then for each
@ € Cl(c,d), with || < 1, and each small € > 0, we calculate

/Cd(ff)'so dr = —/Cdffcp' dx
=—/d(ne=‘<f)so'“‘ﬂE

Cb
=— [ f(nx*yp) dc
< [|Dfl|(a, b).

Thus [ 1(f)'| d= < ||Df||(a, b).
3. Claim; f € L>®(a,b).

Proof of Claim: Choose {f;}52, € BV(a,b) N C>(a,b) so that
fi—f in L¥(a,b), fi — f L™ ae.
and
b
[ 151~ D)@, )

For each y, z € (a,b),

fi(z) = fi(y) +/ f; dx.

Y

Averaging with respect to y € (a, b), we obtain

b b
@< f gldv+ [ 1514
and so
S?prjllLoo(a’b) < 0.

Since f; — f L™ ae,, ||f]]

L(a,b) < OQ.
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4. 1t follows from the claim that each point of approximate continuity of f is
a Lebesgue point and hence

fe(t)y— f(t) (%)

as ¢ — 0 for each point of approximate continuity ot f. Consequently, for each
partition {a < t; < --- < t,,+1 < b}, with each ¢, a point of approximate
continuity of f,

1449

Zlf i+1) ¢ =}*_‘3},Z|f tivi) = f(¢5)

< lim sup I(f“)'l dx
f—oo [{}
< ||Dfl|(a,b).
Thus

ess V.Of < ||Df||(a,b) < 0. |

5.10.2 Essential variation on a.e. line
We next extend our analysis to BV functions on R,

NOTATION Suppose f : R* — R. Thenfork = 1,...,n,setz’ = (21,.. . Tk~1,
Thatr...Ln) ER®! and t € R, write

fk(miat) = f('“)mk—latamk-}-l,...).

Thus ess V° f;. means the essential variation of f; as a function of t € (a,b),
for each fixed z’.

LEMMA |
Assume f € L (R™), k € {1,...,n}, —co < a < b < co. Then the mapping

' — ess VD fi

is L Y _measurable.

PROOF  According to Theorem |1, for L™ a.e. 2’ € R*!,

ess V2 fi = || Dfl|(a, b)

“SUP{/ fe(@' ) (t) dt | ¢ € Ci(a, ),I@ISI}.
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Let {;}92, be a countable, dense subsct of C'(a.b) N {|p| < 1}. Then
7

' [ fil!, ) @)(t) dt

u

is £~ !-measurable for j = 1,... and so

b
m’Hsup{ f(a' )t )dt} = ess V. fi

J

is £" '"“measurable. |

THEOREM 2
Assume f € Li.(R™). Then f € BVio(R™) if and only if

/ ess V2 fi dx’ < o0
K

for eachk =1,...,n, a < b, and compact set K C R*~',

PROOF
1. First suppose f € BV,.(R™). Choose k, a, b, R as above. Se

C={r|a<ae <b (T, ..., Tp1, Thgrs---2Tn) € K}

Let f¢ =ne x f, as before. Then

iy [ 17 1 dz =0

c—9)

llmsup/ |Df¢| dx < oc.

c—{

Thus for H*~! ae. 2’ € K,
fi = fi in L'(a,b),
where
fele' ) = f( et Tagr o)

Hence

ess V(f fr <lim i&lf ess V(f’ f for H" ' ae. 2’ € K
e—)
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Thus Fatou’s Lemma implies

[ ess V' fi dz' < lim inf/ ess V' f§ dx’
‘}K e¢—{) h‘
afe

— lim inf
i?li(? /C (?J’k

< limsup/ |Df| dr < co.
c

e —0

dx

2. Now suppose f € L! (R") and
/ ess V' fi. dz' < o0
K

for all k = 1,...,n, @ < b, and compact K C R"~!. Fix ¢ € C®(R"),
l¢| < 1, and choose a, b, and k such that

spt (¢) C {z | a < zx < b}

Then Theorem 1 implies

0
/ f=2 dx < / ess V2 fr dx’ < oo,

for

K={2"eR" | (...zk—1y b, Zky1,...) € spt () for some t € R}.

As this estimate holds for k = 1,...,n, f € BVj.(R"*). |

5.11 A criterion for finite perimeter

We conclude this chapter by establishing a relatively simple criterion for a set
E to have locally finite perimeter.

NOTATION Write z € R® as x = (2/,t), for @ = (Z(,...,Zn=1) € R*71,
t = x, € R. The projection P : R* — R*~! is

Px)=2" (z=(2',z.) € R").

DEFINITION Set N(P | A,z') = HY(An P~'{z'}) for Borel sets A C R*
and ¥’ € R*~1,
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LEMMA 1
(i) The mapping ' — N(P | A, z') is L""-measurable.

(i) [gu-t N(P| A z') dx’ < H*I(A).

PROOF  Assertions (i) and (ii) follow as in the proof of Lemma 2, Section 3.4.1;
see also the remark in Section 3.4.1.

DEFINITIONS Let E C R™ be L™*-measurable. We define

1= {m € R" | lim £"(Bla,r) - F) —_:O}

r—0 T

to be the measure theoretic interior of E and

OE{:EER" ( lim £ (B@.7) N F) =0}

r—0 rn

to be the measure theoretic exterior of E.

REMARK Note J,F = R" — (1UO). Think of I as denoting the “inside” and
O as denoting the “outside” of E. |

LEMMA 2
(i) I, O, and 0. E are Borel measurable sets.

(i) £ ((I-E)U(E~-T))=0.

PROOF
1. There exists a Borel set C C R* — E such that L*(CNT) = L™*(T - E)
for all £L™-measurable sets T. Thus

. {x im £1(B@ DN C) :0}’

r—{) rh

and so is Borel measurable. The proof for O is similar.
2. Assertion (ii) follows from Corollary 3 in Section 1.7.1. |

THEOREM I CRITERION FOR FINITE PERIMETER
Let E C R* be L™-measurable. Then E has locally finite perimeter if, and only

if.
H* YK NOE) < oo (%)

for each compact set K C R,
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PROOF
I. Assume first (x) holds, fix a > 0, and set

U= (—aa)"CR".

To simplify notation slightly, let us writc 2 = z' € R*~! ¢ = r,, € R. Note
from Lemma | and hypothesis ()

N(P|UNO,E,z)dz < H""(UNLE) < oo. ™
Rr—1

Define for each z € R*~!
A8 = x,(2t) (LeR).

Assume ¢ € C!(U), |¢| < 1, and then compute
J
/ div (pe,) dz = /div(cpe,,) dx = / haps
E I 1 Oz,

=/R [/Rf"(t);):i(z,t) dt} dz

< / ess VO, f% dz (% * %)
v

where
V=(-aa"'CcR"L

2. For positive integers k and m, define these sets:

| G(k)—z{mER"IE"(B(:c,r)ﬂO)S 9‘_(2_“__!_27,71 for 0 < 1 < -z-},

3n+l
< n a(n—1) _ 3
Hk)={zeR lﬁn(B(:E,T)ﬂI)S-WT for0<'r<;€— ,
- GY(k,m)=Gk)N{z |z + se, € O for 0 < s < 3/m},
G (k,m)=Gk)N{z |z ~se, €O for 0 < s < 3/m},

Ht(k,m)= Hk)N{z |z +se, €I for 0 < s <3/m},
k,m)= H(k)N{x|z—se, €I for 0 <s < 3/m}.

LY

3. Claim #1:
LPYP(GF(k,m))) = LY P(H*(k,m))) =0 (k,m=1,2,...).

Proof of Claim #I:. For fixed k, m, write

G*'(k,m)z G Gj,

j=—o0
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where

G,-EG+(k,m)n{a;|’" : smn<i}.

m m

Assume 2 € R*7',0 < r < min{l/k, 1 /m}, and B(2,7)N P(G;) # . Then
there exists a point b € G; N P~'(B(z,r)) C G(k) such that

% > sup{z, | z€ G, NP~ (B, 7))}

Thus, by the definition of G*(k,m), we have

{ylbut 2 <yu <bu+7}0PTUP(G) N B(z,7) € ONB(b,31).
Take the £™*-measure of each side above to calculate

gﬁn_l(P(Gj) N B(z,7)) < L*(ON B(b,3r)) < ﬂ;;flﬁ(?’r)",

since b € G(k). Then

_LrY(P(G) N B(z,7))
<
P T e Dt S

for all z € R™~!. This implies
LHPG)) =0  (j=0£1,%2,...).
and consequently
LY P(Gt(k,m))) = 0.
Similar arguments imply
LY P(G™ (k,m))) = LY (P(H*(k,m))) =0

for all k, m.
4. Now suppose

2€ V- U P[G* (k, m)UG™ (k, m)UH* (k. m)UH ™ (k. m)] (% % %)

and
N(P|UNOJOE,2) < oo.

Assume —a < t; < -+ - < t;4+1 < a are points of approximate continuity of f*.
Notice that |f3(¢;+) — f3(¢;)| # 0 if and only if ]fz(tﬂ.;) — f3(tj)|=1. In
the latter case we may, for definiteness, suppose (z,t;) € I. (z.t;41) € I. Smce
tj+1 is a point of approximate continuity of f* and since K" — (OUI) =

it follows from the finiteness of N(P | U N 0, E, z) that every neighborhood
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of t;,) must contain points s such that (z,8) € O and f* is approximately
continuous at 5. Consequently,

ni

ess V¢, f* =sup Z 1f2(ti41) = (&) 3,

i=1

the supremum taken over points —a < ¢; < --- < ¢,,41 < a such that (2,¢;) €
OU T and f* is approximately continuous at each ¢;.

5. Claim #2: If (z,u) € I and (2,v) € O, with u < v, there exists u < t < v
such that (2,t) € 0, E.

Proof of Claim #2: Suppose not; then (z,t) € OU I forall u < t < v. We
observe that

and that the G(k), H(k) are increasing and closed. Hence there exists kg such
that (2, u) € G(kyg), (2,v) € H(kg)- Now H(ko) N G(ko) =0, and so

uy = sup{t| (z,t) € G(kg), t < v} <.

Set
vo = inf{t | (2,t) € H(ko), t > ug}.
Then
(2, wg) € G(ko), (2,v0) € H(ko),
u <y <y <,
and

{(2,8) | ug < t < wo} N [H(ko) UG(ko)] = 0.
Next, there exist
Y < 8§31 < & < v

with (2,5,) € I, (2,t1) € O; this is a consequence of (x x x%). Arguing as
above, we find k; > ky and numbers w, vy such that

uy < Uy < vy < Vg, (z,u) € G(ky),  (z,v1) € H(ky),
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and (2,t) ¢ H(k)UG(k)) if uy < t < v;. Continuing, there exist k; — 00
and sequences {u;}72,, {v;}32, such that
iy <u < ..ly, YOM SV,
u; <vjforall j=1,2,...,
(z,u;) € G(k)), (2,v;) € UH(k;),
. (2,8) € G(kj) U H(kj) if uj < t < v;.

Choose
lim u; <t < lim ;.
j—oc j—o0
Then
o0
y = (z,t) ¢ |JIG(k;) U H(kj)],
j=I
whence
LB —
fmsap BN NE) | aln — 1)
r—() T" 3n+l
and
n B — —
limsupﬁ (B(y,r)— F) > a(n — 1) |
r—) T 3n+l
Thus y € 0.F.

6. Now, by Claim #2, if z satisfies (x % % %),
ess V2, f? < Card {t| —a <t <a,(zt) € 0.F}
= N(P|UNOLE,=).

Thus (x % %) implies
/ ess V2, f?dz < / N(P|UNBLE,2) dz <H" " (UNOE) < o0
4 14

and analogous inequalities hold for the other coordinate directions. According
to Theorem 2 in Section 5.10, E has locally finite perimeter.
7. The necessity of (x) was established in Theorem 1 in Section 5.8. |
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Differentiability and Approximation by C'
Functions

In this final chapter we examine more carefully the differentiability properties
of BV, Sobolev, and Lipschitz functions. We will see that such functions are
differentiable in various senses for £" a.e. point in R", and as a consequence
are equal to C' functions except on small sets.

Section 6.1 investigates differentiability £™ a.e. in certain L”-senses, and
Section 6.2 extends these ideas to show functions in WP for p > n are in fact
L™ a.e. differentiable in the classical sense. Section 6.3 recounts the elementary
properties of convex functions. In Section 6.4 we prove Aleksandrov’s Theorem,
asserting a convex function is twice differentiable L™ a.e. Whitney’s Extension
Theorem, ensuring the existence of C'! extensions, is proved in Section 6.5 and
is utilized in Section 6.6 to show approximation by C' functions.

6.1 LP differentiability; Approximate differentiability
6.1.1 L' differentiability a.e. for BV
Assume f € BV, (R™).

NOTATION We recall from Section 5.1 the notation
[Df] = [Dflac + [Df]s = L™ L Df + [Df;,

where D f € L).(R™; R") is the density of the absolutely continuous part [D f],
of [Df], and [D f]; is the singular part.

227
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We first demonstrate that near £ a.e. point z, f can be approximated in an
integral norm by a linear tangent mapping.

THEOREM I
Assume f € BVioc(R™). Then for L™ a.e. 2z € R",

<][ 1f(y) = f(z) = Df(z) - (z — w)|" dy) = o(7) as r — 0.
B(x,r)

PROOF
1. L™ a.e. point x € R™ satisfies these conditions:

(@ fim ][B(‘ 11 - f@)] dy =0,

r—0

r—

b) lim ][B . 1DI) = Dfta) dy =0

(©) li [[DFLI(B(z, 7))/ =0.

2. Fix such a point z; we may as well assume z = (. Choose r > 0 and let
f¢ =ne * f. Select y € B(r) and write g(t) = f*(ty). Then

that is,

1
Fe(y) = F5(0) + /0 Df<(sy) - y ds
1

= §0)+ () v+ [ (Df<(sw) - DIO)] -y ds

0

3. Choose any function ¢ € C!(B(r)) with |¢| < 1, multiply by ¢, and
average over B(r):

][B AU - 1) = DI0) ) dy

--/ (][ so(y)[Df‘(sy)—-Df(O)l'ydy> ds
0 B(r)

[, rGere-pior ) o
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Now
9.(s) = fmm o () D) 2 de
= O (¢ () 2)
= f @8 (o (5) ) de meo
= /..., #(3)= o]
fgr Qo s [ e()saon
Furhermor,

19¢(8)] o 7 () dz
o< 5[ P

Sﬂ

T

= — Dne(z - y)f(y) dy| dz
7 JB(rs) /R
— 2 - y) d[Df]| dz
5™ Juirs) [ﬂ"?e( y) d[Df]
<) | n-papse
[ ) da
5 Je Joes ne(z ~ y) dzd||Df]
C
dz d||D
= sten L(ra-«}-e) L(rs)ﬂB(y,e) II fll
< ™M) p f(Brs + )
< Cmin((rs)“, €")(rs +¢€)"

shen

<C for 0 < ¢s < 1.
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4. Therefore, applying the Dominated Convergence Theorem to (%), we find

][B P - 10) = DIO) ) d

e a oo [ IPFLI(BGs))
/][ q)]Df - Df(0)] dz ds + € A ey ¢

asr—»O

Take the supremum over all ¢ as above to find
{ 1F@) =10 - DO v dy=or) as =0 (o0
B(r

5. Finally, observe from Theorem 1(ii) in Section 5.6.1 that

not

(][ |f(y) = f(0) = Df(0) - y|== dy)
B(r)
IID(f f(0) = Df(0) - »)II(B(r))

+C |f(y) = f(0) — Df(0) - yl dy

B(r)

= o(r) as T — 0,

according to (xx), (b), and (c). |

6.1.2 LP differentiability a.e. for W'? (1 < p < n)

We can improve the local approximation by tangent planes if f is a Sobolev
function.

THEOREM 2
Assume f € WP(R™) for | < p < n. Then for L™ a.e. x € R™,

1/p°
(fB( )If(y) ~ f(z) - Df(x) - (y —z)I” dy) = or) as r—0.

PROOF
1. L™ a.e. point z € R™ satisfies

(@) lim, o {5,y 1f(2) — f(y)IP dy=0.
(b) lim’"_’o }B(x,r) IDf(iE) - Df(y)lp dy = 0.

2. Fix such a point z; we may as well assume z = 0. Select o € C!(B(r))
with ||| Lecp(ryy < I, where 1/p+ 1/g = 1. Then, as in the previous proof,
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we calculate

.. P - £0) - DFO)-) dy
Y1 z '
_/0 ;][B(”)(p(;) (Df(2) = DF(O)] - 2 d= ds
1

/¢ U/p
< 7“/0 (][B(m) go(z)‘q dz) | <][B(N) IDf(z) = Df(O)" d:) | ds.

Since

2

@ (-S-)\q dz = ][B(r) p(y)|? dy < O

we obtain
f ) - 50~ DSO) ) dy= o' as 0.

Taking the supremum over all functions ¢ as above gives

[ l/p
g (/ |f(y) — £(0) — Df(0) - |7 dy) = o(r'~"/9),
B(r)

,rn

and so

1/p
(fB( )lf(y) ~ f(0) - Df(0) - y? dy) =o(r)asr — 0. (%)

3. Thus Theorem 2(ii) in Section 4.5.1 implies

l/p’
(][ |f(y) = £(0) = Df(0) -y dy)
B(r)
1/p
<Cr (][ |Df(y) — Df(0) dy)
B(r)

l/p
+C (f | f(y) — f(0) — Df(0) -y dy)
B(r)

= o(r) as r — 0,

according to (x) and (b). |
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6.1.3 Approximate differentiability

DEFINITION Let f:R" — R", We say f is approximately differentiable at
x € R™ if there exists a linear mapping

l:R" - R"
such that
— — L(y —
ap lim ) — fl@) - Ly -2)| _,
y—z ly — x|

(See Section 1.7.2 for the definition of the approximate limit.)

NOTATION As proved below, such an L, if it exists, is unique. We write

ap Df(z)

for L and call ap D f(z) the approximate derivative of f at x.

THEOREM 3
An approximate derivative is unique and, in particular, ap D f =0
L™ a.e. on {f = 0}.

PROOF  Suppose

[f(y) — f(z) — L(y — x)|

ap lim =0
Py |y — |
and
— , —
ap tim LW = @) - Ly -2 _
y—z ly — x|

Then for each € > 0,
rn (B(mi,}.)n {y| fW=f @)~ Ly=2)| | 6})

|y—x]

hm, L (B(z.7) =9 )
and

oL (B(:c,'r) N {yl u(y)_f?:l;f”(y"”)l > c})

lim = 0. ()

r—0 Lr(B(z,r))

If L # L, set

6e=||L- L= |T|i)§ I(L-LY2)|>0

and consider then the sector

Sa{yl (L=L)y—2) >

IL - L[|y — 2
a—t
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Note
L*(B(z,r)NS) _
By 7" -
for all » > 0.
Butif y€ S,
<|(L-L"Yy- =)
<|f(y) = f(z) = Ly — =)| +|f(y) — f(x) = L'(y - z)|
so that
Sc {y| lf(y)-fl(;l;f(y—xﬂ >6} U {yl If(y)—fg)-;lﬂ’(y*x)l >€}.

Thus (%) and (%) imply

 LYB(z,r)NS) _
LB )

a contradiction to (x x ). |

THEOREM 4
Assume f € BV .(R™). Then f is approximately differentiable L™ a.e.

REMARK

(i) We show in addition that
ap Df = Df L™ ae.,

the right-hand function defined in Section S.1.

(ii) Since W,:,;p (R™) € BVioc(R™) (I < p < 00), we see that each Sobolev
function is approximately differentiable L™ a.e. and its approximate deriva-
tive equals its weak derivative L™ a.e.

PROOF Choose a point x € R™ such that
f )= @)= DI@)- (y= ) dy =olr) a7 =05 (0

L™ a.e. x will do according to Theorem 1.
Suppose

ap limsup 1f(y) = f(x) = Df(z) - (y — z)|

> 60> 0.
Y—zx |y'—x|
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Then there exist ; — 0 and v > 0 such that

C*({y € Bl,ry) [1fW) = f&) = Df@) - w=a) > by =al}) |

a(n)r

Hence there exists ¢ > 0 such that

L*({ye Blx,rj)— Bz, or)) | | f(y) = f(#) =D f(x)-(y—=)| >Bly—-=z[}) _ 7
a(n)r} — 2
forj=1,2,.... Since |y — x| > or; for y € B(z,r;) — Blz,or;),
Lr({y € Ble,ry) | 1) = S(&) = DI@) -y =) > Boms)) Ly |
a(n)r} ~ 2
for j = 1,.... But by (%), the expression on the left-hand side of (xx) is less
than or equal to
O(Tj)

a contradiction to (),

Thus
ap “Tj:p |f(y) — f(x)l;f?il(x) y-7) _ 0
and so
ap Df(z) = Df(z). |

6.2 Differentiability a.e. for WP (p > n)
Recall from Section 3.1 the following definition:

DEFINITION A function f : R* — R™ is differentiable at x € R™ |if there
exists a linear mapping

L:R* - R™

such that

L |f(y) - f(z) - Lz —y)| _ 0.
y—z lz -yl
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NOTATION If such a linear mapping L cxists at z, it is clearly unique, and we
write

D f(z)

for L. We call Df(x) the derivative of f at .

THEOREM 1
Let f € W,"”(R") for some n < p < oo, Then [ is differentiable L" a.c., and

ocC
its derivative equals its weak derivative L™ a.e.

PROOF  Since W (R") c W.?(R"), we may as well assume n < p < 00.
For £L" a.e. z € R™, we have

r—0

lim][ |Df(2) — Df(x)|” d=2 = 0. (%)
B(z,r)
Choose such a point x, and write

9(v) = fly) — f(x) = Df(x) - (y—=x)  (y € B(x,71)).

Employing Morrey’s estimate from Section 4.5.3, we deduce

l/p
19(v) — 9(@)| < Cr (][ _1DaP dz)

for r = |x — y|- Since g(x) =0 and Dg = Df — D f(x), this reads

) = fw) - Dilz) v =)l ¢ ][ Df(z) - Df(z)|F d I/p
Iy-'.’EI B B(x,r)

o(1) asy —

according to (x). |

As an application we have a new proof of Rademacher’s Theorem, Sec-
tion 3.1.2:

THEOREM 2
Let f : R* — R be a locally Lipschitz function. Then f is differentiable L™ a.e

PROOF  According to Theorem S in Section 4.2.3, f € W1"°°(R"). |

ocC
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6.3 Convex functions

DEFINITION A function f : R™ — R is called convex if
fz + (1= Ny) < Af(z) + (1= A)f(y)

forall 0 < AL I, z,y € R".

THEOREM |
Let f:R" — R be convex.

() Then f is locally Lipschitz on R", and there exists a constant C, depending
only on n, such that

sup |f|scf £l dy
B(xajz'. B(z,r)

and
C

essoup IDAI<SS  ifldy
B(.’E, ‘12:) " JB(xr)
for each ball B(x,r) C R™.
(ii) If, in addition, f € C*(R™), then
D*f>0onR",

that is, D*f is a nonnegative definite symmetric matrix on R™.

PROOF
1. Suppose first that f € C*(R™) and is convex. Fix x € R". Then for each
y € R* and X € (0,1),

f(z+ My —z)) < f(z) + A(f(y) - f(=x))
Thus

Mot Ny = 2N 2@ ¢ gy - gz,

Let A — 0 to obtain

f(y) 2 f(zx) + Df(x) - (y — ) (%)

for all x,y € R™.
2. Given now B(z,r) C R™, we fix a point z € B(z. r/2). Then (*) implies

f(y) 2 f(z) + Df(2) - (y — 2).
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We integrate this inequality with respect to y over B(z,7/2) to find

dy < C dy. *ok
f(Z)SfB(z‘%)f(y) y < ﬁ(m’r)lfl y (3%)

Next choose a smooth cutoff function ¢ € C>°(R") satisfying

1 0<(<L, D¢ < &,

¢ =1 on Bz, g), ¢ =0 on R* — B(z, 7).
Now (%) implies

f(z) 2 f(y) + Df(y)- (2 — y).

Muttiply this inequality by ((y) and integrate with respect to y over B(z, r):

f(z)/mm’r)C(y) dy > /B(x,r)f(y)C(y) dy+f CW)Df(y)-(z-y) dy

B(z,r)

- / F@)C) - div (C(¥)(z - v))] dy
B(zx,r)

2 —C |f] dy-

B(zx,r)
This inequality implies
f(z2) 2 -C |f| dy,
B(z,r)

which estimate together with (%) proves

3. For z as above, define

szz{mi_<_|y-x|<i,of<z>-<y—z).>_

and observe
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where C depends only on n. Use (%) to write

f(v) 2 £(z) + 5| D (2)

for all y € S,. Integrating over S, gives

DI ST 1w - sl

This inequality and (x * x) complete the proof of assertion (i) for C? convex
functions f.

4. If f is merely convex, define f¢ = 7, * f, where ¢ > 0 and 7, is the
standard mollifier.

Claim: f°© is convex.

Proof of Claim: Fix z,y € R", 0 < A < 1. Then for each z € R",
flz = Az + (1 =N)y) = f(Mz —z) + (1 = A)(= —y))
<A(z—z) + (1= A)f(z - v).

Multiply this estimate by 7.(2z) > 0 and integrate over R™:

O+ (=09 = [ flz= O+ (1= Ng)z) dz

<A [ f(z-2)m(2) dz
R~

H1=X) [ fz=y)nda) dz
= M<(@) + (1= N f(v).

3. According to the estimate proved above for smooth convex functions, we
have

swp (If+rIDf) <C AL

B(x,3)

for each ball B(z,r) C R™. Letting ¢ — 0, we obtain in the limit the same
estimates for f. This proves assertion (i).

6. To prove assertion (ii), recall from Taylor’s Theorem
1
F4) = F@)+Df @) (=) +y=2)7 [ (1-6)D%f(a+s(y-2)) ds: (y-2).
0
This equality and (%) yield

[
(v~ x>T-/O (1 - $)Df(z+s(y—a) ds- (y—2) 20 (k)
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for alt z, y € R". Thus, given any vector &, set y = z +t£ in (x x x %) for ¢t >0
to compute:

T /(l $)D2f(z + sté) ds - € > 0.

Send ¢ — 0 to prove

THEOREM 2
Let f : R™ — R be convex. Then there exist signed Radon measures i/ = p*

such that
9%y g
dr = dut? ,7=1...,
/n f@.’l’:,axj * /n £ o (Z / n)

for all ¢ € C*R™). Furthermore, the measures ji** are nonnegative (i =
..., n).

PROOF
1. Fix any vector £ € =1,&=(§,...,£,). Let 5 be the standard
mollifier. Write f¢ = 7 * f. Then f€ is smooth and convex, whence

D%f¢ > 0.

Thus for all ¢ € CE(R") with ¢ > 0,

n 82fe
EzEJ dr = ]II;" 9Oi =1 0x;0x Gty de 20

t,7=1

Let ¢ — 0 to conclude

>
L(QO Z 83:; 833) EIEJ dm 0

IJ_

Then Corollary 1 in Section 1.8 implies the existence of a Radon measure p

such that
L(y) = / o dut
for all p € C*(R™).

2. Let i = p® fori=1,...,n. If i # j, set £ = (e; + e;)/V2. Note that
in this case
N ik d? &
' 4 14 +2 Y n '
8.’1)58.’1);‘ Omzamj afL‘ja.'L‘j




240 Differentiability and Apprbximation by C' Functions

where

i = 6~ L Lai

2 2

THEOREM 3
Let f: R™ — R be convex. Then

of of

——, ..., =— € BV (R™).

5z’ By © D Vee(RY)

PROOF Let V CCR", g€ CHV,R"), |p| < 1. Thenfor k= 1,...,n,

n 2 1
—(y—divgodxz—/ fz 0% dx

Rn axk

t=

:Z/nwidﬂ'ik

=]

< iuik(V) <oo. |

=1

NOTATION In analogy with the notation introduced in Section 5.1, let us write
for a convex function f:
ptt
D fl=| : | =IDIILE,
unl . ,_Lnn

where & : R — M™*™ is ||D?f||-measurable, with |Z| = 1 ||D?f|| a.e. We
also write

9% f 3
= 4 5 —
[axiamj] M (t,i=1,....n).
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By Lebesgue’s Decomposition Theorem, we may further set
nt = gl +
where
pl << ., o L CE.
But then
Hat —L" L fij
for some f;; € L} (R™). Set

0 f -
ez, ~Ji (BI= ,...,n),

A
62318331 ax]axn
D*f = :
A
\5:1:,16:1:; 02,0, /
fag v Hae
D). =] : . | =C"L D,
TR
pyt e pg”
D], =] :
pgt e pgt

Thus [D%f] = [sz] + [D*f], = €™ L D*f + [D?*f],, so that D*f €
L (R™; M™*™) is the densny of the absolutely continuous part [D? f] . of [D? f]

6.4 Second derivatives a.e. for convex functions

Next we show that a convex function is twice differentiable a.e. This asser-
tion is in the same spirit as Rademacher’s Theorem, but is perhaps even more
remarkable in that we have only “one-sided control” on the second derivatives.
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THEOREM | ALEKSANDROV’S THEOREM
Let f . R" — R be convex. Then f has a second derivative L a.c. More

precisely, for L' a.e. x,

f) = f@) = Df(@) (- 2) = 5 (=) - Df(z)- (y - =)

=o(ly-z|*) as y— z. (%)

PROOF
1. L™ a.e. point x satisfies these conditions:

(@) Df(x) exists and lim { |Df(y) — Df(x)| dy = 0.
r-’o\/B(:c,r)

—0

® tim{ D) - D@y =0 (4
r B{x,r)
(© lim I[D*f),| (B(z,))/r" = 0.

2. Fix such a point z; we may as well assume x = 0. Choose r > 0 and let
fé¢ =1+ f. Fix y € B(r). By Taylor’s Theorem,

1
F) = £O) + DFF0) - y+ [ (1= 97 - D(sv) -y ds.
Add and subtract (1/2)y? - D%f(0) - y:
%yT - D*f(0) -y

1
n / (1- s)y" - [D*f<(sy) — D2£(0)) - y ds.
0

f*(y) = f5(0) + Df(0) -y +

3. Fix any function ¢ € C?(B(r)) with |¢| < 1, multiply the equation above
by ¢, and average over B(r):

{00 = 1O = DFO)-y = 557 DS(0) - 9) dy

[
= / (1-3s) (][ w(y)yT'[szﬁ(sy)—sz(O)]wdy) ds
0 B(r)

_ 1(1—3) f P € - D2 .~
__/(; 3 (ﬁ(rs} go(s) [D*f<(z) — D*£(0)) .a,dz) ds. (% * %)
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Now

= [, e () e s
e 12 s (+(3) )
_*/ f(z) Zd ( (‘)zizj) dz as € — 0
= Z/ z,zJ duv?

/B(m) ( ) -D*f(2) -z dz + Z[ ::,zJ dutl.

i J= =1 (T‘S

i

Furthermore, as in Section 6.1.1, we may calculate

Ige(S)l r / 2
< D~ f€ d
§nt2 — B(rs) [zl dz

Sn

I
|

/n D*n(z —y) f(y) dy| d=z

8™ JB(rs)

A
|

[ e =) dipi

po dz
B(rs)

) /
/ (/ dz | 40l |-
S°€E B(TS+€) B(rs)ﬁB(y,G) ‘

m n 71. ' o
D (Brs + ) iz
min{{rs)", €")(rs + €)™
s"em
<C for 0 < €,5 < | by (x*).

IN

<C

<C

4. Hence we may apply the Dominated Convergence Theorem to let € — 0
in (% % %)
1
£ o) |10 =10~ 1O 5= 337 D10) 5] a

UL IBE)

(sr

<Cr/][ )|D2f(z) D?f(0)| dz ds + Cr?

= o(r*) as r — 0, by (x%) with z = 0.
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Take the supremum over all ¢ as above to obtain

]{3 |h(y)| dy = o(r?) as 7 — 0 (k * % *)

for

A(w) = £(y) ~ 1(0) ~ D(O) -y~ 54" - D*f(0) -y

5. Claim #1- There exists a constant C such that

— C
sup |Dh| < -r—ﬁ( )lh’ dy + Cr (r > 0).

B(r/2)

Proof of Claim #1: Let A = |D?f(0)|. Then g = h + (A/2)|y|? is convex:
apply Theorem 1 from Section 6.3.
6. Claim #2: supg, 5 |R| = o(r?) as r — 0.

Proof of Claim #2: Fix 0 < e,5 < 1, */™ < 1/2. Then

1
L{zeB(r)||h(z)| 2 e’} < — [ |h| d2
" JB(r)

=o(r") asr — 0, by (xx %xx)

< nL™(B(r)) for 0 < r < rg = ro(e, 7)-
Thus for each y € B(r/2) there exists z € B(r) such that
h(2)] < er?
and
ly—z| <o =n''"r,
for if not,
£™{z € B(r) | |h(2)| 2 er’} > L"(B(y, 0)) = a(n)yr" = nL(B(r)).

Consequently,

[h()] < [2(2)] + |h(y) ~ A(2)]

< er? + o sup | Dh|
B(r)

< er? 4 Cyl/ne? by Claim #1 and (% * x *)
= 2er?,

1/n

provided we fix 17 such that Cn'/™ = € and then choose 0 < r < 7.
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7. According to Claim #2,
|

sup |£(3) = £(0) = DJ(0) -y - 5u7 - DY(0)-y| = or?) w10
B(r/2)

This proves (x) forz =0. |

6.5 Whitney’s Extension Theorem

We next identify conditions ensuring the existence of a C! extension f of a
given function f defined on a closed subset C of R".

Let C C R" be a closed set and assume f : C —= R, d: C — R" are given
functions.

NOTATION
(i) R(y,x) = f(y)— f(z)—d(x)(y—x) (iII, y € C’ T # y)

|z~y|
(ii) Let K C C be compact, and set

pr(8) =sup{|R(y,z) |0 < |z — y| < 6, z,y € K}.

THEOREM | WHITNEY’S EXTENSION THEOREM
Assume f,d are continuous, and for each compact set K C C,

pr(6) = 0as 66— 0. (%)

Then there exists a function f : R* — R such that
(i) fisC
i) f=f Df=donC.

PROOF
1. The proof will be a kind of “C!-version” of the proof of the Extension

Theorem presented in Section 1.2.
Let U = R™ — C; U is open. Define

L. :
r(z) = N min{l, dist(z, C)}.

By Vitali’s Covering Theorem, there exists a countable set {x; 32 C U such
that

U= U B(z;,5r(zj))

j=1
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and the balls { B(x;, r(x;))}92, are disjoint. For each z € U, define
Sz = {z; | B(z, 10r(z)) N B(x;, 10r(x;)) # 0}.
2. Claim #1: Card (Sz) < (129)" and 1/3 < r(x)/r(zj) < 3ifz; € S,.
Proof of Claim #1: if x; € S, then

(@) = r(es)] < ol =25l < 55 (100 (2) + ()

= 2 (@) +(z))).
Hence
r(z) < 3r(z;), r{x;) < 3r(z).
In addition, we have
|z — x| + r(x;) < 10(r(z) + r(x;)) + r(z;)
= 10r(x) + llr(z))
< 43r(x);
consequently,
B(zj, r(x;)) C B(z,43r(z)).
As the balls {B{x;,7(x;))}32, are disjoint and r(z;) > r(x)/3,

Card (Sz)a(n) (T—(?’f)-) < a(n)(43r(z))"

whence
Card (Sz) < (129)™.
3. Now choose 1 : R — R such that

pne C™, 0<p<l, t)y=1fort < 1. 11(t) =0 for t > 2.

For each ] = l, .-y define
Ll |z — =) —
. — ; .

Then
FUJ'ECOO, OS’U,J'SI.

Py

uj =1 on B{x;,5r(x;)),

. uj=0onR" — B(z;, 10r(x;)).
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Also
C C\
: < < if x;
|Du3(x)| = T(J:J') = @) ifx; € S,
and
u; =0 on B(z, 107(z)) if z; € S,..
Define

0o

o(@) =Y u(z)  (@eR"),

j=1

Since u; = 0 on B(z, 10r(x)) if z; &€ Sk,

o(y) = ) v;() if y € B(x, 10r(x)).
r; €Sz

By Claim #1, Card (S,.) < (129)"; this fact and (xx) imply

(g€ C™(U), og>1onU
< C
Do(z)| € == U).
| |De@)l s oy (€ )
Now for each j = 1,..., define
() = 4@
vi(z) = o(z) (x € U).
Notice
Dy, = Du; ujlz)o |
a a
Thus

D vji(x) =1

71=1

Y Duj(z)=0 (zxeU)
j=i

Dy @< s

The functions {v;}52, are thus a smooth partition of unity in U.

o

247

(+4)
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4. Now for each j = 1,..., choose any point s; € C such that
lx; = 5,| = dist(z;, C).

Finally, define f:R* > R this way:

- f(x) ifreC
fz)= | &
Zvj(a:)[f(sj) +d(s)) - (x—s;)] ifxel.
. j=1
Observe
fec®)
and

Df(x) = ) {[f(s;) +d(s;) - (z — 8;)|Dvj(x) + vj(2)d(s;)}  (z € V)

xjesz:

5. Claim #2: Df(a) = d(a) forall a € C.

Proof of Claim #2: Fix a € C and let K = C N B(a,1); K is compact.
Define

©(6) = sup{|R(x,y)| | z,y € K,0 < |r - y| < 6}
+ sup{|d(z) — d(y)| | z,y € K.|x — y| < 6}.

Since d : C — R" is continuous and (%) holds,
w(6) = 0as 6 — 0. (% % *)

Ifx € Cand|z—al <1, then

£ (@) = f(a) = d(a) - (z — a)| = |£(2) - f(a) - d(a) - (z — a)]
= |R($va)| |.’II - al

< ¢(|z — al)lz - q

and

ld(z) = d(a)| < o(|lx - a]).
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Now suppose x € U, |z — a| < 1/6. We calculate

|f(z) - f(a) ~ d(a) - (z - a)| = |f(z) - f(a) - d(a) - (x - a)|
< Y wi@)f(s)) — fla) +d(s)) - (x - 55) — d(a) - (= — )]

r; €Sy
< Y u(@)f(s5) — fa) +d(s;) - (a - s;))
r,€S5,
+ ) vi(@)(d(s;) - d(a)) - (= — a)l.
T, €Sz

Now |z — a| < 1/6 implies r(z) < (1/20)|x — a|. Thus for z; € S,

la - 55| < |a— x| + |z; - s
< 2|a - z;
< 2|z~ a + |z - ;)
< 2(|z - a| + 10(r(x) + r(z;)))
< 2(|z — a| + 40r(x))
< 6|z — al.

Hence the calculation above and Claim #1 show
|f(z) — f(a) = d(a) - (z — a)| < Cp(6lz - al)|z - al.
In view of (x x %), the calculations above imply that for each a € C,
|f(z) = f(a) —d(a) - (x ~ a)| = o(lx — a|) as z —» a.

Thus Df(a) exists and equals d(a).
6. Claim #3: f € CY(R"™).

Proof of Claim #3: Fix a€ C, z € R*, [z~ a| < 1/6. If z € C, then
|Df(z) — Df(a)| = ld(z) - d(a)| < ©(z - al).
If x € U, choose b € C such that

|z — b| = dist(z, C).
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Thus
|Df(z) ~ Df(a)l = |Df (z) ~ d(a)| < |Df(z) = d(b)| + |d(b) — d(a)l.
Since
b-al <[b-z|+z - a] < 2}z - al,
we have
|d(b) ~ d(a)| < ¢(2lz - al).

We thus must estimate:

IDf(x) —db)]| = | Y [f(s5) +d(s3) - (z = s;)| Dvj (x)

r; ESy

+ () [d(s;) - d(b)l]

<

> [=£(b) + f(s;) + d(s;) - (b= s;)| Dv; ()

r;€ES,

<

> ellb=siDlb~s;

:t_,' ES;

' —(C—)- S (b~ s5))le - b

Xy ESz

+ ) (b - s;l). (% % %)

;€S

r(x)

Now

1
-b|<|lr—-al < -.
o -bl < lo-d < ¢

and therefore

1 1
= —|r — < ——
r(z) 20|x bl < 120

1 1
_<_

) < < .
r(xJ) —_ 3T(I) — 40 20
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Hence

!
r(z,) = 2_0'|'£J =3 (z; € S,).

Accordingly, if z; € S,,
b—s;| <|b—z|+|r — x|+ |z, — s
< 20r(x) + 10(r (&) + 7(x;)) 4 207(x;)
< 120r(z) = 6|z - b < 6|z — al.

Consequently (x x % %) implies
IDf(z) — d(b)| < Cop(6z ~ al).
This estimate and the calculations before show

Df(z) - Df(a) < Co(6lx —al). |

6.6 Approximation by C' functions

We now make use of Whitney’s Extension Theorem to show that if f is a
Lipschitz, BV, or Sobolev function, then f _actually equals a C!' function f,
except on a small set. In addition, Df = D f, except on a small set.

6.6.1 Approximation of Lipschitz functions

THEOREM 1
Suppose f : R* — R is Lipschitz continuous. Then for each € > 0, there exists
a C' function f ; R® — R such that

L™z | f(z) # f(z) or Df(z) # Df(x)} <e.
In addition,

SB;l'E)|Df-:| < CLip(f)

for some constant C depending only on n.

PROOF By Rademacher’s Theorem, f is differentiable on a set A C R", with

L*(R™ — A) = 0. Using Lusin’s Theorem, we see there exists a closed set
B C A such that Df |p is continuous and L™(R™ — B) < ¢/2. Set

d(z) = D f(x)
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and
R(y,z) = f(y) — f(z) —d(z) - (y — x) (x # y).
|z — y|
Define also
m(z) = sup{|R(y,¥)| | y € B, 0< |z - y| < 1/k}.
Then

—

Nk(x) — 0 as kK — oo, for all z € B.
By Egoroff’s Theorem, there exists a closed set C C B such that
N — 0 uniformly on compact subsets of C,

and

L"(B-C) <

N

This implies hypothesis (x) of Whitney’s Extension Theorem. i
The stated estimate on supg. |Df| follows from the construction of f in the
proof in Section 6.5, since supc |d| < Lip (f) and thus

Rl el < CLip (f). |

6.6.2 Approximation of BV functions

THEOREM 2

Let f € BV(R™). Then for each € > 0, there exists a Lipschitz function
f:R™ = R such that

C{z| f(z) # f(x)} < e

PROOF
1. Define for A > 0

R,\ = {:II = Rn l “Df”(B(.’L‘,T’))

TTI.

S_Aforallr>0}.
2. Claim #1: L*(R™ — R*) < 2857 D f||(R™).
Proof of Claim #1: According to Vitali’s Covering Theorem, there exist

disjoint balls {B(z;, ;) }$2, such that

R™ — R* C U B(z;, 5r;)
i=1
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and

IDAIBGEL ) |

«TL
r;

Thus

- S5S"a(n "
@ - RY) < Sa(m) Sort < S n R,
i=1

3. Claim #2: There exists a constant C, depending only on n, such that

|f(x) = f(y)| < CAlz -y
for C" ae. z,y € R

Proof of Claim #2: Let x € R*, r > 0. By Poincaré’s inequality, Theorem
1(ii) in Section 5.6.1,

C||DfI(B(x,r
foo1r= ety < 2 I(B.r)) gy,
B(z,r) T
Thus, in particular,
(Ferjaert = (Fapsarl < f 1 = (Perjarl dy
B(z,r/2ktt)

<o f 1F = (Fawyee] dy
B{x,r[2k)

CAr
-<—_2F'

Since

f(z) = lim(f)er

r—Q

for L ae. r € R,
|f (@) = (e, < Z [(F)z,rjaxst = (f)z,ry2x| < CAr.
k=1

Now forz,y € R*, z #£y, set r = |z — y|. Then

(Few = (Funrl < f (Dar = £ +1£(2) = (Furl dz

B(x,r}nB(y,r)

<c (jf £ ()= (Farl dz+f

B{z,r) B(y,r)

[£(2) = (f)y.rl dz)

< C>r.
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We combine the inequalities above to estimate
|f(x) = f(y)| S CAr = CAz -y

for £" a.e. x,y € R _
4. In view of Claim #2, there exists a Lipschitz mapping f : R* — R such

that f = f L a.e. on R:‘. Now recall Theorem | in Section 3.1 and extend f
to a Lipschitz mapping f : R* - R. |

COROLLARY I ]
Let f € BV(R"). Then for each € > 0 there exists a C'-function f : R* — R
such that

£z | f(z) # f(z) or Df(z) # Df(2)} < e.
PROOF  According to Theorems 1 and 2, there exists f € C'(R™) such that

C'{f#fD)<e

Furthermore,

Df(x) = Df(x)

L™ ae.on {f = f}, according to Theorem 4 in Section 6.1. |

6.6.3 Approximation of Sobolev functions

THEOREM 3
Let f € WYP(R™) for some 1 < p < oco. Then for each € > 0 there exists a
Lipschitz function f : R™ — R such that

C*{z | f(z) # f(z)} < e
and

||f - f”wz.p(mn) < e

PROOF
1. Write g = |f| 4 |Df|, and define for A >0

R’\E{mER"]f gdygAforallr>O}.
B(z,r)

2. Claim #1: L(R™ — R*) = o(1/)P) as X\ — cc.
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Proof of Claim #1. By Vitali’s Covering Theorem, there exist disjoint balls
{B(xi,7:)}22, such that

(e @]
R" - R* C U B(z;,5r;) (%)

=1

and

f gdy>XA  (i=1,...).
B(:Bi,f‘,)

Hence

1 1
A< / gdy+ / dy
Lr(B(z:, 7)) JB(ziranie>$) £ (B(@is ) Joenronta<arsy”

< mem
C™(B(x;, 7)) B(zi,r)N{g>A\/2}

and so

A
du + =
9 y+2

n 2
a(n)ry < '—/
A B(z,ri)N{g>A/2}

Using (x) therefore, we see

gdy (=1,...).

LM(R* — RY) < 5"a(n) ) " rf
1i=1
2-5"
> / g dy
A Jg>a2)

2-5" ’ n 1”%
3 </{9>A/2} g7 dy) (C™({g > A/2}))

C
AP S p+1Df1>A72)

1
=0(-A—5) as \ -— 00.

3. Claim #2: There exists a constant C, depending only on n, such that

[f@) <A |f(2) = f)| < CAlz — o

for L™ ae. z,y € R.

A

IN

< |DfIP +|fI” dy

Proof of Claim #2: This is almost exactly like the proof of Claim #2 in the
proof of Theorem 2.
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4. In view of Claim #2 we may extend f using Theorem I in Section 3.1 to
a Lipschitz mapping f : R"* — R, with
£l < A, Lip (f) < C\, f=f L£"ae on R

Proof of Claim #3: Since f = f on R*, we have

/ f - fIP dm=/ f = I de
Rn Rn_R,\
<C / FIP dz + CAPLH®R™ — RY)
Rn_[zk

= o(1) as A — o0,

according to Claim #1. Similarly, Df = Df £" a.e. on R*, and so

/ |Df ~ Df|P dz < C IDF|P dz + CAPLP (R — R*)
n R® — RA

=o(l) as A = oo. |

COROLLARY 2
Let f € WHP(R™) for some 1 < p < co. Then for each € > 0, there exists a

C'-function f : R™ — R such that
Lz | f(2) # f(x) or Df(z) # Df(z)} < ¢

and

”f - f“Wl.p(Rn) < €.

PROOF The assertion follows from Theorems | and 3. |
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Notation

A Vector and set notation

R™ n-dimensional real Euclidean space

€; O,...,1,...,0), with 1 in the ith slot

T=(T,T2,...,Zn) a typical point in R™

|| (:12%+:1:%++3:3L)%

Ty 1Yy +Z2Y2+ 0 + TnYn

zl - Ay bilinear form z," =1 Qi TiY s where z,y € R"
and A = ((a;;)) is an n X n matrix

B(z,T) {ye R* | |z~y| < r} =closed ball with center
x, radius 7

B(r) B(0,r)

U(z,T) {ye R* | |z —y| <r} = open ball with center
z, radius r

C(z,r,h) {yeR" ||y -2'| <, |yn ~ Za| < h} = open
cylinder with center z, radius 7, height 2h

i

a(s) ———— (0 < 5 < 00)
L'($+1)

a(n) volume of the unit ball in R*

Q(z,7) {yeR* | |z;i —yil <m i=1,...,n} = open
cube with center z, side length 2r

Uuv,w open sets, usually in R™

VccU V' is compactly contained in U i.e., V is compact
and V C U

K compact set, usually in R™
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0" E
0.E
19E]|

B Functional notation

][ fdpor(f)e
E

fle
forEf

Tf
Df
[Df]

[Df]am [Df]S

ap Df
Jf
Lip(f)
D%f

Notation

indicator function of the set ¥

closure of I

interior of [

Steiner symmetrization of a set [; Section 2.3
topological boundary of E

reduced boundary of E; Section 5.7.1

measure theoretic boundary of E; Section S.8

perimeter measure of E; Section 5.1

#(E / f dp = average of f on E with respect
to the measure p

f f dx
B(z,r)

support of f

max(f,0), max(—f,0)

precise representative of f; Section 1.7.1
f restricted to the set E

an extension of f; cf. Sections 1.2, 3.1.1, 4.4,
5.4, 6.5

trace of f; Sections 4.3, 5.3
derivative of f

(vector-valued) measure for gradient of f € BV,
Section S.1

absolutely continuous, singular parts of [Df];
Section 5.1
approximate derivative; Section 6.1.3

Jacobian of f; Section 3.2.2
Lipschitz constant of f; Sections 2.4.1, 3.1.1

Hessian matrix of f



C Function spaces

[D*f]

[[)2f]55(." [!)zf]ﬁ‘

G(f, A)

263

(matrix-valued) measure for Hessian of convex
f: Section 6.3

absolutely continuous, singular parts of [D?f];
Section 6.3

graph of f over the set . Section 2.4.2

C Function spaces

Let U C R* be an open set.
C(U)

C(0)
CHU)

C*(U)
C.(U), Co(T), etc.

C(U;R™), C(U;R™), etc.

Lr(U)

{f:U = R| f continuous }
{f € C(U) | f uniformly continuous}

{f : U —- R | f is k-times continuously
differentiable}

{f € C*U) | D*f is uniformly continuous on
U for |a| <k}

functions in C'(U), C(U), etc. with compact sup-
port

functions f : U _+_Il_li’”, = (fY fH . ™),
with f* € C(U), C(U), etc. fori = 1,...,m

{f:U—SR| (/U|f|”dx>;<oo,

f Lebesgue measurable } (I < p < 00)
{(f:U—->R| ess, sup |f| < oo,

f Lebesgue measurable }
{f:U—R| f€LP(V) for each open VCC U}

(f:U—R| </U|f|”du>p < oo,

f p-measurable } (1 < p < o0)

{f:U - R| fis u-measurable,
- ess sup || < o)

Sobolev space; Section 4.1
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K?

BV (U)

Notation

{f:R* >R| f>0 feLF, Df € Lp};
Section 4.7

space of functions of bounded variation; Sec-
tion 5.1

D Measures and capacity

Cn
H;

n-dimensional Lebesgue measure

approximate s-dimensional Hausdorff measure;
Section 2.1
s-dimensional Hausdorff measures; Section 2.1

Hausdorff dimension; Section 2.1

p-capacity; Section 4.7.1

E Other notation
pl A
plf

Dyv

V<< W

vip
ap lim f

y—z

ap lim sup f, ap lig\_jgff

y—z

i restricted to the set A; Section 1.1.1

(signed) measure with density f with respect to
i, §1.3
derivative of v with respect to u; Section 1.6.1

v is absolutely continuous with respect to u;
§1.6.2

v and p are mutually singular: Section 1.6.2

approximate limit: Section 1.7.2

approximate lim sup, approximate lim inf; Sec-
tion 1.7.2

weak convergence; Section 1.9

symmetric linear mapping; Section 3.2.1
orthogonal linear mapping; Section 3.2.1
adjoint of L; Section 3.2.1

Jacobian of linear mapping L; Section 3.2.1

{Ax:{L,...,n} = {l....,m} | A increasing};
Section 3.2.1




E Other notation

Py

7 e
P
I, {1+, H-

A

J

essV,; f

265

projection associated with A € A(m,n). Sec-
tion 3.2.1
mollitiers; Section 4.2.1

2P = Sobolev conjugate of p; Section 4.5.1

Hn—p

hyperplane, half spaces; Section 5.7.2

approximate lim sup, lim inf for BV function;
Section 5.9
set of “measure theoretic jumps” for BV function;
Section 5.9

essential variation; Section 5.10






Index

Aleksandrov’s Theorem, 242
approximate continuity, 47
approximate limit, 46

Area Formula, 96

Besicovitch’s Covering Theorem, 30
Binet-Cauchy Formula, 89
blow-up, 199
Borel measure, 4
regular, §
Borel set, 4
bounded variation, 166
BV function, 166
approximation by Lipschitz functions,
252
approximation by smooth functions,
172
extension, 183
trace, 177
weak approximation of derivative, 175

capacity, 147
Caratheodory’s Criterion, 9
chain rule, 130
change of variables, 99, 117
Coarea Formula, 112

for BV functions, 185
convex function, 236

densities, 71

derivative, 37

Differentiation Theorem for Radon
Measures, 40

Dominated Convergence Theorem, 20

Egoroff’s Theorem, 16
essential variation, 216

Fatou’s Lemma, 19
finite perimeter, 167
Fubini’s Theorem, 22

Gagliardo-Nirenberg-Sobolev inequality,
138
Gauss—Green Theorem, 209

Hausdorff dimension, 65
Hausdorff measure, 61

integrable function, 18
Isodiametric Inequality, 69
Isoperimetric Inequality, 190 -

Jacobian, 88, 91

Lebesgue Decomposition Theorem, 42
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Lebesgue measure, 26
Lebesgue-Besicovitch Differentiation
Theorem, 43
Lipschitz function, 79
approximation by C' functions, 251
Lusin's Theorem, 15

measurable function, 11

measurable set, 2

measure, |
regular, 4 _

measure theoretic boundary, 208

measure theoretic interior, 45

mollifier, 122

Monotone Convergence Theorem, 20

Morrey’s inequality, 143

multiplicity function, 93

perimeter, 170
perimeter measure, 170
Poincaré’s inequality, 141

for BV functions, 189
polar decomposition, 87
precise representative, 46, 160
product measure, 22
product rule, 129

quasicontinuity, 160

Rademacher’s Theorem, 81

Radon measure, 5

reduced boundary, 194

Relative Isoperimetric Inequality, 190
Riesz Representation Theorem, 49

-~ Index

o-finite function, 11
o-finne sel, 4
simple funciion, 17
integrable, 17
Sobolev funcion, 121
approximation by C' functions, 256
approximation by smooth functions,
122, 125, 127
extension, 135
fine properties, 160
trace, 133
Sobolev inequality
for BV functions, 189
Sobolev space, 121
compact imbedding, 144
Steiner symmetrization, 67
Structure Theorem
for BV functions, 167
for sets of finite perimeter, 205
summable function, 18

trace
of a BV function, 177
of a Sobolev function, 133

variation measure, 49, 170
lower semicontinuity, 172
Vitali's Covering Theorem, 27

weak compactness in LP, 57

weak compactness of measures, 53
weak convergence in LP, 57

weak convergence of measures, 54
weak derivative, 120

Whitney’s Extension Theorem, 245
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