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Preface

“If you want to build a ship, don’t herd people together to collect wood and
don’t assign them tasks and work, but rather teach them to long for the
endless immensity of the sea”

ANTOINE DE SAINT-EXUPERY

This is an introductory textbook about nonlinear dynamics of partial
differential equations (PDEs), with a focus on problems over unbounded
domains and modulation equations. We explain how dynamical systems
methods can be used to analyze PDESs in order to get more insight into the
real world phenomena behind the equations. Our presentation is example-
oriented and the starting point is very often a real world problem. This
means that new mathematical tools are developed step by step in order to
analyze the equations. They are re-applied and improved in subsequent sec-
tions to handle more and more complicated systems. In the end the reader
should have learned mathematical tools for the analysis of some important
classes of nonlinear PDEs and gained insight into nonlinear dynamics phe-
nomena which may occur in PDEs.

The book is divided into four parts. In order to keep the book as an
introductory text and as self-contained as possible, Part I is an introduction
into finite-dimensional dynamics, defined by ordinary differential equations
(ODEs), including bifurcation theory, attractors, and the basics of Hamil-
tonian dynamics. In Part I1 we explain the major differences between finitely
and infinitely many dimensions and that in principle a PDE on a bounded
domain is isomorphic to a system of countably many ODEs. We give two
main applications of this point of view. The first one is the characterization
of the attractor for the Allen-Cahn equation on an interval, which is also

X1



xii Preface

known as the Chafee-Infante problem. The second one is a very basic intro-
duction to the Navier-Stokes equations, with a focus on periodic boundary
conditions.

Genuine PDE phenomena such as transport, diffusion, and dispersion
can hardly be understood by the interpretation of PDEs as systems of in-
finitely many ODEs. In Part III we consider PDEs which are posed on
the real line. We start with the linear heat equation, and then turn to
nonlinear problems. For famous model equations such as the Kolmogorov-
Petrovsky-Piskounov or Fisher equation, the Korteweg-de Vries (KdV) equa-
tion, the Nonlinear Schrodinger (NLS) equation, and the Ginzburg-Landau
(GL) equation, we discuss the local existence and uniqueness of solutions,
special solutions as fronts and pulses, their stability and instability, soliton
dynamies, the construction of attractors, and some related results.

The equations from Part III all play an important role in mathematics
and have entire monographs devoted to each. Moreover, they have many
connections to physics and other fields of applications, where they are of-
ten used as simplest possible models for the description of some real world
phenomena. In Part IV we explore these connections [rom a mathematical
perspective. The scalar equations from Part III occur as asymptotic effective
models, or more specifically as modulation equations, for the more compli-
cated systems from physics considered in Part IV. Examples are pattern
forming systems which can be described by the GL equation, light pulses in
nonlinear optics which can be described by the NLS equation, or long waves
in dispersive systems which can be described by the KdV equation. We dis-
cuss how the dynamics of the reduced model equations transfer to the more
complicated systems. Thus, in Part IV we give a mathematically rigorous
presentation of the formalism of modulation equations in the context of real
world applications. While this last part is close to recent research, it is still
in textbook style, and often we do not prove the sharpest or most general
result possible, but instead refer to the literature for extensions.

All chapters are kept as self-contained as possible, such that the reader
can start to read directly about his or her favorite equation. Having a
good background in linear ODEs, cf. §2.1, a starting point for our goals and
objectives are §2.2-§2.3 about basic nonlinear ODE dynamics combined with
Part I1I. There are other possible combinations, for instance the sections
about dissipative dynamics or the sections about conservative dynamics.
Nevertheless the reader can also read the book from the beginning to the
end. See the Grasshopper’s Guide on page 12 for detailed proposals. All
chapters contain exercises which we strongly recommend not to skip.
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Chapter 1

Introduction

Mathematicians want to classify things. However, with partial differential
equations (PDEs) they had to stop on a rather unsatisfactory level. The
reason for this is that almost all rules of theoretical physics and engineering,
and many rules in life sciences and economics, are formulated as ordinary
or partial differential equations (ODEs or PDEs). As different as the ap-
plications of differential equations are, as different is the behavior of their
solutions. Therefore, a mathematical theory which wants to cover all differ-
ential equations can only cover the absolute basics. Hence, the books about
PDEs necessarily differ strongly by the choice of examples and by the choice
of mathematical theory which will be applied to the examples. There are
entire books only covering one special important equation. Before we give
the goals and objectives of this book we start with a short review of three
important examples.

1.1. The three classical linear PDEs

In many courses about PDEs the following three examples, namely the
Laplace equation, the heat equation, and the wave equation, play a ma-
jor, sometimes exclusive, role.

Example 1.1.1. The Laplace equation is an equation for an unknown func-
tion u :  — R of two or more variables x = (z1,...,x4) € @ C R? in terms
of certain of its partial derivatives, namely

(1.1) Au =0,

P Ay ' # & ®
where A = dJ;, +.. .—l—dﬁ " This PDE plays an important role in mathematics
since the real and imaginary part of an analytic function in the complex plane
satisfy the Laplace equation. It also plays a major role in applications. For

1



9 1. Introduction

instance the potential of an irrotational flow of an incompressible fluid such
as water, or a stationary temperature field, or the potential of a stationary
electric field in the absence of charges in €, satisfy this equation.

In order to solve this equation uniquely in a domain 2, additional condi-
tions are needed. To gain an intuition for the required boundary conditions
we consider the factors which should determine a stationary temperature
field w in a room 2 C R’ as sketched from the side in Figure 1.1. The
temperature will be determined by the temperature at the walls, the win-
dows, the doors and the heating of the room, mathematically speaking by
the conditions at the boundary 9f2 of (1.

I
window

door [ e
¥

heating

Figure 1.1. Different boundary conditions for the temperature field.

There are mainly two different kinds of boundary conditions. At the
heating unit the temperature has a fixed value, while at a window or wall
heat will go through the window or wall. Mathematically speaking the
boundary 0¢) = I'y U T’y is split into two parts where in the first part we
have so called Dirichlet conditions

u|F1 — 41,

and in the second part we have so called Neumann conditions

anuh'g — g2,

with given functions ¢y : I'y - R and g2 : I's, — R and n : 02 — R3 the
outer normals.

The Laplace equation is the paradigm of an elliptic PDE. It is of second
order, i.e., the highest derivative is of order two. There is an extensive
theory for elliptic systems, especially for second order elliptic systems. The
equilibrium equation of linear elasticity

Lu = pAu+ (A+ p)V(V - u) = 0,

for the displacement vector u : R* D Q — R?, with constants A\, € R
depending on the material, is also a second order elliptic system. Like
the negative Laplace operator —A, the linear operator —L defined in this
equation is an example of a so called elliptic operator. Due to the important
role of elasticity in the construction of cars, bridges, planes, etc., there are
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well developed numerical schemes such as the finite element method (FEM)
or the boundary element method (BEM), which are available for computing
approximate solutions of such systems. Only in very special cases solutions
can be found analytically. |

Example 1.1.2. The heat equation or diffusion equation
(1.2) dru = Au,

with u = u(z,t) and u : Q x Rt — R, where ¢t denotes time and z denotes
space, describes the evolution of quantities such as heat, chemical concentra-
tions, or the probability distribution of a particle obeying Brownian motion.

It can be derived as follows. Let V C () be an arbitrary subset with
smooth boundary. The change of the total quantity within V equals the
flux through oV, i.e.,

d / udm:—/ (F,-n)dS:—/?-Fdx
df:. 1/ Eﬂr;' 1’_,’

with F the flux density, {-,-) the scalar product in R?, n : 9Q — R? again
the outer normal, and where we used the Gauss’ integral theorem. Since
this relation is true for all sets V', we find

8;,15 = -V - F.
Very often the flux density F is proportional to the gradient Vu of the
concentration u, i.e., F' = —aVu with a constant a > 0. By rescaling time

we finally come to the diffusion equation (1.2).

In order to solve this equation uniquely in a domain 2 x R* additional
conditions are needed. As in Example 1.1.1 we need boundary conditions,
but also the temperature field at time ¢ = 0 has to be known, i.e., we need
the initial condition u|i—g = up with up : 2 — R. Stationary solutions, i.e.,
time-independent solutions, satisfy the Laplace equation (1.1). The heat
equation is the prototype parabolic PDE. There is an extensive theory for
equations of the form dyu = Lu with an elliptic operator —L. |

Example 1.1.3. The linear wave equation
(1.3) 0%u = Au,

u=wu(x,t) with u: QxR — R, is a simple model for, e.g., oscillations of a
string (2 C R) or of a membrane (2 € R?), or the propagation of light in
vacuum. In order to solve this equation uniquely in a domain €2 x (g, ;).
to < 0 < {1 we again need boundary and initial conditions. Like for scalar
second order ODEs we need two initial conditions, namely u|;—y = ug and
Oitt|¢—g = w1 with ug : Q@ — R and uy : 2 — R. The Dirichlet boundary
condition u|gn corresponds to a membrane which is fixed at the boundary.
In this case, the boundary will reflect the waves.



4 1. Introduction

For the wave equation the eigenmodes play a crucial role. An eigenmode
is a solution u(xr,t) = e“'v(x). This yields the eigenvalue problem

—Av = wio.

Such problems play an important role in applications, especially in clasticity
theory, where the evolution equations of linear elasticity

Ou= pAu+ N+ p)V(V - u)
vield to the eigenvalue problem
—ptAv + (A + p)V(V - v) = wo.

If 2 is a bounded set then under suitable boundary conditions there are
countably many real eigenvalues A, = m,ﬁ with 0 < Ay < Ay < ... = .
In the construction of cars, bridges, planes, etc., one has to take care that
these so called resonant modes are not periodically excited. Hence, there is a
big industry using FEM and BEM in order to solve these elliptic eigenvalue
problems. The wave equation is the prototype hyperbolic PDE. There is
an extensive theory for equations of the form @fu = Lu with an elliptic
operator —L. |

For reasons explained below we will focus on other examples than the
three classical ones. The fundamental Examples 1.1.1-1.1.3 cannot be and
will not be avoided. However, they will only occur as subproblems which
will help to understand the nonlinear problems under consideration.

1.2. Nonlinear PDEs

We now start discussing our main objectives for this book, namely an intro-
duction to nonlinear PDEs from a dynamical systems point of view, with a
focus on reduction methods, in particular, the use of amplitude and modu-
lation equations.

Many complications with ODEs or PDEs are due to the fact that the
world is nonlinear. Ultimately, to solve a PDE means to look for solutions
u of an abstract equation F'(u) = 0. The problem is called linear if for all
a, 3 € R we have

Flau+ pv) = aF(u) + BF(v).

As a consequence, for linear problems we have the superposition of solutions.
With u, v being solutions, i.e., F(u) = 0 and F(v) = 0, also au + Sv is a
solution, i.e., F(au 4+ Sv) = 0. Most “real life” problems are nonlinear, i.e.,
in general

Floau+ pv) # aF(u) + 8F(v)

L]
4



1.2. Nonlinear PDEs

g |

and therefore a sum of two solutions is no longer a solution of the ODE or
PDE. A simple example of a nonlinear function is F'(u) = u®. As a conse-
quence, the theory of linear algebra is not available, and the set of solutions
in general is more complicated than that for linear problems. In science, for
many decades linear problems played a dominating role. Examples 1.1.1 to
1.1.3 are linear. Next we present two famous examples of nonlinear PDEs.

Example 1.2.1. The Navier-Stokes equations

1
dyu =E&u — Vp— (u-V)u,
0=V -u,

describe the evolution of the velocity field u : 2 x Rt — R3 and the pres-
sure field p : © x RT — R of an incompressible fluid, such as water, in
a domain © C R?. The Reynolds number R measures the ratio between
inertial and viscous forces, and is in some sense proportional to the com-
plexity of the flow. The global existence and uniqueness of smooth solutions
of the three-dimensional (3D) Navier-Stokes equations is one of the seven
one million dollar or Millennium problems in mathematics presented by the
Clay-Foundation in the year 2000. There are a number of reasons for this
choice. On the one hand, the Navier-Stokes equations describe the motion
of fluids, and the answer to this question would allow us to understand
fluids in a much better way. On the other hand, in mathematics the 3D
Navier-Stokes equations are interesting PDEs, which so far have resisted all
attempts to prove the global existence and uniqueness of solutions. This
will be explained in more detail in Chapter 6. |

Example 1.2.2. Maxwell’s equations in a medium, for instance a glass
fiber, are given by

VB =0,
?}{E—FafB :[],
VD =p,

?}{H—E}fﬂ =.J

Here E: Q x R — R? is the electric field, D = g F + P is the displacement
field, with ¢ the electric permeability of vacuum, P : 2 x R — R? is the
electric polarization of the material, B : 2 x R — R is the magnetic field,
H = B/ug— M is the magnetizing field, with ug the magnetic permeability
of vacuum and M : 2 x B — R the magnetic polarization of the material,
p is the charge density, and .J : Q — R? the charge flow density. Since the
first and the third equation above are scalar, while the second and fourth
equation are vector valued, so far we have eight equations for the twelve
unknowns B, F;, M; and P; for j = 1,2,3. Therefore, these equations
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have to be closed with constitutive laws P = P(E,H) and M = M(E, H)
describing the reaction of the material to the electric and magnetic field. In
general, these laws are nonlinear. Moreover, as an additional complication
M and P may depend on the past, cf. §11.7. |

The world is instationary, i.c., almost all systems evolve with time.
Typical examples are a vibrating beam, the daily change of the weather, or
the motion of the planets in the solar system. Hence, from the beginning
we will consider nonlinear time-dependent systems.

A mathematical concept which is basic to the analytical understanding
of all ODEs and PDEs is the concept of Dynamical Systems. Until the
beginning of the 1960s, Laplace’s principle that with the knowledge of all
physical rules and the present state of the world, the past and future be-
havior of the world for all times can be computed, was widely accepted as a
relevant philosophical foundation of science. Starting already with the work
of H. Poincaré in the 1890s, cf. [Poi57]|, this principle was finally observed
to be practically useless at the beginning of the 1960s, for instance by the
work of the meteorologist E. Lorenz in 1963 [Lor63|. He observed with
an analog computer for a three-dimensional model for the weather that the
possible time for predictions goes logarithmically with the precision of the
initial conditions, i.e., that long-time weather-forecasts are practically im-
possible. See Figure 1.2 for an illustration of the so called Lorenz attractor
and of the sensitivity of solutions w.r.t. the initial conditions.

Certain ODEs and PDEs, or, more general, dynamical systems, can be
classified as chaotic. The visualization of chaotic dynamical systems was
in fashion in the 1980s. Famous examples are the Mandelbrot and the Julia
sets. In this book, chaos will not play a central role, but one should keep in
mind its existence already in low-dimensional dynamical systems.

1.3. Our choice of equations and the idea of modulation
equations

PDEs play an important role in modern engineering. With the help of
computer simulations, money can be saved, experiments can be replaced,
and data can be gathered which are not available by classical experiments.
However, a numerical simulation of a PDE requires an analytic
understanding of the PDE. The reason for this is again the wide variety
of different types of PDEs. Therefore, very often the numerical simulation of
a PDE needs an adapted numerical scheme based on an analysis of the PDE.
As the example of the crash of the Sleipner oil platform in 1991 shows, a

misuse of numerical schemes can cost a lot of money. In the concrete example
700 million dollars [JR94].
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10 20

Figure 1.2. Left: Illustration of the attractor of the Lorenz system
T =oly—x), y = pr—y—xrz, = —3z+ ry by one orhit
in 3D phase space, o = 10, 3 = 8/3, p = 27. Right: z(t) for
three nearby initial conditions, i.e., x1(0), x2(0) = x1(0) + 1077,
and x3(0) = ¢(0) + 1077, y(0), z(0) always the same. The orbits
behave completely different after a certain time, i.e., the orbits to
x2(0) and x3(0) deviate from the unperturbed one after { = 7 and
t = 16, respectively. It can be shown that the prediction time goes
logarithmically with the precision of the initial conditions.

Moreover, computers are fast, but never fast enough. A three-
dimensional body [0, 1]? discretized with 100 points in each direction leads
to 10° variables. A diseretization in 1000 points in each direction yields
10” variables. Therefore, due to practical reasons one has to decide before
what quantities shall be computed. Then the scheme can be adapted to the
computation of these quantities.

We are especially interested in problems which cannot be directly stud-
ied numerically, i.e., where first analysis is needed to reduce the di-
mensionality of the problem. This is for instance the case in so called
spatially extended domains, which means that the wave length of typical
solutions is much smaller than the size of the underlying physical domain.
In this case often the modeling over an unbounded domain is more reason-
able. Then, via a multiple scaling perturbation ansatz simpler models can
be derived to describe the phenomena under consideration. These models,
called modulation equations, belong to the best studied nonlinear PDEs
with a status in some scientific areas similar to the three classical linear
PDEs from above. Besides the study of these basic nonlinear PDEs from
a dynamical systems point of view, one of our main objectives will be the
connections between these models and real world problems by going bevond
the formal derivation of these modulation equations. This will be called the
justification of the reduced models.
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Example 1.3.1. The digital transport of information in glass fibers is done
by sending 0Os and 1s through the fiber. In most modern technologies the
physical realization of a 1 is an electromagnetic pulsemodulating a carrier
wave with a wave length of a few hundred nanometers. There are a number
of relevant questions related to the transport of information. For instance:

e Which form is optimal for a pulse to travel a long distance?

e Which distance do two pulses initially need in order to stay sepa-
rated during the complete journey through the fiber?

e How many kilometers can a pulse travel without an amplifier?

e How do pulses interact if the carrier waves have diflerent [requen-
cies?

There is dispersion in the fiber and thus in general the energy concentrated
in a pulse will spread. Moreover, the fiber behaves nonlinearly. Hence, the
answers to the above questions are not obvious at all. Numerical simulations,
if possible, are much cheaper than experiments. However, suppose that the
length of the fiber is 100km = 10°m. Then, due to the wave length of light of
approximately 10~ "m, a spatial discretization of Maxwell’s equations in the
fiber gives at least about 10 points, still neglecting all three-dimensional
effects. This number is too big for a direct numerical simulation.

A modulation equation helps. By perturbation analysis the Nonlinear
Schriodinger (NLS) equation

0; A = 0 A + i A|AJ%,

with A(£,7) € C, 7 € R, £ € R and coefficients v1,19 € R, can be derived,
describing the evolution of the envelope A of the pulse alone. On the relevant
time scale the dynamics of the envelope of the pulse and the carrier wave
which behaves linearly can approximately be separated. The properties
of the original system, e.g., the refractive index of the material, and the
underlying wave, condense to the coefficients v; € R. The NLS equation
is a universal modulation equation which describes slow modulations in
time and space of the envelope of a spatially and temporarily oscillating
underlying carrier wave in nonlinear dispersive equations.

The spatial discretization can thus be reduced from 102 points to appro-
ximately 10° or less points, which is quite manageable for numerical schemes.
Moreover, a number of problems can be solved analytically for the NLS equa-
tion, which is a so called completely integrable system. In particular,
if 1119 > 0 it has explicit so called soliton solutions. These solitons give
the optimal form of pulses for the transport of information. These questions
will be discussed in detail in Chapter 11. |
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Example 1.3.2. At the end of the 20th century a new generation of high
speed ferries has caused serious problems, especially those that cross the
Channel between England and France and those operating in the Marl-
borough sound in New Zealand. The waves created by these ferries can
propagate without loss of energy over large distances, and thus retain the
potential to create enormous havoc when they come ashore, and as a conse-
quence of a fatal accident and other damage there are now speed limits for
these ferries |[Ham99|.

Again a modulation equation gives an idea to understand these phenom-
ena. The Korteweg-de Vries (KdV) equation

drA = ylcﬁ‘gﬂ + o A A,

with 7 € R, £ € R, A({,7) € R and coeflicients v; € R can be derived
with the help of a perturbation ansatz. The KdV equation is a universal
modulation equation which describes long waves of small amplitude, where
the original system condenses to the coefficients v; € R.

Like the NLS equation, this famous nonlinear equation possesses soliton
solutions, very robust solitary waves. These waves interact like particles,
1.e., alter some nonlinear interaction they reform and look exactly as belore
the interaction. This observation, made in the middle of the 1960s, that
solutions of a PDE show simultancously the behavior of a particle and a
wave, had a big influence on nonlinear science due to the similarity with the
particle-wave dualism in quantum mechanics.

For a long time the KAV equation has also been suggested as a model
for the description of tsunamis, water waves of only a few meters height, but
with a length of up to 100km, i.e., in the ocean they cannot be observed by
eve. In the 5000m deep pacilic ocean they move with a very high velocity
of around 700km /h. If they approach land they become slower and steeper,
and cause serious floodings. However, data which is now available from the
tsunami at Christmas 2004 in the Indian Ocean seem to indicate that soliton
dynamics had played at least for this tsunami no role on the open sea. The
validity of the KdV equation will be discussed in Chapter 12. |

Example 1.3.3. Since the 1960s, systems near the onset of a finite wave
length instability have been analyzed in detail using modulation equations.
These amplitude modulations describe slow changes in time and space of
the envelope of the finite wave length pattern close to the first instability.
The most famous and generic ol such equations is the Ginzburg-Landau
(GL) equation

0: A = 190; A+ A + v3A| A7,

with 7 = 0, £ € R, A({,7) € C and coefficients v; € C. Famous pat-
tern forming systems which can be described with the GL equation are
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reaction-diffusion systems such as the Brusselator, and hydrodynamical sta-
bility problems, such as the Couette-Taylor problem, Bénard’s problem, or
Poiseuille low. A big part of Part 1V, namely Chapter 10, is devoted to
the justification of this so called GL approximation for various classes of
systems. We explain and prove that the difference of true solutions of the
pattern forming systems and the associated GL approximations remains
small on the natural time scale of this approximation, and thus prove rigor-
ously that the GL equation makes correct predictions about the dynamics
of the original pattern forming systems.

Instead of "modulation equation”, in particular the GL equation in the
above context is also called the "amplitude equation”. Although derived
differently, the GL model also plays a crucial role in superconductivity.

A phenomenological model for pattern formation close to the first insta-
bility of a spatially homogenecous solution is the Swift-Hohenberg equation
SHT77]

(1.4) Ou = —(1 4+ 03 u + au — u®,

withu = u(x,t) € R, x € R, t > 0 and control parameter o € R. This fourth
order scalar PDE is probably the simplest example to apply the “Ginzburg-
Landau formalism”. For small o =: £? > 0, plugging the ansatz

(1.5) u(z,t) = cA(ex, e*t)e' + c.c.
into (1.4) and sorting w.r.t. powers of £ yields the GL equation
(1.6) OrA =405 A+ A —3|AI*A

at order £3. |

As already said. the mathematical analysis of the approximation by these
three 'generic’ modulation equations. namely the KdV, the NLS, and the
GL equation, will be one of the mathematical objectives of Part IV of this
book. Beside these ’generic’ equations there are many more.

Example 1.3.4. The Burgers equation
O = 07w — Oy (u?),

with ¢ > 0, z € R, and u(x,t) € R arises for instance as a modulation
equation for small amplitude long waves on the surface of a viscous liquid
running down an inclined plane. It describes this system in case when the
trivial solution, the so called Nusselt solution., which possesses a parabolic
flow profile and a flat top surface, is spectrally stable. This is the case when
the inclination angle #, which serves as a control parameter in this physical
problem, is below a critical value #.. This model is used for instance for
flood forecasts in rivers.
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If the inclination angle is increased, the Nusselt solution becomes unsta-
ble via a so called sideband instability. Above the threshold of instability
the Kuramoto-Shivashinsky-perturbed KdV equation serves as modulation
equation. After some rescaling it has the form

1
Opu = —u — E@m(ug} — (0% + 9)u.

witht > 0, r € R, u = u(x,t) € R, and where 0 < ¢ = # -0, < 1is a
small parameter. Therefore, complicated dynamics that are present in this
equation occur directly at the first instability of the inclined plane problem.
The dynamics is dominated by traveling pulse trains consisting of unstable
pulses. Time series of the position of the pulses indicate the occurrence of
chaotic dynamics. This situation is relevant for cooling units. Again the 3D
Navier-Stokes equations for the water flowing down the unit is replaced by
a simpler model still containing very complicated dynamics.

Another situation where the Burgers equation arises as a modulation
equations are phase or wave number modulations of stable periodic pattern
in a pattern forming system, while phase (or wave number) modulations of
unstable pattern are generically described by Kuramoto-Shivashinsky type
of equations. |

In summary, modulation equations are simpler PDEs, which can be de-
rived by perturbation analysis, and which serve as models for more com-
plicated systems. Hence, modulation equations are a part of mathematical
modeling. In Part IV of this book, the derivation and the approximation
properties of the above equations will be explained. We will analyze the orig-
inal system with the help of the modulation equations. We will explain to
which extent conclusions based on the modulation equations can be proven
to be correct. We will show how mathematics can decide which model of all
possible proposed models is the right one. We will explain that modulation
equations are universal models, i.e., exactly the same modulation equation
describes the same phenomena in completely diflerent physical systems. The

much simpler modulation equations itsell will be analyzed in Part I11 of this
book.

1.4. Overview

In order to keep the book as an introductory text and as self-contained as
possible, in Part I we explain basic dynamical systems concepts for ODEs,
such as phase space, fixed points, periodic solutions, attractors, stability and
instability, bifurcations and amplitude equations.
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In Part IT we start to transfer the dynamical systems concepts from
finite to infinite dimensions. There are major differences due to the non-
equivalence of norms in infinite-dimensional vector spaces and the loss of
compactness of closed bounded sets. We explain that PDEs over bounded
domains can be considered as dynamical systems with countably many de-
grees of freedom. As applications we discuss the Chafee-Infante problem
and the Navier-Stokes equations.

We have already explained in the previous subsection our choice of equa-
tions for the Parts III and IV. In Part III we consider basic model PDEs
posed on the real line, namely the Kolmogorov-Petrovsky-Piscounov (KPP)
or Fisher equation, the Burgers equation, the Nonlinear Schrodinger (NLS)
equation, the Korteweg-deVries (KdV) equation, and the Ginzburg-Landau
(GL) equation. We explain fundamental PDE phenomena as diffusion, dis-
persion, and transport, discuss local and global existence and uniqueness,
and construct stationary solutions, or traveling front and pulse solutions,
using ODE techniques from Part 1. We also give some first results for at-
tractors on unbounded domains and a briel introduction to reaction-diflusion
systems.

Part TV is devoted to the analysis of the more complicated systems with
the help of the scalar model equations from Part I1I, which now reappear
as modulation equations. Additionally we explain useful concepts such as
diffusive stability and spatial dynamics.

At the end of each chapter we collect a number of exercises. We in
general do not claim any originality for them, and many are taken from the
literature, though in some cases we cannot trace back our source. As usual,
the exercises are a crucial part of this book.

1.4.1. Grasshopper’s Guide. To some extent the four parts of this book
are intended to be independent. Moreover, the chapters are kept as self-
contained as possible, such that the reader may start to read directly about
his or her favorite equation. Therefore, we also give the following guide.

Part I can obviously be read independently of the rest of the book. It is
an example-oriented basic course on finite-dimensional dynamical systems
which together with Chapters 5 and 6 (and possibly Chapter 13) yields a two
semester course about finite- and infinite-dimensional dynamical systems.
Chapters 7 and 8 of Part 11l can subsequently serve as a basis for a seminar.

An alternative one or two semester course is given by §2.2-§2.3 about
basic nonlinear ODE dynamics combined with (parts or all of ) Part TIT and
some parts of Part 1V, for instance the beginning of Chapter 10. Other
chapters of Part IV can then serve as a basis for a seminar.
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There are other possibilities, for instance Chapter 3 about dissipative
ODE dynamics combined with some dissipative PDE dynamics, chosen out
of Chapters 5, 7, §8.3, Chapters 9-10, parts of Chapter 13, and Chapter 14.
Similarly, Chapter 4 about conservative ODE dynamics could be combined
with some conservative PDE dynamics, chosen for instance out of §8.1, §8.2,
and Chapters 11 and 12. If the reader is familiar with the contents of Part 1
and Part II and is interested in an introduction to the mathematical theory
of modulation equations, then we recommend to start reading in Part IV
and going back to Part I1I where needed.

Nevertheless, the reader can also work through the book from the be-
ginning to the end.

1.4.2. Recommended literature. Good classical books about PDEs are
(CH89, Joh91, Eva98, Sal08, Vasl15|, while [Str92, SVZZ13, Olv14,
Logl5al give more elementary introductions to PDEs. Books which look
at PDEs from a dynamical systems point of view are Hen81, Tem97,
RRO04, Rob01]|. These books cover and extend material similar to that
in the first two parts ol our book, in particular Part II, while for instance
1SS99b, KP13| discuss in more detail parts of what is treated in our Part
ITI. For a general background on the functional analytic methods in our book
we recommend [Alt16, Wer00|, but the needed material can be found in
most books on functional analysis. For more physically oriented introduc-
tions to PDEs see [Fow97, BK00, TMO05, Deb05], for an overview of
developments in the theory of PDEs in the 20th century see [BB98|, and
for an encyclopedic work on PDEs see [Tay96]. A “visual approach” to
PDE with many motivating pictures is [Mar07]. For ODEs we refer for
instance to [Chi06, HSDO04, Tes12, Logl5b]. Beginning in Part II, at
the end of most Chapters we give an outlook and hints for further reading.

1.4.3. Software. There are many software packages for the numerical so-
lution of ODEs and the graphical presentation of solutions. Matlab, Maple,
and Mathematica have built in facilities, and there are various simple to
use Java applets available. We strongly encourage the reader to do own
experiments with any of these programs.

From the above remarks about the very different types of PDEs it readily
follows that there cannot be a general tool for all types of PDEs. However,
tools for specific types of PDEs, both commercial and free are widely avail-
able. We use some short sell-written matlab scripts to illustrate some PDE
dynamics. mostly for model problems. However, we do not discuss any
numerical methods behind these programs and refer to [Uec09] and the

references therein. For the computation of so called bifurcation diagrams
we refer to AUTO [Doe07, Deal6| and pde2path [UWR14|.
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Exercises

1.1. Classity the following PDEs as linear or nonlinear.

d d
a) Ou= Y  05,0; (a"u)+Y 0, (b'u), a,b : RY — R smooth functions.
ij=1 i=1

b) i0yu = Au. ¢) OV =rV —rSosV — 1025203V, (r,0 € R).
d) dfu=—du. e) du=Aw"), (v=>0).
f) Opu = divF(u), F:R —= R?asmooth function. g) du = 0u + ud,u.

1.2. Constant coefficient second order linear partial differential equations in R? can
be written as

Lu=— Z a'ijaﬁ-:ia:r:_,- U+ Z b":aﬁu +c = 0.
i =1, i—1.2

The operator L is called elliptic if the eigenvalues of the symmetric matrix A = (a%)
are strictly positive. It is called hyperbolic il they are nonzero, but have different
signs. It is called parabolic if the associated quadratic form (d, — £, d, — n)
defines a parabola. Classify

a) 3d5u + 100,0yu + 1595u + 360,u + 120,u + 17 = 0:
b) Hﬂiu + ddyu + dyu + 2 = 0.
1.3. Consider the PDE dyu = d,u for u = u(z,1).

a) Find the general solution for z € R.

b) Solve the PDE for = € (0,1) with the initial condition u(z,0) = 1 for
z € (0,1) under the boundary condition u(1,t) = cost.

¢) Is it possible to solve the PDE for x € (0,1) with the initial condition
u(xz,0) =1 for x € (0,1) and the boundary condition u(0,t) = cost?

1.4. Consider a membrane ©Q = (0,1)* which is fixed at the boundary 99, i.c.,
ulgn = 0.

a) Make an ansatz uw(x,y,t) = v(f)sin(mmrz)sin(nmy), (n.m € N) for the
solutions of d7u = Au. Which equation is satisfied by v?
b} Solve the equation for v with the initial conditions v(0) = 0 and #(0) = 1.

¢} Sketch for fixed m,n € N the set of (x,y) € Q, for which u(x,y,t) = 0 for
all 1 € R.



Chapter 2

Basic ODE dynamics

The first part of this book is about nonlinear dynamics in R?. Tt consists of
this chapter, Chapter 3 about dissipative dynamics, and Chapter 4 about
Hamiltonian dynamics. In this part we provide some basic concepts of non-
linear dynamics. In order to avoid the various functional analytic difficulties

associated with PDEs we restrict to the finite-dimensional situation, i.e., we
consider ODEs

w(t) = flu(t),t),

with u(t) € RY, f: RY x I — R a continuous vector field which is locally
Lipschitz-continuous w.r.t. its first argument, where I C R is an open inter-
val, usually I = R, and where u(t) denotes the derivative of the function u
w.r.t. time £. In general it is not possible to obtain explicit solutions, and
so our main goal is to provide tools for the understanding of the qualitative
behavior of solutions.

Some notation. The initial value problem consists in finding a solution
of the ODE to an initial value ug given at an initial time fn € I. A solution
of the initial value problem is a function u € C! (I[;,R‘i] which fulfills the
ODE, where Iy C I is again an open interval, tg € Iy, and u(tg) = ug. This
solution is denoted by wu(t,tp, ug). If f on the right-hand side of the ODE
does not depend explicitly on time, i.e., f = f(u), then the ODE is called
autonomous, and we may assume tg = 0 and write wu(t, ug) for the solution
of the initial value problem.

Absolutely fundamental for the understanding of nonlinear dynamics is
the understanding of the dynamics of linear systems which we therefore con-
sider first. Then we introduce basic concepts of nonlinear dynamics. These

15
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are the local and global existence and uniqueness of solutions, special so-
lutions such as fixed points, periodic solutions, homoclinic and heteroclinic
orbits, and further concepts such as stability and instability, invariant mani-
folds, w-limit-sets, attractors, and chaotic dynamics. Many of these concepts
will later be transferred to nonlinear PDEs. Moreover, the search for special
solutions, such as front or pulse solutions for the PDEs, in later chapters
very often lead to ODE problems as they are considered here.

The behavior and the analysis of an ODE or of a PDE strongly differ
between dissipative and conservative systems. In Chapter 3 we provide the
strategy and the tools to tackle dissipative systems. Such systems are typi-
cally characterized by the existence of compact absorbing sets, i.e., compact
sets into which all solutions finally enter. In dissipative systems very often
more complicated and eventually chaotic dynamics occur through bifurca-
tions if some external parameter is varied. After introducing a number of
elementary bifurcations for one- and two-dimensional systems we introduce
with the Lyapunov-Schmidt reduction and the center manifold theorem two
reduction methods which allow us to find these elementary bifurcations in
higher dimensional systems, too. Chapter 3 is closed by presenting some
routes of bifurcations to chaotic behavior in dissipative systems.

The systems considered in Chapter 3 change the volume in phase space,
but many systems in nature preserve the volume in phase space, especially
those of classical mechanics. Thus, Chapter 4 is devoted to Hamiltonian
ODE dynamics. We provide some tools for their analysis and explain basic
facts about their behavior, which shows fundamental differences compared
to that of the systems of Chapter 3. For instance, a globally attracting fixed
point cannot exist in conservative or volume-preserving systems. Therefore,
stability and instability proofs or the route to chaotic behavior must be
completely dillerent. The starting point of the bifurcation analysis is not a
globally attracting fixed point, but a so called completely integrable system.
In Chapter 4 we also discuss KAM theory which allows to understand the
behavior of systems which are small perturbations of completely integrable
Hamiltonian systems.

The ideas presented in this first part will reappear in subsequent sections.
For instance, Chapter 3 about dissipative ODE dynamics contains basic tools
which will be used in Chapters 5-7, §8.3-Chapter 10, and Chapter 14 about
dissipative PDE dynamics. Similarly, Chapter 4 about conservative ODE
dynamics contains basic tools which will help to understand §8.1, §8.2, and
Chapters 11-12 about conservative PDE dynamics.

We emphazise that the purpose of Part I is not to give a comprehen-
sive overview about ODEs. Rather we present the basic ideas of nonlinear
dynamics as needed in subsequent parts of this book in the analysis of PDEs.
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There are a number of excellent textbooks on nonlinear ODE dynamics,
many of them also reviewing basic linear ODE dynamics. An elementary
and very readable account on ODE dynamics and bifurcations is [HK91],
a very applied and example oriented approach is used in [Str94], and an
excellent modern presentation is given in [Tes12]. Alternatives and com-
plements to these textbooks are for instance [Chi06, Ver96, Rob04a,
Rob04b]. More advanced texts include |GH83, KH97, Wig03, HSDO04].
In [SH96, Lyn04| discrete dynamical systems and ODEs are treated from a
numerical point of view, and [Dev89| focusses on discrete chaotical dynam-
ical systems. For the bifurcation aspects of ODEs, and in particular center
manifolds, we again refer to [GH83, Wig03|, and to [Kuz04, Erm02| for
invariant manifolds from a numerical point of view. Our favorite books on
Hamiltonian systems and KAM theory are [Arn78, Thi88, MH92|, see
also [Way96|.

2.1. Linear systems

Fundamental for the understanding of nonlinear dynamics is the understand-
ing of linear dynamics. Linear ODEs occur for instance as linearizations
around fixed points or periodic solutions. The solution of these linear ODEs
and the variation of constant formula, which allow us to solve inhomoge-
neous linear problems, will be the basis for stability proofs for fixed points
and periodic solutions of nonlinear ODEs in §2.3. Moreover, this technique
will be generalized to semi-linear dissipative PDEs and a number of conser-
vative PDEs in Parts II-IV for proving the local existence and uniqueness
of solutions of PDEs.

A linear ODE is an equation
(2.1) u(t) = A(t)u(t) + g(t)

for an unknown function u € C*(I,R?%), where I C R is an interval, A(t) €
R? is a dxd-matrix with entries a;;(t), and where g(¢) € R? is an inhomo-
geneity. We generally think of ¢ as time, and for simplicity we assume that
A and g are at least continuous w.r.t. t. Together with an initial condition
wli—t, = up € R? we have an initial value problem. Equation (2.1) is called
homogeneous, if g(t) = 0, i.e., if

(2.2) u(t) = A(t)u(t),

and (2.1), respectively (2.2), are called autonomous if A and g in (2.1)
respectively A in (2.2), do not depend on .

[}
ri

It is well-known that the initial value problems for (2.1) and (2.2) have
unique solutions, and that the solutions of (2.1) form a d-dimensional affine
space and the solutions of (2.2) a d-dimensional vector space. This will
briefly be recalled in §2.1.2. We restrict ourselves to those parts of the
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theory which are needed in subsequent sections. That is, we restrict to
A independent of time, and to A periodic in time, ie., A(t) = A(t +T)
for a T" > 0. Other important classes of linear systems are asymptotically
constant systems, i.e., A(t) — A+ fort — +oo. They appear as linearization
around so called homoclinic or heteroclinic orbits.

2.1.1. Notation. Let X be a real or complex vector space. A map ||| :
X — R is called norm, if for all u,v € X and A € R, respectively A € C,
(i) ||u|| = 0 and ||u| = 0 if and only if u = 0,
(i) [ Awl] = |A] {[ull,
(ifi) [lu+ vl < Jlul + ]

In R?, the major examples are the £1-norm ||ul|; = Z_,':f:l [uj|, the Euclidean
or fy-norm ||uly = (ufu)'/? = (Ele u;]%)Y/2, and the /.- or maximum-
norm ||t||s = maxj—i, 4 |tjl.

Concepts such as convergence in R?, or later on stability and instability
for ODEs in R?, are independent of the chosen norm in R%. The reason for
this is the equivalence of norms in finite-dimensional vector spaces.

Theorem 2.1.1. All norms in R? are equivalent, i.e., for two norms || - ||
and || - ||s there exist positive constants Cy, Ca such that for all u € R? we
have

lul] < CiJull« < Caflull.

Proof. Obviously, it is sufficient to establish the estimates between an ar-

bitrary norm ||| and the ||| -norm. By the triangle inequality we have
d d d
Jull = |3 wyes | < 3 lusliesll < | 3 esl |l
7=l J=1 J=1

For the second estimate let M = {u € R? : ||ul|, = 1}. Then f: M —
R, u — ||u||_1 is a continuous map by definition. Suppose that f is un-
bounded on M, i.e., there exists a sequence (u"),ecn with ||u™| — 0 for
n — 0o. Since the finitely many coordinates uy satisfy |u;-“'| < 1 there exists
a convergent subsequence u™* — £ € M for k — oc. By the continuity of the
norm we have |u™*| — [&]| = 0 for & — oc which implies £ = 0 contradict-
ing £ € M. Hence, there exists a C' > 0 such that sup,c || f(u)|| = C <
and so |Ju|| > & for all u € M which finally leads to ||u|| > & [lu/ .. []

Remark 2.1.2. The reason why we gave a proot of this well known theorem
is that in infinite dimensions there are infinitely many non-equivalent norms.
This has a number of consequences for the subsequent analysis of PDEs. It
is possible that uniqueness but no global existence of solutions is known
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in one space, and global existence but no uniqueness of solutions is known
in another space, but there is no space known where both properties hold
simultaneously. So far this is exactly the state of the art for one of the
Millennium problems of the Clay Foundation, namely the global existence
and unigueness of smooth solutions of the 3D Navier-Stokes equations, which
will be discussed in Chapter 6. |

The d x d-matrices form a normed vector space of dimension d?. With
the matrix multiplication AB they form an algebra. An important matrix
norm is given by the operator norm

|A|l" = sup { | Au] cu e R\ {U}} .

|ul

Obviously || Aul < ||A
[ABu|| < [|A|]" [[Bul| < |[A[" | B|" [Ju|

* ||ul|, and so from

it follows
% * *
IAB|" < ||A[]" [|B]]"
i.e., the matrices form a Banach algebra w.r.t. matrix multiplication and
operator norm. For arbitrary norms the matrix norm and the vector norm
are called compatible if

[Aul] < [|A]] [Jul]
Examples of such compatible norms are
el
o= s 1A = swp Y Jagil
k=1,....d . _
=1
, 1/2
= Wy HAIF = | Do laal® |
ij=1
d
= s AIF = sup D fal:
jzlwqdkzl

In the following we always use compatible norms, and RY will be equipped
with the Euclidean norm, if not indicated otherwise. Finally, we remark

that for all norms f
‘ / u(7)dr
to

2.1.2. Local existence and uniqueness. We briefly recall that the initial
value problem for (2.2) has a unique solution, and that the solutions of
(2.2) form a d-dimensional vector space. The following local existence and
uniqueness result and many other results in this book are based on the
contraction mapping principle which is absolutely fundamental in nonlinear

t
< [ lu(r)ldr.
ty




20 2. Basic ODE dynamics

analysis. We recall that a metric space M is called complete, if every Cauchy
sequence in M possesses a limit in M.

Theorem 2.1.3. (Contraction mapping principle or fixed point the-
orem of Banach) Let (M, d) be a complete metric space and F' : M — M
a contraction, i.e., there exists a k € (0,1) such that

d(F(z), F(y)) < rd(z,y)
for all z,y € M. Then F has a unique fized point x* € M, i.e., z* = F(z%).

Proof. We first prove the uniqueness. Suppose that there exist two different
fixed points z* and y*. Then

dixz™,y") =d(F(z"), F(y")) < rd(z",y").

Since k € (0, 1), it follows that d(z*,y*) = 0 and hence z* = y*, in contra-
diction to the assumption.

We define the sequence x,11 = F(x,) with o € M arbitrary, but fixed.
Then for m = n
m—1 m—1 o
d(:ﬂmal:ﬂ) E‘ Z d(*fj-l—lalj) {_‘2 Z H'jd(ﬂ:lvj:ﬂ) E 1 _ "
i=n j=n
Hence, for all £ > 0 there exists an N > 0, such that for all n,m > N:
N

d(Tm, Tn) < 1H" -d(r1,0) = £,

d(xy,zq).

i.€., (xn)nen 18 a Cauchy-sequence. Since M is complete, there exists an
¥ € M, such that x* = lim,, . .

The limit z* is a fixed point due to the continuity of F', i.e.,

F(z®) = F (nll_I}]gﬂ Ty) = r}ler::ln{:j‘ () = ”an;Q Tpal = T, ]

Corollary 2.1.4. Let (X,|| -|)) be a Banach space, M be a closed subset

of X, and F : M — M be a contraction. Then F' has a unique fized point
z* e M.

Our first version of the local existence and uniqueness of solutions for
(2.2) is as follows.

Lemma 2.1.5. Consider (2.2) with initial condition ul;—,, = up and con-
tinuous A = A(t). Then there exists a § > 0 independent of ug such that
(2.2) has a unique solution u € C*((tg—d,to+6),RY) satisfying uli—y, = uo.

Proof. The proof is based on the application of the contraction mapping
theorem to the integrated ODE

u(t) = ug +]t A(s)u(s)ds =: F(u)(t),

0
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where F : M — M with M = C"([tg — 6,ty + 6],R?). Fix a Ty > 0 and
define Cy = supycp, 7y 40+715] | A(£) || which is finite due to the continuity of
t — A(t). Then we have ||F(u) — F(v)||p < 0Collu — v||ar, where |lulpr =
SUPye (1 ~5.t0+9] |u(t)||ga, such that I is a contraction for instance for § =
min{1/(2Cp), T }. From u € M it follows that F'(u ) e CY((to—6,tg+0),RY).
Since u is a fixed point we also have u = F(u) € C'((to — 6,19 +6),RY). O

Remark 2.1.6. By the last argument, it is easy to see that the m-times dif-
ferentiability of t — A(t) implies inductively the m+1-times differentiability
of t — ul(t). |

Lemma 2.1.5 only asserts local existence and uniqueness. The way to
show existence and uniqueness of solutions beyond #g + o is to prove bounds
on u(ty + d). The key tool is Gronwall’s inequality which will be used in

many proofs below. We first restrict to a simple version [Ver96, Theorem
1.2].

Lemma 2.1.7. (Gronwall’s inequality) Fort € (ty,to + a) with a > 0,
and ¢ and v non-negative continuous functions assume that

(2.3) 6(1) < [ (s)(s)ds + 6.

{
Then for all t € (tg,tg + a) we have
B(t) < delio VO

Proof. Dividing (2.3) by its right-hand side and multiplication of both sides
with ¢(t) vields after integration that

Jtg ft dﬁ' T 5
which implies that In ( L‘: W(s)p(s)ds + (5) Ingd < f i, ¥(7) dr and finally

that .r, L
/ Ww(s)o(s)ds + 0 < dexp ( w{'r)d'r) .
Loy o
By assumption ¢(t) is smaller than the expression on the left-hand side. [
From the integrated ODE
t

u(t) = ug + t A(s)u(s)ds

we find the inequality

[u(®)l[ga < lluollga + IIA( I u(s)||we ds

to
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and so by Gronwall’s inequality

t
lG)as)).

Lo

Since continuous functions stay bounded on compact intervals, from (2.4)

it follows that for continuous ¢ — A(t) the solutions ¢ — w(t) exist for all

t € R.

(2.4) () llpe < [lullgs exp (

Theorem 2.1.8. Consider (2.2) with initial condition uli—y,=ug and a
continuous A=A(t) for all t € R. Then there erists a unique solution
u € CYR,RY) satisfying u|i—s, = .

Proof. We choose an arbitrary, but fixed 1y = 0. We apply Lemma 2.1.5
with the initial condition u|;—y, = wup, which gives a unique solution on
to,to + 0) and uly—y, 1 5/2 = u1. Inductively we apply Lemma 2.1.5 now
with the initial condition w|,—y +,5/2 = un, which gives a unique solution
on [ty +nd/2,tg +nd/2 + &) and ul;—y, 4 (n+1)6/2 = Un+1. Doing this until
(n+ 1)6/2 = Ty gives us the solution for all ¢ € [ty,ty + Tp). Proceeding
similarly for negative t — t; gives the solution for all t € (ty — Ty, 1o + To).
Since Ty > 0 was arbitrary we are done. L]

Lemma 2.1.9. The solutions of (2.2) form a d-dimensional vector space.

Proof. Since the solutions of (2.2) depend linearly and one-to-one on the
initial conditions ug we have that the set of solutions of (2.2) is isomorphic
via u — u(tp) to the space of initial conditions, i.e., R ]

Definition 2.1.10. The matriz-valued function t — o(t) is called funda-
mental matriz if (1) = A(t)p(t) and if ¢(to) has full rank for a ty € R.

Remark 2.1.11. From the local existence and uniqueness Theorem 2.1.8,
it immediately follows that ¢(f) has full rank for all t € R. If t — (1)
is a fundamental matrix then u(t) = ¢(t)é(to) 'ug solves the initial value
problem with w|;—;, = wug. If t + (f) is another fundamental matrix
then ¢(t)d(to) ™" = ¥(t)(tg) ' such that there exists an invertible matrix
C = ¢(to) ' (tg) which is independent of ¢ with v'(t) = ¢(t)C. |

2.1.3. The variation of constant formula. Associated to (2.2) we define
the linear solution operator S(t,s) : RY — R? through

S(t,s)uy = u(t, s, up),

where u(t, s,up) is the solution of (2.2) with initial value ul;—; = wup. For
fixed s,t € R the lincar map S(t,s) : RY — R? is one-to-one, i.e., an invert-
ible matrix, with S(t,s)~" = S(s,t). The solution of the inhomogeneous
problem (2.1), i.e.,

(2.5) u(t) = A(t)u(t) + g(t)
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can be expressed in terms of the inhomogeneity g = g(f) and the solution
operator S(t, s). Differentiation of u(t) = S(t, s)y(t) w.r.t. t and using (2.5)
shows that

u(t) = 9, S(t, 5)y(t) + S(t, s)y(t) = A(t)S(t, s)y(t) + g(t).

Since S(t,s) solves the homogeneous problem 0,5(t,s) = A(t)S(t,s) we
obtain

itjf(t} = S(t S)_lﬂ(t} = S(s,t)g(t).
Integration yields (¢ j (T fﬁ S(s,7)g(7)dr and therefore

u(t) =S(t,s)y(t) = S(t,s)y(s )—I—S(t,ﬁ}/ S(s,7)g(7T)dr

=S(t, s) / S(t,7)g(T)dr,

since S(s,s) = I. This formula is called the variation of constant formula.
It will be used in stability proofs and in proofs of the local existence and
uniqueness of solutions of nonlinear problems. In case S(t,s) = el'=94, see
the subsequent §2.1.4, the variation of constant formula specializes to

(2.6) u(t) = eu(0) + /t =" g(1) dr.
0

2.1.4. The exponential matrix. In general, (2.2) can only be solved ex-
plicitly in case d = 1. For d = 2, if a solution is known of the d-dimensional
problem, then the dimension of the problem can be reduced by one, i.e..

after the reduction a linear ODE in d — 1 space dimensions has to be solved,
cf. [Cod61, Page 118]. However, in case

(2.7) = Au, ulj—o = ug,

with A € R independent of ¢, all solutions can be computed explicitly.
The ansatz u(t) = e yields the eigenvalue problem A% = A, and in
case that A has d linearly independent eigenvectors ¢,...,¢4 € RY with
cigenvalues Ap, ..., Ag, the general solution reads u(t) = S0 ¢;etite; with
Ci,-..,cq € R. In case that there are complex eigenvalues or Jordan blocks
this formula becomes slightly more complicated. Equation (2.7) appears
as linearization around fixed points of nonlinear systems and hence plays a
crucial role.

th

Remark 2.1.12. Linear scalar equations of n'" order

n—1

W)+ ay? (1) =0
5=0
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with a; € R, can always be written as a linear first order system. For the
construction of the explicit solution this is not necessary. The r different ze-
roes A vith multiplicity k., i.e. Z}: | kr = n, of the characteristic equation
A"+ b a;M = 0 allow to construct th-; general solution, namely

r k.—1

— E E ﬂk?jﬁ'lktﬂj

k=1 j=0

with n coefficients c;, ;. See [Logl5b, Chapter 2|. |

From a theoretical point of view, the following representation formula
turns out to be useful. The solution of (2.7) is given by

o n
(2.8) u(t) = e tug = Z (t4) any

n!
nn=()

We have absolute and uniform convergence w.r.t. ¢ on every compact interval
due to

o0

2

n=>0

(Lf-l)
n!

]".'!;ﬂ:

|uol|lga < eE|ug | ga.

Z I|f1||

n=»{

Obviously this also holds for the series differentiated w.r.t. t. Similarly, we
obtain the estimate

tA

let g || ga < el ug)|pa-

tA

Moreover, e ug solves (2.7) due to

d > (tAW <At
E (Z(T?I) ‘u,[_]) Zl [:( HZ jr;rl HU;

nn=I() mnn=I()

where the time derivative and the infinite sums can be interchanged due
to the uniform convergence w.r.t. ¢ on compact intervals. Morcover, A and
the infinite sum can be interchanged due to the boundedness and hence

continuity of A.

The solution operator e'! can be expressed in terms of the Jordan normal

form .J of A. The change of coordinates u = Sy in @ = Au yields § =
S—1ASy = Jy. We have

(2.9) ey = Setyy = Set’? 8y,
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or equivalently

“'r—]_ f’l 1 'r—l . '."EAE
S e S =5 14+¢tA L+ +...18

2
28 1ASS—1AS
:(1—|—t5‘_1AS+ 5 +)
2 72
:(LHJ+%?+”)=J{

Hence, it is sufficient to consider e for J a matrix in Jordan normal form,
1.€e..

Jo
J = _ with J; =
. 1
\ 0 J*r) \ 0 }aJ}
Since
Ji 0 el 0
exp(t.J) = exp t| = .

0 J, 0 el

it is sufficient to consider

oldi — gtONGI+NK) — At Ny

due to IN, = NiI with the k x k-matrix

Hence, it remains to compute

r tY
{J'lr""l.l;b — _LMEI
1!
=)
We have
ﬂrg' = (é-j}j_]u}, fl:_'}I',u = D.,H.,JEJ—I,
N = 0 forp = kk+1,..
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and so finally

k—1

(1t + —T{;‘;_”\

k-2

0 1 o
{‘;th": .

| t
\0 .0 1)
This representation formula immediately vields a statement about the sta-
bility of the fixed point u = 0 of the ODE @ = Au.

Definition 2.1.13. a) The fized point u = 0 is called asymptotically
stable for i = Au if for all ugp € R? we have u(t) = eug — 0 for
t — o0.

b) The fized point u = 0 is called stable for i = Au if for all uy € RY
we have that u(t) = e''ug stays bounded for all t > 0.

c¢) In all other cases the origin u = 0 is called unstable.

Theorem 2.1.14. a) If all eigenvalues of A have strictly negative real
parts, then u = 0 is asymptotically stable.

b) If A possesses no eigenvalue with positive real part and if all eigen-
values with real part zero possess the same algebraic and geometric
mulliplicity, i.e., no non-trivial Jordan block, then the origin u =0
1s stable.

c) In all other cases, i.e., if A possesses al least one eigenvalue with
strictly positive real part or at least one eigenvalue with real part
zero with algebraic multiplicity bigger than the geometric multiplic-
ity, then the origin u = 0 is unstable.

2.1.5. Linear planar systems. The behavior of the solutions of two-
dimensional autonomous systems @ = f(u) can be visualized with the help
of so called phase portraits. As a first step we discuss and visualize the
behavior of linear two-dimensional autonomous systems

(2.10) = Au, u(t)eR?, AeR*>*%

In order to visualize the behavior of (2.10) we have a number of possibilities,
which we shall later also apply to nonlinear systems. In doing so we also
classify the different kinds of fixed points.

1) We plot the vector field f : R? — R?. This turns out to be not that
helpful due to the in general strongly varying length of f.

2) Therefore, we plot in most cases the direction field af/||f||pz :
R? — R? for a fixed o > 0, i.e., in every point u € (hZ)? of a grid
with width h we plot a vector of R? of fixed length «.
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3) We plot the flow, i.e., a number of chosen orbits. These are curves
which are defined by the solutions ¢ — u(t) € R?.

A combination of 2) and 3) is called a phase portrait. The choice of the size
of h and of the orbits depends on the problem, and also is a matter of taste.

Remark 2.1.15. The vector field and the direction field are both tangent
vectors of the solution t — u(t). Hence, the differential equations 7 = f(u)
and @ = f(u)/||f(u)||gz have the same orbits, i.e., solution curves in the
phase plane, although their dynamics are very different. ]

One more option is to plot the nullelines. These are the sets
ﬂ'}' = {(uhug) e R? : fj[uhug) = U},

for 7 = 1,2, where the vector field is vertical, respectively horizontal. The
intersection points of Ny and Ny give the fixed points u* of the ODE, i.e.,
points with f(u*) = 0. If the solution starts in a fixed point, the solution
stays in that fixed point, i.e., u(t) = u* for all t. Often, nullclines at least
partially coincide with coordinate axis, and, moreover, for (non-degenerate)
linear systems we have N3 N No = {(0,0)} as the only fixed point.

Due to §2.1.4 it is sufficient to consider (2.2) with A € R?*? in Jordan
normal form. There are the following cases.

a) The eigenvalues have the same algebraic and geometric multiplicity,
l.e.,
At 0 : —
A = (U .:".g) with al) 0 # A; € Rora2) 0# Ay = A2. In
case al) we distinguish three subcases i) Ay = Ao, i) Ay > A2 > 0
and iii) Ay > 0 > As. All other cases are obtained from i)-iii) by a
reversal of time ¢ — —{.

b) The eigenvalue has geometric multiplicity one and algebraic multi-

’; i) is a Jordan block with A € R.

¢) The degenerate case of at least one eigenvalue A = 0. Besides the
trivial case A = 0 there are the cases c1) 0 = A\; < Ay and c¢2)
A = 0 with geometric multiplicity one and algebraic multiplicity
two.

plicity two, i.e., A = (

In the following we consider a number of examples to visualize these cases,
see Figure 2.1.5.

N (10
al i): Let A = (D {

we find uq(t) = euy(0), us(t) = e'uz(0). The orbits are straight
lines since uq(t)/ua(t) = u1(0)/u2(0) = const.. The nullclines are

), ie., 1 = uy, e = uo. For the solutions
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Ny ={(0,y) : y € R} and Ny = {(x,0) : z € R}. The fixed point
u® = (0,0) is called a source or unstable node. If time is reversed,
ie., if A = (_nl _Ul), then u* = (0,0) is called a sink or stable
node.

2 0
0 1
we find u1 (1) = e*®u1(0), ua(t) = e'us(0). The orbits are parabolas
since 1y (t)/(u2(t))? = u1(0)/(u2(0))? = const.. The phase portrait
is robust w.r.t. small perturbations, i.e., A = diag(1.9,1.1) has a
similar phase portrait. Again the fixed point u* = (0,0) is called a
source.

al ii): Let A = (

): le., i) = 2uyp, o = us. For the solutions

I 0
al iii): Let A = ({} _1
we find uy(t) = e'uy(0), ua(t) = e tuz(0). The orbits are hyper-
bolas since wuy(t)ua(t) = u1(0)uz(0) = const.. The phase portrait
is robust w.r.t. small perturbations, i.e., A = diag(1.1, —0.9) gives
a similar phase portrait. The fixed point v* = (0,0) is called a
saddle.

)j 1.e., i) = uy, s = —us. For the solutions

a2i): Let A= (_01 [1]) ie., ] = u9, s = —uy. Then u = u; +ius
solves @ = —iu. The solution @(t) = e *%(0) leaves the circles
[u(t)]? = ui(t) + u3(t) = |u(0)|? = const. invariant. Hence, the

orbits are circles, and u* = (0,0) is called a center. The phase por-
trait is not robust w.r.t. small perturbations. In general after the
perturbation we obtain the phase portrait from a2 ii). However,
in applications often additional effects such as a conserved quan-
tity enforce the robustness of centers w.r.t. the class of possible
perturbations. See for instance Chapter 4.

1 1
—1 1

u = (1 —i)u which is solved by @(t) = efe™#%(0). In polar coor-
dinates %(t) = r(t)e'®) with () € R and ¢(t) € S' = R/(277Z)
we obtain # = r and ¢ = —1 with solution r(¢) = e'r(0) and
o(t) = (¢(0) — t)mod 2w. The orbits are spirals. The phase por-
trait is robust w.r.t. small perturbations. Here u* = (0,0) is called
an unstable vortex or spiral.

11
0 1

equation we obtain us(t) = e'us(0). The variation of constant

a2 ii): Let A = (

). For w = u; + ius we obtain the equation

b): Let A = (

), i.e., ] = uy + ug, us = ug. For the second
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formula applied to the first equation yields
t
uq(t) = e'uq (0) + / e %e%us(0)ds = e'uy (0) + e*tus(0).
J0

Here u* = (0,0) is called a degenerate node. The phase portrait is
not generic, since a Jordan block only occurs with probability zero
under all matrices. However, it can make sense to keep the Jordan
block as starting point of the analysis.
I 0
cl): Let A =
) (l 0

uz(t) = u2(0) +e'uq(0), and there is the line of fixed points u; = 0.

) The general solution is wuq(f) = e'uy(0),

—— e e o o ome

c2): Let A= (E LI}) . The general solution is uy(t) = u1(0) +ua(0)t,
us(t) = us(0), i.e., the flow is parallel to the line of fixed points
uo = (.
777 T W\
1 \ V 1\\// 14 \ i\ /7 =
u\-/ ﬂ%_% lef-\x . %
SZANNEZ I\ SENW7R /)
1 0 1 4 0 1 4 0 1 4 0 1
1% \ 1 % 1//// 1
0 0 D/-/ of - - .-
N - 7 -
z . .

Figure 2.1. Phase portraits for ali), alii), aliii), and b) in the first
row, for a2i), a2ii), cl) and ¢2) in the second row.

2.1.6. Linear systems with periodic coefficients. Equations
(2.11) u(t) = A(t),u(t) with A(t) = A(t +T),

for a fixed T > 0, appear for instance as linearizations around time-periodic
solutions of nonlinear systems. Hence, they will play an important role in
the following. In contrast to the case of t-independent matrices A, where an
arbitrary shift of time still gives the same system, in case of time-periodic
A = A(t) only integer multiples of the basic period 7' can be allowed.

Lemma 2.1.16. With u(t,tg,up) also u(t + nT,ty + nT,up) with n € N
solves (2.11).
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The following theorem is fundamental.

Theorem 2.1.17. (Floquet)Each fundamental matriz ¢(t) can be written
as a product

o(t) = P(t)e'P
of two d x d-matrices, with P(t) = P(t+T) and B a constant d x d-matrizx.

Proof. Since

Ot +T)=Alt+T)p(t+T) = At)o(t +T)
with ¢(f) also ¢(t + T') is a fundamental matrix. Hence, there exists an
invertible d x d-matrix C', such that

(L +T) = o(l)C.
Each invertible d x d-matrix C' can be written as C' = e* 7 with B a non-
unique d x d-matrix. As example consider C' = diag(Aq, ..., Ag) with A; > 0.
Then a logarithm is given by B = diag(In Ay, ...,InAg). For the general case
use —1 = €™ and the expansion of In(1 4+ A) in case of Jordan blocks. See
Exercise 2.5. For P(t) = ¢(t)e ' we obtain

Pt+T)=¢(t+T)e DB = p(t)Ce TP = p(t)e B =P(t). O

15

Definition 2.1.18. The matriz C = !B is called monodromy matriz. The
ergenvalues of C' are called Floguet multipliers, and the eigenvalues of B are
called Floquet exponents.

Floquet exponents from a different matrix B differ only by adding integer
multiples of 27i/T. The Floquet multipliers are unique. Suppose that two
fundamental matrices ¢ = @(t) and ¥ = ¥ (t) are given. By Remark 2.1.11
then ¢~ (t)@(t) = S is independent of time and hence

Cyp=o(t) 'o(t+T)=S"T@t) Wt +T)S =S1CyS.

As a consequence the matrices Cy and )y, have the same eigenvalues. The
T-periodic transformation u(t) = P(t)y(t) gives

P(t)y(t) + P(t)y(t) = a(t) = A(t)u(t) = A(t)P(t)y(t)

and thus
y(t) =P(t)" (A(t)P(t) — P(t)y(t)
=P(t) (A P(t) — o(t)e™” — o(t)(=B)e™7)y(t)
—P(t) (A1) P(t) — AR)p(H)e? + d(H)e B B)y(t)
=P(t) " (A(t)P(t) — A(t)P(t) + P(t)B)y(t) = By(t).

For the stability of w = 0, it is therefore sufficient to consider B. If all
eigenvalues A of B satisfy ReA < 0, we have the asymptotic stability of
u = 0, see Theorem 2.1.19.
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Alternatively, by Lemma 2.1.16 for all n € N and 7 € [0,T), we have
u(t,0,ug) =u(nT + 7,0, ug) = w(nT + 7,nT, u(nT,0,uy))
=u(nT + 7,nT, u(nT, (n — 1), u((n—1)T,0,uy)))
=u(7, 0, w(T,0,u(T,0,...,u(T,0,up))...)))
=P oPro...oPp(up),
where ®ug = u(t,0,up). Since 7 € [0,7T") for the long-time dynamics only
the iteration of the time T-map
o7 = ¢(T)$(0)"! = (P(T)eT ) (P(0)e*P) ™ = P(0)CsP(0) ",
is of interest, where we used P(T) = P(0) and e"” = I. The proof of the
following theorem is an easy exercise.
Theorem 2.1.19. In a discrete dynamical system up41 = Cu, we have:

a) If all eigenvalues p of C satisfy the condition |p| < 1, then u = 0
is asymptotically stable, i.e., lim,, o u(n, ug) = 0.

b) If C' has an eigenvalue p with |p] > 1, or a non-trivial Jordan block
to an eigenvalue with |p| = 1, then uw = 0 s unstable.

' Im
Im
- e —
- = g
) \ RN
/ y rr’ . Y
| | { I
! b= |
II II II I -
\ J Re \ ) Re
H‘x / HK .
k"\_\_\__\__'__'__'_,.-“'f \'\\__\_ _'___.___.-"J;
asymptotically stable unstable

Figure 2.2. The eigenvalues of C' in cases a) and b) of Theorem 2.1.19.

Example 2.1.20. Consider the iteration x,+1 = Cx,, with C' = ( 2 1 )

0 1
The solution can be computed explicitly by the transformation x = Sy, with
1 1
S = ( 0 1 ) We find z,,41 = SB"" S ', with B = ( g ? ) |

Example 2.1.21. Consider the 1-periodic ODE (t) = cos®(2mt)u(t) for
u(t) € R. Using cos?(2nt) = 1/2 + cos(4mt)/2 the solution with initial
condition u(0) = ug is given by

t sin 4t
2 8T

w(t,0,ug) = upexp (— +
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and therefore

sin 47t
P(t) = exp (qm 4 ) and e =exp (E)

8 2

We find the Floquet multiplier e!/? and the Floquet exponent 1/2. The
time-one-map is given through ®yuy = el/ 2u0. ]

The following example [MY 60| shows that in the periodic case the eigen-
values of the matrix A(f) have no significance for the stability of u = 0.

Example 2.1.22. Consider u = A(t)u with

B —1—|——(‘DE;‘ 1—%%111!{*(}%!
A(t) ( 1— qurmf 14+ 3 qmzt)

The characteristic polynomial is given by

(l — %casg t—|—)\) (1 — % sin” t—|—)\) — (l—g sin t cos t) (l—l—% sint cos t)

—)n.z—l—ﬂ,h—g(fnqgf—l—qm )}-.—I—l—g (rmzt—l—%m )

+ 1 cos® tsin’t + 1—1 cos” tsin? t

1 1
=N+ A+ -,
N 2 N 2
i.e., the eigenvalues are independent of ¢ and are given by Ao = (=1 &+

1ﬁ);’4 Therefore, we expect ©w = 0 to be stable, but there is the solution

(— -::Ds t) Et(.*g]
sint

which is unbounded for ¢t — oc. With the help of this solution the 2 x 2-
system of ODEs can be reduced to a scalar equation which can be solved
with the method of separation of variables. Hence, the Floquet exponents
can be computed explicitly. They are given by A; = % and Ao = —1. |

2.1.7. An outlook on amplitude equations. We close this review of lin-
car ODE theory with a first glimpse at what will be one of the main subjects
of this book, namely reduction methods and amplitude (and modulation)
equations. Consider the weakly damped linear oscillator

(2.12) ii +2et+u =0, u(0) =a, w(0)=0,
with u(t) € R and 0 < £ < 1. The explicit solution is
u(t) = e “"(acos(wt) + - sin(wt)), where w =+/1— &2,

W
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cf. Remark 2.1.12. However, we might also try an expansion w.r.t. =, i.e.,
u(t) = ug(t) + eup (t) + O(e?). Plugging this ansatz into (2.12) and sorting
w.r.t. powers in ¢ vields

O(%) : iig(0) +ug =0, up(0) = a. g(0) =0
= wug(t) = acost,

@(51] :ily +up = 2asint,  wy(0) =0, 41(0) =0
= uy(t) = —atcost + asint,

and hence u,pp, (t) = acost — etacost + casint + O(). Comparing with
u shows that the expansion only makes sense for ¢ = (O(1), and becomes
completely useless atter that.

With some physical insight, we may however directly see from (2.12)
that 2z0;u corresponds to a weak damping, and hence we suspect that there
are two time scales involved in (2.12). Thus we may try a multi-scale ansatz
of the form

(2.13) u(t) = A(et)e™"t + c.c.,

with wp € R an a priori unknown (fast) frequency, and where A = A(7) € C
is a slowly varying (complex valued) amplitude. Then, e.g, %u = (iwp +

E%}Aei‘*’“f + c.c., and plugging into (2.12) we obtain

O : —wi+1=0, A(0)=a/2 = wy=1,

OFEh: 0= —Zi(é—lﬂ + A)e' +c.c..
T

This yields A(7) = e 7 A(0), and thus
Uapp, (1) = A(T)e!" + c.c. + O(g) = ae™ cos(t) + O(e),

which at least is a much better approximation of the true solution than
Uapp, , See Fig. 2.3.

The equation dLlTA — — A is called the amplitude equation for the ansatz
(2.13) for the system (2.12), and here can be solved explicitly, like the orig-
inal system. However, already in simple nonlinear ODEs in general neither
the original equation nor the amplitude equation can be solved explicitly.
Moreover, although the amplitude equation is usually a bit “simpler”, this
is not the essential characteristic. The main points are that the amplitude
equation often falls into some universality class, and that it describes the
system on long scales. Thus, if one has to use numerical methods, then the
numerical costs are greatly reduced. For instance, in the present example
we would reduce the numerical costs by a factor 1/e, e.g., by factor 10 if
£ = 0.1. More drastic cost reductions may occur for PDEs, see Part IV of

this book.
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uit)
u_appi(t)

u_app2(t) +

O 5 10 15 20 25 30

Figure 2.3. Exact solution and the two approximations for (2.12); = =
0.1, a =1,

2.2. Local existence and uniqueness for nonlinear systems

In this section we prove the local existence and uniqueness of solutions for
nonlinear ODEs. We consider

(2.14) u(t) = f(u(t),t),

for an unknown function v € C'(I,R*), where I C R is an interval and
f:RYx R — R is called the vector field, which is called autonomous if it
does not depend explicitly on time ¢. An initial value problem consists in
finding solutions of (2.14) to the initial condition ug € R? at some time tg,
i.e., U|y=y, = ug. If d > 1, then (2.14) is sometimes called a system of ODEs.

Sometimes f is not defined for all t € R or for all u € R?; the latter is for
instance always the case if we consider a planar ODE in polar coordinates
u=(r, ¢) with hence r>0. However, for a given initial condition ug at a time
tp it is clear that for a local solution it is sufficient that f is only defined in
a neighborhood of uy and ty. The modifications needed in the theory below
are obvious and thus for notational simplicity we generally assume that f is

defined for all v € R and all t € R.

For f locally Lipschitz-continuous w.r.t. u and continuous w.r.t. ¢ we
have the local existence and uniqueness of solutions. A function f : R4 x I —
R with I C R an open interval is called locally Lipschitz-continuous w.r.t. to
the first variable if for all (' there exists a (s such that

re} < Cvo= o supflf(u ) = flv,0)]

Theorem 2.2.1. (Picard-Lindel6f) Consider (2.14) with initial condition
ulj—g, = ug and let f : RY x I — R? be continuous w.r.t. t and locally
Lipschitz-continuous w.r.t. uw. For C7 > 0 define My = {u € R* : ||u —

Rd i: CE”H — U

|Eri-

max{||u|/ga, ||v]|
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up|lge < C1}, C3 1= supy, penyxr ||f(u,t)||ge, and denote the Lipschitz-
constant in My by Co. Moreover, assume that there exists a 6 > 0 such that
I Dty —6.tg + 6], Then (2.14) has a unique solution u € C([tg — Ty, to +
Tol, RY) satisfying u|i—y, = uo, where Ty = min(8,1/(2Cs), C1/C3).

Proof. Similar to the proof of Theorem 2.1.5 we apply the contraction map-
ping Theorem 2.1.3 to the integrated ODE

¢
(2.15) u(t) = ug + 1; f(u(s),s)ds =: F(u)(t),

where F': M — M with
M = CU([tﬂ — 1o, to0 + .Th]._, {u e R . ||L-: — 'U.{}“Eri < Cl})

which is equipped with the metric

d(u,v) = sup lu(t) — v(t)||pe =: [lu — var.
te[to—To.to+10)
We have
'
| F(u) — uo|lar < sup | [ flu(s),s)ds||gd

telto—To to+1u] g

f
< sup || | f(u(s), s)||gads| < TpCs < Cq
telto—To.to+1n] Jto

for Ty = min(d, C/C3) such that F maps M into M. Moreover,

o
|F(u) — F(v)|a < sup | [ flu(s),s)— f(v(s),s)ds|ga
telto—To.to+To] Jto
£
< sup | I (uls),s) = f(v(s), s)||pads|

telto—Th,to+Tn] Jio
£

< sup |
telto—Tn,to+Ta] Jio

<TpCollu —v|lm,

Calu(s) = v(s)||ga ds|

such that I is a contraction for Ty = min(d, 1/(2C5)). From u € M it follows
that F(u) € CY((tg — To, to + Tp), R?). Since u is a fixed point we also have
u= F(u) € CY(ty = To, to + Tp), RY). ]

Remark 2.2.2. The last argument shows that f € C™(R? x I, RY) implies
u € CHH I, RY). ]

For f:R% xR — R? locally Lipschitz-continuous the solutions can only
stop to exist if ||u(t)||ge becomes infinitely large.
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Theorem 2.2.3. For locally Lipschitz-continuous [ the solution u with
wli—s, = ug € R? exists for all t € (T_,T,), where

T =inf{t e R: ||u(t)]

pe <00} and TL =sup{t € R: ||u(t)|ze < oo}

Proof. If ||u(?)||ga is finite, then the local existence and uniqueness Theorem
2.2.1 applies and also ||u(t — Ty)||lpe and ||u(t + Tp)||pa are finite for some

Tp = 0. []

The following two examples show that f being only continuous is not
sufficient for uniqueness, and that solutions in general do not exist globally.

Example 2.2.4. Consider the one-dimensional ODE @ = y/|u| with initial
value ul;—p = 0. The right-hand side is not Lipschitz-continuous at u = 0.
This initial value problem has the solution w = 0, but also infinitely many
other solutions, namely

uT[i):{D for 0<t<T

(t—71)2/4, for 7T <t,
solves the ODE for each 7 > 0, i.e., there is no uniqueness of solutions. |

Example 2.2.5. Consider the one-dimensional ODE 7 = 1 + u? with the
initial value ul;—g = 0. This initial value problem has the solution u(t) =
tant, i.e., the solution explodes, or blows up, in finite time, it becomes oo
for t = w/2. Hence, the solution does not exist for all £ € [0, 00), i.e., there
is no global existence of solutions. |

Our next goal is to prove the continuity of the solutions w.r.t. the initial
conditions. In order to do so we use Gronwall’s inequality, c¢f. Lemma 2.1.7.

Lemma 2.2.6. Let f : R x R — R? be continuous and locally Lipschitz-
continuous w.r.t. the first variable. Then each solution u(t,ly,ug) s
Lipschitz-continuous w.r.t. wug in the following sense: For every 1Ty = 0
there exist & > 0 and L > 0 such that for all u; € R® with ||ug — uy||pa < 8
we have, for all t € [ty — Ty, to + Tpl.

(216) ||’Hf(.l";, i-[_]._, Hﬂ) — H(f-._. .I"xu, ?L1}|

Rd < L”Ug — U |

Rd-
Proof. We have

||H(ﬁ, to, H[]) - ’Ll',-(t, to, ul)”Rd

1
< |lup — wi|lge + [ || flu(7, to,wo), 7) — fu(r, to, u1), 7)||gadT
to

t

< |luwp — wr||lga + |Co | |u(r, to, uo) — u(T, to, u1)]
J 1

nadT|.

Hence, by Gronwall’s inequality we find

”“’(t: to, ’U,[]) - H(t, to, ul)”lﬁid = ||’L|',-|;] o ul”lﬂi{iECElL_LUl* [



2.2, Local existence and uniqueness for nonlinear systems 37

Remark 2.2.7. For continuously differentiable f we have differentiability
of u(t,tg, ug) w.r.t. the data tg, ug, see, e.g., [HSDO04, Page 402]. |

Another application of Gronwall’s inequality is the proof of bounds on
the size of the solutions. We state it in a differential form and then present
a simple, but fundamental, example.

Lemma 2.2.8. (Gronwall) Let I C R be an interval, a, 3 € R, and ¢ €
Cl(I,R) a non-negative function with

o(t) < a+ Bo(t)

forallt € I. Then, for all tg,t € I, t =ty we have

B(1) < Olto)e™ ) 4 Z (200 1),

Proof. We introduce 1(t) = ( ] Bt which satisfies 1(t) < ae 5. Integra-
tion yields ¥(t) < ¥(tg)+F(e™ —e 7). Undoing the transformation gives
the result. []

Example 2.2.9. Consider @ = u — u®. For ¢(t) = u?(t) we obtain
d(t) = 2u(t)i(t) = 2u2(t) — 2u™(t) < 2 — 2u2(t) = 2 — 26(1).
Therefore, from Lemma 2.2.8
u?(t) < u?(0)e 2 +2(1 —e ) /2,1 as t = oc.

Thus, every solution exists globally (in forward time) since it stays bounded
and enters for instance the interval -2, 2. |

As long as they exist, solutions of ODEs (2.14) have the trivial, but
fundamental property

(2.17) u(t + s, to, up) = ult, s, u(s,tp,ug)), ulto,to,un) = up.
For autonomous systems we have
u(t, to, ug) = u(t — tg, 0, up) =: u(t — ty, up),

i.e., w.l.o.g. we can always choose the initial time t5 = 0. Then (2.17)
transfers into

(2.18) u(t + s,up) = ul(t,u(s,ug)), w(0,ug) = up.

Thus, it makes no difference whether we solve the ODE until the time ¢ + s,
or if we solve the ODE until the time s, start again, and solve until the
time t + s. A similar structure occurs for iterations u,+1 = f(u,). In the
following we focus on the autonomous case.
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Definition 2.2.10. A map u : [ x M — M which satisfies (2.18), where
IT=R_ ., I1=R,I=Norl =%, and where M 1is a set, is called a dynamical
system or flow.

If I =R: or I =R then the dynamical system is called continuous.

If I =N or I =17 it is called discrete.

The set M s called the phase space.

The set 4 (ug)={u(l,up) : t = 0} is called the forward orbil through wuy,
the set v_(ugp) = {u(t,ug) : t < 0} s called the backward orbit through wy,
and ~(ug) = v4(ug) U~_(ug) is called the orbit through .

Since with this strict definition, only ODEs (2.14) with solutions existing
globally forward in time in case I = R, respectively, forward and backward
in time in case I = R define continuous dynamical systems in the phase
space R?, we shall not be that strict in the following and call any map u
which fulfills (2.18) a dynamical system.

For ODEs (and PDEs) the dynamical systems property (2.18) expressed
in terms of the family of (nonlinear) solution operators (S )7 is given by

(2.19) Siie=8:S,, Sp=1

where S; is defined by S;ug := u(f,up), and where I is here the identity
on M. Due to (2.19), the family of solution operators (S;)icr is called a
semigroup in case I = R™.

Remark 2.2.11. Except lor the points which are mapped to infinity the
map g — u(t, ug) is bijective due to w(t, u(—t,ug))=u(t — t, ug)=uy in case
I =R or I = Z. Since additionally u(t,uy) depends continuously on
dynamical systems can be interpreted as a flow of homeomorphisms. i.e., as
flow of bijective bi-continuous maps from R? into RY. If f is C* then also
u(t,ug) is C% w.r.t. ug, i.e., then the dynamical system can be interpreted
as a flow of C*-diffeomorphisms. |

2.3. Special solutions

In this section we introduce special solutions such as fixed points, periodic
solutions, and homoclinic and heteroclinic orbits and basic concepts such as
stability and instability and invariant manifolds.

2.3.1. Fixed Points. Until further notice we consider the autonomous
case. In order to explore the dynamics in phase space we start from the
most simple dynamical objects, namely fixed points.

Definition 2.3.1. A point u* € R? is called fized point for the ODE (2.14)
if f(u®) =0.
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Example 2.3.2. We consider @ = u — v with u = u(t) € R. From f(u) =
u—u’ = 0 we obtain the fixed points ] = 0 and uz 3 = £1. See Figure 2.4,

J

Figure 2.4. The phase portrait of 7t = u—u® drawn in the 1D phase
space. In one space dimension, i.e., u = u(t) € R, the complete
qualitative behavior of the dynamics of an autonomous ODE is
known with the knowledge of the fixed points due to topological
reasons. In between two fixed points the “vector field” f(u) € R,
which is a scalar function, cannot change sign. Therefore, the real
line is divided by the fixed points which are connected by so called
heteroclinic solutions. In case of an interval of fixed points the
statement remains true with obvious modifications. Hence, the
dynamics of autonomous one-dimensional ODEs is trivial.

In order to explore the dynamics near a fixed point u* we write u = u*+v
and make a Taylor expansion of the vector field f around u™, i.e.,

U= %(u* + o) = f(u* +v) =0+, f(u*)v+ O(||v||?).

using f(u*) = 0. The only approximate system which in general can be
solved explicitly is the linearization at the fixed point u*, namely

0 =0, f(u")v.

[n Example 2.3.2 we have d, f(u}) =1 — 3(1;,;5)2, and hence

v=v for uf =0 and o= -2v for u5jy =%l

Therefore, from the linearization we expect that solutions which start close

to u5 5 converge towards us 4 for ¢ — oo, while solutions which start close
1k L

to uj will leave any small neighborhood of u7.

Definition 2.3.3. A fized point u* is called stable for the ODE (2.14) if for
any £ > 0 there is a & > 0 such that ||ug — u*||ge < & implies ||u(t,ug) —
u||pa < & for all t = 0. Otherwise, it is called unstable. A stable fived
point is called asymptotically stable if ||ug — u*||ga < & additionally implies
limy oo w(t, up) = u®.

For linear systems the statements of Theorem 2.1.14 remain true with
the more general Definition 2.3.3. The following theorem guarantees in
many situations that stability or instability in the linearized system implies
stability or instability for the full system (2.14).
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Theorem 2.3.4. Let u* be a fived point for (2.14). Let A = 9, f(u*) € R4*4
be the linearization of f in u*.

a) If all eigenvalues Aj of A satisfy ReA; < 0, then u* is asymptoti-
cally stable.
b) If A has an eigenvalue A\ with Re A > 0, then u* is unstable.

Proof. W.l.o.g. let u* = 0. The prool is based in both situations on the
fact that the nonlinear terms in a neighborhood of «* = 0 are much smaller
than the linear terms.

a) In order to use this fact in a) we use the variation of constant formula.
Let ef4 be the solution operator of the linear system @ = Au. Since the
eigenvalues of A have strictly negative real part there are positive constants
to and Cy (necessary due to possible Jordan blocks) with

e lsma < 1157571 < SIS~ ]| < Coe "

for all £ > 0 where we used the notation of (2.9). The estimate follows by
using ||S||[S7Y|| < oo and by estimating [[¢!/|| in the || - ||[* matrix norm
associated to the || - [|2 vector norm from page 19. We remark that —puy
has to be larger than the largest real part of the eigenvalues of A in case of
Jordan blocks. The closer —pug gets to the largest real part, the larger the
constant Cy becomes.

For the nonlinear terms g(u) = f(u) — Au = O(||u||%d_) the following
holds: For all b > 0 there exists a dy > 0 such that ||u|lpe < &y implies

lg(u)||pa < bljul|za.
The variation of constant formula, cf. (2.6),

!
u(t) = eug —|—/ e“_s)‘a‘g(u(ﬂ))dﬁ
0

then implies

re < [|e8 | pa_spa

[[u(t)]

ot
|uo||ge + ]ﬂ et ga_yga [|g(u(s)]|gads

8
< Coe M0 |lug || pa + f Coe H0E=2)p||u(8)||pa ds,
()

and as a consequence

t
e fu(®)ls < Colluollgs + | Coe*Blu(s) s
0

Gronwall’s inequality, cf. Lemma 2.2.8, applied to ef0'||u(t)]
plies et ||u(t) | ge < Colluo||gae®°?, respectively

|u(t)la < Colluo|[pae*H0).

ga finally im-

:{“{ &
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Choosing b = o/ (2Cy) defines 6y = dg(b). Therefore, with u = /2, we
find ||u(t)||ge < Co|upl|lgee ™ — 0 for + — oc. Since this additionally
implies that for any given £ > 0 we can choose § = %min{(j-’ﬂ_le,ég} such
that |[ug||ge < 6 implies ||u(t, up)||pe < Cod < £, the asymptotic stability of
u* = 0 follows.

b) In order to prove b) we show that in the direction of the unstable
subspaces there is a sector with radius ¢ which is entered by the solutions
along the sides through the origin and which is left by the solutions along
the side opposite to the origin. See Figure 2.5.
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Figure 2.5. The phase portrait and the sector in the unstable case
in a typical situation.

We start with a linear change of coordinates such that after the transform

Ar 0 ., where A; € R**¥ belongs to
0 As

the part of the spectrum of A with positive real part and A, € R!
to the part of the spectrum of A with non-positive real part. Hence, there
exists a ¢ > 0, such that for all eigenvalues A; of A; we have Re \; > 0.
Moreover, the change ol coordinates is made in such a way that the norm of
the off-diagonal elements of the transtormed matrix A is less than «. In order
to do so, we assume (ijl Zi:l!mﬂ- [ajm|?)"/? < ~ for which we further
assume v < ¢/20. From linear algebra it is known that this can always be
achieved by using modified Jordan blocks. By changing the length of the

Al
0\ ) can be changed

the linear part is of the form A = (

d—k) % (d—Fk)

vectors of the basis for instance the Jordan block (

0 A
terms that for all b > 0 there exists a dg > 0 such that ||u
lg(u)l[ge < bl|ullga
Next we define R? = Z?_, lu;|* and p? = E?—k—l—l lu;|? and assume
that «* = 0 is stable. Then for all £ > 0 there exists a ¢ > 0, such that
p(0) + R(0) < 4 implies p(t) + R(t) < ¢ for all t > 0. For the transformed

into ( AT ) for every fixed r > 0. Like in a) we find for the nonlinear

pd < 0p implies
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system we find

k ke
d d B
2R — R— RE = E_: ] =2Re§ ;O

dt <
k
ZQRUZﬂj()\j"Hj + Z QimUm + Gj)-
J=1 mz]
Using
QREZHJA uj = 20 Z uju; = 20R’
i=1 i=1
and
ke k k
|2REZHJ Z u’jffl“"ﬂ't-| < Z(Z Z |':Lj'ﬂ'a|£)”£R£ i: 2,..1,’,R21
1=1 m+j i=1 m=1,m+#j

together with

k
2Re Y w;g;| < 2Rby/p? + R? < 2Rb(p + R)
j=1

yields

QR%R > 20R* — 2yR* — 2bR(p+ R).

Choosing b = o /10 yields

— R = 2 — bp.
dtR_ch/ bp

Similarly, we find
d

dt
where we used 2Re Z;f‘r: k1 UjAju; < 0. Since

oR/2—bp—0op/20—b(p+ R) > (R —p)/4

—p <op/20+ b(p+ R).

we finally obtain

jf(R p) > a(R—p)/4

and as consequence

R(t) — p(t) = (R(0) — p(0))e”"/*.

For solutions with R(0) = 2p(0) it follows that R(t) > p(0)e”*/4. However,
this contradicts the assumption of stability, since R(t)+p(t) < e forallt > 0

is not possible, independent of how small p(0) > 0 or § > 0 has been chosen.
]
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Example 2.3.5. We consider again the situation from Example 2.3.2. As
a consequence of Theorem 2.3.4, the linear stability analysis is sufficient to
determine the stability of the fixed points in the nonlinear system. Hence,
the fixed point uf = 0 is unstable, since the linearization 4 = 1 € R!*!
has the eigenvalue 1, whereas the fixed points u3 5 = 1 are asymptotically
stable, since A = —2 € R'*! has the eigenvalue —2. ]

Example 2.3.6. An example of an ODE with a fixed point in the origin
which is stable in the linearized system, but unstable in the full system is
given by i = u>. |

The following theorem states that near a hyperbolic fixed point the flow
can be completely linearized by a change of coordinates h. For a prool we
refer to [Tes12, Theorem 9.9].

Definition 2.3.7. A fized point u* is called hyperbolic, if the linearization
A = 9y, f(u*) has no eigenvalues with Re A = 0.

Theorem 2.3.8. (Hartman-Grobman) Let u* be a fixed point for (2.14),
let S; be the flow of (2.14), let A = 0, f(u*) € R¥*? be the linearization of f
in u*, and assume that A has no eigenvalues with zero real part. Then there
exists an homeomorphism h from a neighborhood U of u* to a neighborhood
V' oof u® such that for all ug € U there exists an open interval Iy C R, 0 € I
such that for all t € Iy we have

h o Siug = e h(ug).

Thus, h maps trajectories of (2.14) near u* to trajectories of the lineariza-
tion 1 = Ay.

Remark 2.3.9. There is also a discrete version of the Hartman-Grobman
theorem: Consider the nonlinear map u, 41 = f(u, ) and assume that f(u*) =
u* and that all eigenvalues A of linearization A = d, f(u*) around u™* satisfy
Al # 1. Then there exists a homeomorphism h in a neighborhood U of u*

such that h(f(u)) = Ah(u) for all u € U. |

It is somewhat surprising that even for analytic f the map h is in general
not differentiable; see Exercise 2.9.

2.3.2. Periodic solutions. The first non-trivial dynamical object is a pe-
riodic solution.

Definition 2.3.10. A solution u = u(t) of the ODE (2.14) is called periodic
if u(t +T) = u(t) foraT >0 and all t € R. If moreover, u(t) # u(t + 7)
for all 0 < 7 < T, then T is called the minimal period.
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Example 2.3.11. We consider the two-dimensional ODE

iy = — ug +up (1 —ud — ud).

’I:!r::;- =11 T+ Hg(l — “U,"lg — ’HZ}.

By introducing polar coordinates u; = r cos(¢), us = rsin(¢) we obtain

“=r—73  and ::13': 1.

In order to understand the dynamics of this ODE we visualize its flow in
the phase plane.

11
0t
-1t
—1 0 1
Figure 2.6. Flow for w; = —uy + uy(1 — u% — u%} and t, = 1y +

ug (1 — u? — u?).

From the phase portrait we find that all solutions converge towards the
circle r = 1 which is a periodic solution with the minimal period 1" = 2w,
Moreover, the origin r = 0 is an unstable fixed point in the r equation.
As an exercise, we may consider the linearization around (uy,us) = 0. We

obtain _
R with A = b ,
U2 U9 1 1

with eigenvalues A\;j» = 1 1. Since Relj» = 1 > 0 we also have with
Theorem 2.3.4 the instability of the origin. On the other hand, from the
phase portrait the periodic solution r = 1 seems to be asymptotically stable.
However, as we see 1n a moment we have to be more precise when we talk
about stability of periodic solutions. |

The stability or instability of non-trivial periodic solutions is a non-
trivial task due to the fact that the derivative ., ol the periodic orbit
Uper soOlves the linearization © = D f(uyer )v around the periodic orbit upe,.
Hence, the linearization possesses a Floquet exponent with real part zero,
and so even a generalization of Theorem 2.3.4 to non-autonomous systems
would not be applicable for proving stability in the nonlinear system. In
order to study stability of periodic solutions we proceed as follows. We
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imtroduce a so called Poincaré section, a hyperplane which intersects the
periodic orbit transversally. For our example we choose for instance

S={(x,y) : us =0, uy €(1/2,3/2)}.

Transversality means that in the intersection point v* = (u;,u2) = (1,0) the
Poincaré section S and the vector field f(1,0) = (0,1) span the complete
phase space B2. Then we define the so called Poincaré map IT: S — S as
follows: for ug € S we let I1(up) be the first intersection point of £ — u(t, ug)
and S for t > 0, i.e., in the example TI(ug) = u(2m, ug). As Figure 2.7
illustrates, Poincaré maps to different Poincaré sections are conjugated to
each other in the following sense. Let llg, g, be the map from section 57 to
Sa. Then we have Ilg, g, = Ilg, g, 0llg, g, o llg, g, .

Figure 2.7. Two Poincaré maps to different Poincaré sections are
conjugated to each other.

This fact and the fact that the intersection point u* of the periodic
solution is a fixed point of the Poincaré map 11, i.e., II{(u*) = u*, lead to the
following definition.

Definition 2.3.12. a) A fized point u* is called stable for the iteration
Ups1 = H(uy,) with 1T : RY — R if for any £ > 0 there is a 6 > 0 such that
|ug — u*||ga < & implies |[I1"(ug) — u*||ga < € for all n € N. Otherwise,
it is called unstable. A stable fized point is called asymptotically stable if
additionally limy, o [1"(ug) = u* holds.

b) A periodic solution for the ODE (2.14) is called stable, unstable, or
asymplotically stable if the fixed point of the associated Poincaré map is
stable, unstable, or asymptotically stable.
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The eigenvalues of the linearization DII of the Poincaré map now play
an analogous role as the eigenvalues of the linearization A around a fixed
point, c¢f. Theorem 2.3.4.

Definition 2.3.13. The eigenvalues of the linearization DI1I of the Poincaré
map are called Floguet multipliers.

Theorem 2.3.14. Let u* be a fized point of the map 11 : R4™1 — R~ and
let A= DII € R4 pe the linearization of I1 in u*.

a) If all eigenvalues A; of DII satisfy |Aj| < 1, then u* is asymptoti-
cally stable.

b) If A has an eigenvalue N with |A| > 1, then u* is unstable.

Proof. The proof goes along the lines of the proof of Theorem 2.3.4. []

Example 2.3.15. In order to prove the stability ol the periodic solution
r = 1 in Example 2.3.11 it remains to compute the Flogquet multipliers.
Since ¥ = r — 1 satisfies 7 = —2F + O(7?) and since [T(ug) = u(2m,ug) for
ug € S due to ¢ solving d = 1, we find

DII((1,0)) = e 227 ¢ R'*1.

Thus we have one Floquet multiplier with |e™*™| < 1, which implies the
stability of the periodic solution r = 1. ]

2.3.3. Homoclinic and heteroclinic solutions. Homoclinic and hetero-
clinic solutions connect fixed points with themselves or other fixed points.
Pulse and front solutions in PDEs correspond to homoclinic and heteroclinic
solutions in associated ODEs.

Definition 2.3.16. A solution u = u(t) of the ODE (2.14) is called hetero-
clinic, if uy # u_, or homoclinic, if uy = u_, connection between the fired
points u_ and wy if imy_, o u(t) = u_ and limg_oo u(t) = uy.

Homoclinic and heteroclinic solutions converge to the fixed points along
special sets, namely to the fixed point u_ along the unstable manifold of u_
for t — —oc, and to the fixed point u. along the stable manifold of uy for
t — 0.

Definition 2.3.17. Let u* be a fized point of the ODE (2.14). The set

Wy ={us € R :38>0 ¢ lim [lu(t, us) — u”|[zee” = 0}
s called the stable manifold of u*. The set
Wy={u, € R":38>0 : lim |u(t u) —u*||gee’ =0}

l——oc

15 called the unstable manifold of u*.
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Example 2.3.18. For 4, = —uj, s = us we have Wy, = {(u1.0) : uy €
R} and W, = {(0,u2) : us € R}. |

The following theorem guarantees that the sets W, and W, from Defini-

tion 2.3.17 are smooth manifolds and that they are invariant under the flow
of the ODE.

Theorem 2.3.19. (Invariant manifolds) Let u* be a fized point of the
ODE (2.14), f € C*(RY, R?), and let A = 0, f(u*) € R¥™*? be the lineariza-
tion of f in u*. Let

E, = span{y : ¢ eigenvector of A to eigenvalues A with Re A < 0}
be the so called stable subspace and let
E, = span{y : ¢ eigenvector of A to eigenvalues A with Re X > 0}

be the so called unstable subspace, where eigenvectors include here in all cases
generalized eigenvectors. Then there exists a unique C*-manifold W, =
Ws(u*) tangential to the stable subspace Eg, which coincides with the stable
manifold from Definition 2.3.17, and a unique C*-manifold W, = W, (u*)
tangential to the unstable subspace E,, which coincides with the stable man-
ifold from Definition 2.3.17. Moreover, there exists a (non-unique) C*~!-
center manifold tangential to the center subspace

E. = span{y : ¢ eigenvector of A to eigenvalues A with Re A = 0}.

If f e C°, then W, W, € C°. The center manifold W,. can be chosen to
be in C" for all r < oo. All these manifolds are invariant under the flow of
the ODE (2.14). A set M is called invariant of ug € M implies u(t,ug) € M
for all t € R.

Proof. The lengthy proof of this theorem is well documented in [Van89|.

A sketch of the proof of the existence of the center manifold can be found
in §13.1. ]

Example 2.3.20. Consider the equations for the mathematical pendulum
without friction, namely

TII-:':‘1 — U2,

iy = —sin(uy),

(2.20)

where u; 1s the angle between the pendulum and the vertical axis. We find
the fixed points u* = (km,0) for k € Z. The linearization at (km,0) is given

by
i vy 0 1 1
dt \va) \—cos(kr) 0/ \wy)’
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' o _ , H {—1,1} forke2Z +1
which yields the eigenvalues A € { {—i,i} for k € 27

dles for odd k and centers for even k. The eigenvectors at the saddles are

1 1 3 “ . . .
Fl1 = ( ) y P2 = ( ) , in the stable direction, and unstable direction,

implying sad-

1 —1
respectively. Physical intuition lets us suspect the existence of, for instance,
heteroclinic orbits

Yo = Wo((m,0)) N Wy ((—m,0)) and ~- = W,((m,0)) N Ws((—m,0)),

corresponding to one complete rotation of the pendulum from the unsta-
ble upper rest state to itself in infinite time. Since the points (km,0) and
((k+ 2)m,0) can be identified, v_, v+ can also be called homoclinic. These
two orbits separate R? into two domains, a bounded domain inside and an
unbounded domain outside the two orbits. We further suspect the domain
inside to be filled with periodic orbits corresponding to oscillations of the
pendulum with amplitude < 7. See Figure 2.8.

-4

Figure 2.8. Phase portrait for the undamped pendulum.

The whole interior of the “eye” is filled with periodic solutions. There-
fore, each of them is stable in the sense of Definition 2.3.12 with Floquet
multiplier 1. |

Remark 2.3.21. Instead of “physical intuition” we should rather use the
fact that (2.20) is a Hamiltonian system, see also Chapter 4. Here, (2.20) is
the first order system belonging to the second order equation

(2.21) it = —sin(u) = f(u)

corresponding to Newton’s law, namely that the change of momentum equals
the acting force. The qualitative behavior of equations such as (2.20) can
be obtained by the following procedure independently of the concrete form
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of f. Multiplying (2.21) by # shows that

d /1.
(2.22) — (EM‘E — F(u)) =0, where F'=F.

dt
Here %(ﬂ:)? and —F(u) are called the kinetic and potential energy, respec-
tively, and (2.22) shows that the total energy F = %(u)2 — F'(u) is conserved.
Hence, orbits of (2.20) lie on level sets of E. It turns out that all equations
from classical mechanics without friction can be written as Hamiltonian
systems in the form

| | 0 I
(2.23) o, (1) = JVH(q,p), where .J=

P —I 0
is skew symmetric, where ¢ € RY and p € R? are the position and the
momentum coordinates. and where H : R?? — R is called the Hamiltonian,
see Chapter 4. Also PDEs can have a Hamiltonian structure, see for instance

§8.1 and §8.2. |

Stable, center, and unstable manifolds can also be generalized [rom fixed
points to more complicated objects, for instance to periodic solutions. They
exist for discrete dynamical systems, too.

Remark 2.3.22. Let u* be a fixed point of the iteration wu, 1 = Ilu,. The
set

Wy ={us €R":38>0 : lim [[II"(us) — u*||zae”™ = 0}

U S A
is called the stable manifold of ©*. The set
Wy ={u, e R":38>0 : lim ||I0(uy,) — u*||gac®™ = 0}

n—— 00

is called the unstable manifold of u*. They exist as smooth invariant mani-
folds with similar properties as the ones explained in Theorem 2.3.19. |

2.4. w-limit sets and attractors

In this section we are interested in objects which describe the dynamics for
t — oo. These are so called w-limit sets and attractors. We characterize
them for two-dimensional autonomous systems and gradient systems. The
concepts of this section will later on be applied in Part II of this book to
PDESs on spatially bounded domains, which very often can be written as
countably infinite-dimensional dynamical systems. Therefore, throughout
this subsection, we consider a general dynamical system X 3 ug — Sruyg,
where X is some possibly infinite-dimensional Banach space. The theory has
to be modified in Part II1 and Part IV where PDEs on unbounded domains
will be handled. For simplicity, the reader may think of & as being defined
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by the solutions of some ODE 4 = f(u) in the phase space X = R?. This
section follows rather closely [Rob01, §10], including a number of examples.

2.4.1. w-limit sets. Given some initial condition ug for a dynamical sys-
tem Syup = wu(t, ug) on X, the behavior of the solution for t — oc¢ is described
by the w-limit set, defined by

(2.24) wl(up) = {v e X : 3 (ty)nen with £, — oo and lim u(t,,up) = v}.

Ti—r30
Thus, the w-limit set of ug consists of all limit points of the forward orbit
through up. Hence, an equivalent characterization is

(2.25) wlug) = NezoUs>eu(s, up).

If v = ~v4(up) is the (forward) orbit through ug and v € v, then w(v) =
w(ug) such that we also write w(v+) 1= w(ug).

Theorem 2.4.1. The set w(vy) is closed and invariant. If X = R and v,
is bounded, then w(~4) is compact, connected and non-empty. In general,
if Ugsi,Seug s compact for some to > 0, then w(vy) is compact, connected
and non-empty.

Proof. We first consider the case X = R?.

a) w(vy) as set of limit points is closed.

b) Next, we prove the invariance. Let p € w(v.). Then there exists
a sequence t, — oo such that lim; . u(t,) = p. We have to prove that
u(t,p) € w(vyy). Sinee u(t + t,, xg) = u(t, u(t,, zp)) it follows for n — oo
that

u(t + ty, xo) — ul(t, p),

which implies that v(p) C w(vy4).

c) With v+ bounded, w(v4) is bounded. Since w(v4) is closed by a)
compactness follows.

L]
Ll

d) Suppose that v, consists of more than one point, i.e., 74 is not a
fixed point. Then ~+, consists of infinitely many points. Hence, there exists
at least one limit point p of the bounded set .. Suppose that v, consists
only of a fixed point. Then v, = w(~,) is also non-empty.

¢) Suppose that w(~4) is not connected, i.e., there exist closed sets A,
and As satisfying w(vy) = A3 U Ay and Ay N Ay = (). Since 4 is bounded,
there exists a R > 0, such that v, C Br(0) = {x € R? : |lz|| < R}. Let
0 > 0 be the distance between A; and As. Define

Az = {u € Bgr(0) : §/4 < dist(u, w(74))}

where dist(u, A) = infyecq ||u — all. Obviously the solution must pass Ag
infinitely many times, and hence there must be a limit point in A3 which
contradicts the assumption w(y) = A; U As.
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In the general case, i.e., with X some Banach space, the proof works
the same way, with w(v4) compact as a closed subset of the compact set
Ui>t,Sttg. Note that this compactness argument is used in d) and e). [

2.4.2. Attractors. Attractors are compact sets describing the asymptotic
dynamics of the system in the limit ¢ — oc. They exist for so called dissi-
pative systems.

Definition 2.4.2. The flow & : X — X s called dissipative if there exisls

a compact set B such that for any bounded set M C X there exists a tg =
to(M) such that S¢M C B for allt > ty. The set B is then called absorbing.

The goal is to define the so called global attractor A which contains as
much information as possible about the asymptotic behavior for ¢ — oco. If
the system is dissipative and thus has a compact absorbing set B, a first idea
would be to take U,cpw(u). However, this set in general does not contain
homo- or heteroclinic connections, which we already know to be relevant for
the asymptotic dynamics. Therefore, a better choice turns out to be

A=w(B) = {ve X :Jt, = o0, I (up)peny C B,

(2.26) with limy, oo w(ty, uy) = v}.

Definition 2.4.3. A set A C X is called an attractor of the dynamical
system Sy : X — X if

(i) A is compact and invariant;
(it) there is a neighborhood U of A such that A attracts U.
The basin of attraction of A is defined as
B(A) = {u e X : dist(Syu, A) = 0 as t — oo},

where dist(A, B) = sup,c 4 infyep |la — b||. A set A C X is called the global
attractor for S if additionally

(iii) A attracts all points in X, i.e., we have B(A) = X.

Theorem 2.4.4. If the flow &; is dissipative and if B is a compact absorbing
set, then A = w(B) is the unique global attractor. Moreover, A is connected,
the mazrimal compact invariant set, and the minimal set that attracts all
bounded sets.

Proof. The fact that w(B) is nonempty, compact, invariant and connected
follows as in Theorem 2.4.1. To show that A is the maximal compact in-
variant set, let ¥ be a compact and invariant set. Then &Y = Y and,
since B is absorbing, &Y < B for t = 1y, hence Y C B and therefore
w(Y)=Y Cc A= w(B). This shows that A is the maximal compact invari-
ant set.



5H2 2. Basic ODE dynamics

Next we show that A attracts all bounded sets. Suppose that this is not
the case, then there is a bounded set Y, a 4 > 0, and a sequence t,, — o0
with

dist(S;, Y, A) = 0.

Thus, there are u,, € Y with dist(S;, u,,.4) > §/2. Since Y is bounded and
B absorbing we have &; u, € B for n large enough, and as B is compact
there is a subsequence with

(2.27) Sto,un, = v E€B and  dist(v, A) > d/2.
However, with v; = Sy,u,,; € B we have

Vo= jli}ni;c; Stﬂj Up,; = jlgg} Stnj —toStoUn,
and hence v € A, which contradicts (2.27). Obviously, A is also the minimal
set that attracts all bounded sets since §;.4 = A. []

Example 2.4.5. Consider @ = u—u>. The attractor is given by A = [—1, 1]
and contains the heteroclinic connections between 0 and +1. Every set
(—1 — 4,14 4] with 6 > 0 is an absorbing set. |

2.4.3. Shadowing and upper-semicontinuity of attractors. Clearly,
an important issue is the relation of the flow & in X to that on the attractor.
The following theorem roughly says that given an initial condition in X,
there exists a 7 > 0 such that after the time 7 the flow can be approximated
by a flow on the attractor for some finite time.

Theorem 2.4.6. Let A be the global attractor for the flow S and let ug € X.
For all 2 > 0 and T > 0 there exists a 7 = 7(e,1T") > 0 and a point vop € A
such that

|Sriitg — Siwpllx <& forall 0<t<T.

Proof. From the continuous dependence on the initial conditions for given
e, T = ( there exists a 6 = (¢, T) such that

luy —wol| <6 = ||Siuy — Siwp||l < e fort € [0,T).

Since A is the global attractor, for any ug € X and every § > 0 there exists
a time 7 and a vy € A such that ||u; — vg|| < 6 where u; = S(7)up. O

An approximation of a solution (Sjug)i=; by a single solution in the
attractor cannot be expected in general. However, solutions can be approx-
imated (or shadowed) by so called pseudo-orbits in the attractor. Moreover,
due to the attractivity property of A the approximation becomes better and
better for larger and larger times.
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Corollary 2.4.7. (Shadowing) For all ug € X there erists a sequence
(En)nen of errors e, > 0 with £, — 0, an increasing sequence (ty)nen of
times with t, 1 — t, — o0 for n — oo, and a sequence (vy)nen of points
v, € A such that

||Stuﬂ - St—tnﬂn”X < €n fDT‘ all by, <t < tht1,

and ||v,41 — S Unllx — 0 for n — oo.

=1 _f'r:.

However, in general a flow Siug cannot be approximated by a single flow
on the attractor as t — oc.

Example 2.4.8. For (x,y.z) € R® consider
(228) d=z(z+y)+x—axr’, g=z(—x+y)+y—yr’, i=—zz,

where r = (22 4+ y?)'/? or equivalently in polar coordinates
3
k]

re=r—=r O =—z, z=—|z|z.

The global attractor is given by A = {(x,y,2) € R?:2=02x+1y*< 1},
and the dynamics on A is given by 7 = r — r® and é = 0. Hence, the
attractor consists of the origin which is a fixed point, the circle of fixed
points S' = {x? 4+ y* = 1}, and the radial heteroclinic connections between
the origin and the points on S'.

However, given zp7#0 we obtain z(t)=zp/(1+|20/t) and hence ¢(t)=¢g —
sgn(zp) In(1 + |zplt). Thus, the solution converges (algebraically slow) to
A but it does not converge to some particular solution on A. It can only
be approximated by a sequence of solutions (i.e., fixed points on &), with
smaller and smaller errors on longer and longer time intervals. |

0 500 1000 1500 2000

Figure 2.9. Left: Two orbits for (2.28) approaching the circle S :=
{(x,y,2) € R? : 2% +y? = 1} of fixed points from above and below,
respectively. Right: illustration of the notion of pseudo orbits for
(2.28), here consisting of fixed points on S.

Another important question is the robustness of attractors under per-
turbations of the dynamical system. As the following example shows, in
general we can only expect upper semicontinuity.
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Example 2.4.9. For 0 < £ < 1 consider @t = f(u, ) where

( —(u+1) for u < -2,
1 —(1—¢e)(u+2) for —2<u < —1,
flu,g) =< —zu for |u| <1,
—1—(1l—-¢g)(u—2) forl<u<?2,
1 —u for 2 < u,
cf. Figure 2.10. For all £ > 0 the global attractor is given by A. = {0}.
However, for ¢ = 0 we have Ay = [—1, 1]. |
2
1L 4
0
-1 i
-2

Figure 2.10. The “vector field” for Example 2.4.9 for £ > 0.

Theorem 2.4.10. (Attractor upper semicontinuity) Assume that for
1 € [0,p0) each of the flows (SV')i>0 has a global altractor A, such thal
Un<pepug Ay C Q for some bounded set (), and that for each t > 0 the flows
S!' converge to SY uniformly on bounded subsets M, i.e.,

Stug — SPug|x =0 as p—0.

sSup
upe M

Then
dist(A,, Ap) -0 as pu—0.

Proof. Let £ > (. Since Ay attracts Q there exists a £ > 0 such that SEQ is
a subset of the £/2-neighborhood N (A, £/2) of Ay, i.e., SPQ C N(Ap,e/2).
Next, for p > 0 sufficiently small, we have

sup ||Sfu — SPul| < e/2

weQ)
for all u € (). Since A, C Q we have A, = SI'A, C SI'Q C N(Ap, ). O

Only with a number of additional assumptions, c¢f. [Rob01, Theorem
10.17], lower semicontinuity and hence continuity can be obtained, too. In
general, as the previous example has shown, lower semicontinuity is wrong.
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2.4.4. Planar systems. For autonomous ODEs in two space dimensions
the possible w-limit sets and attractors are relatively easy.

Theorem 2.4.11. (Poincaré-Bendixson) Consider the ODE (2.14) in
R? and assume that the positive semiorbit v, (ug) through ug is bounded. If
w(ug) contains no fized point, then w(ug) is a periodic solution. If w(ug)
contains a fired point, but only finitely many, then w(ug) is either a single
fized point or it consists of fived points with the homoclinic and heteroclinic
connections between the fixed points.

Idea of the proof. We refrain from giving a complete proof of Theorem
2.4.11, cf. [Tesl2, §7.3], since the ideas of the proof will not be used any
more in the following. The proof is based on the Jordan curve theorem saying
that a closed, non-self-intersecting curve separates R? in an interior and an
exterior part. Since this is only true in R? this assumption is essential. As
a consequence, Poincaré maps have to be monotonic. See Figure 2.11.

Figure 2.11. Monotonicity of the Poincaré maps.

This yields that the w-limit set of an orbit + intersects every Poincaré
section in only one point. If there is no fixed point in w(~), then w(~y) is a
periodic orbit. []

Example 2.4.12. Using the Poincaré-Bendixon theorem allows us to prove
the existence ol a periodic solution for

(2.29) r=y and y=-—-xr+y(l-— 72— 2;3;2).

A direct consequence of the Poincaré-Bendixon theorem is that a posi-
tively invariant bounded set for i=f(z), *€R?, which does not contain
a fixed point, must contain a periodic orbit. The set A = {(x,y) € R* :
1/4< 2 + y* <1} is positively invariant for (2.29). This follows by looking

at the sign of

%(m(ﬂg +y(t)%) = 2y*(1 — 2° — 2¢°)
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at the boundaries of A. We have 2y%(1 — % — 2y2)|$2+yz:”4 > (0 and
2,?;2(1 —z? — gygﬂmz—l—yi:]_ < 0. ]

Figure 2.12. Phase portrait of (2.29) with the invariant region.

2.4.5. Gradient systems and Lyapunov functions. Another class of
systems with restricted asymptotic behavior is given by gradient systems.
They are of the form

(2.30) = —-VV(u),

with the potential V' € C1(X,R), where X = R? could be some general
Banach space. For simplicity let X = R Obviously, fixed points of (2.30)
satisfy VV(u) = 0, i.e., they are critical points of V. Moreover, V decays
along solutions of (2.30), see Figure 2.13 for a one-dimensional sketch.

Theorem 2.4.13. The function t — V(u(t)) s strictly decaying for solu-
trons u = u(t) of (2.30) except in case that u is a fized point. In particular,
there are no non-trivial periodic solutions in gradient systems.

Proof. We have

230 V®) = (Vo) (Fuo) =-I9V o)

except in case that u is a fixed point. Suppose that there exists a non-trivial
periodic solution with w(f) = w(f + T') with minimal period T" > 0. Then by
(2.31) we have V(u(t)) > V(u(t +T)) = V(u(t)), which is a contradiction.

[]

20 <0

Remark 2.4.14. The linearization A € R?*? at a fixed point in a gradient
system is a symmetric matrix. Therefore, all eigenvalues are real. ]
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Figure 2.13. The solutions decay along the gradient of the potential.

It turns out that with only a few additional assumptions the w-limit sets
and the global attractor of gradient systems can be completely described.

Theorem 2.4.15. Suppose thalt V(u) — oo for ||u|ga — o0, that the sel £
of fized points is finite, and that the fixed points are all hyperbolic. Then,
for all ug € RY we have w(ug) = u* for some fired point u*. Moreover, for
(2.30) there exists a compact absorbing set B, and the attractor A = w(B)
consists of finitely many fized points and the connecting orbits between the
fixed points.

Proof. See [Rob01, §10.6.1]. []

Most properties of gradient systems are also true in case that a Lyapunov
function exists for the dynamical system.

Definition 2.4.16. A Lyapunov function for a dynamical system & : X —
X is a continuous function ® : B — R on a positively invariant set B C X
such that

(i) given ug € B the function t — ®(Syug) s non-increasing,
(ii) if ®(Siug) = ®P(ug) for some t > 0 then ug is a fived point.

Obviously, for gradient systems © = —VV (u) the potential V' is a Lya-
punov function on R? . Conversely, suppose that some dynamical system
S; has a Lyapunov function ® defined on X = R? with the properties that
®(u) = 00 as ||uf|ge — oo and Ld(u(t)) < 0 outside some bounded set B.
For such systems we have global existence of solutions and since B is a com-
pact absorbing set the system is dissipative. Suppose further that the set
& ol fixed points is discrete. Then the assertions of Theorem 2.4.15 remain
true. Therefore, such systems are often called gradient-like. Lyapunov func-
tions are very often used to prove stability and instability of fixed points,
cf. [HK91, §9.3-§9.4]. See also Example 2.6.3. The concepts of gradient
systems and Lyapunov functions are used in the analysis of PDEs, too, cf.
§5.3.
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2.5. Chaotic dynamics

In contrast to the relatively simple dynamics which can be found for au-
tonomous ODEs in one and two dimensions, for ODEs in dimensions three
and higher very complicated behavior can occur. It is reasonable to expect
that complicated dynamics occurs in very high-dimensional systems such as
for instance the one describing positions and velocities of 1Mol == 6.022 x 10%°
particles of an ideal gas in some container. Statistical mechanics, which
was Initiated in 1870 by Ludwig Boltzmann, is based on the insight that
a description of individual particles does not make any sense for such sys-
tems, and that a statistical description 1s more appropriate. However, it is
surprising that very complicated dynamical behavior already oceurs in low-
dimensional systems. This was already observed by Henri Poincaré around
1890, when he studied the N-body problem. ef. Chapter 4. However, this
fact only came apparent to a wider audience with the first computer simu-
lations made in the early 1960s. The meteorologist Edward Lorenz [Lor63]
found that already systems in R? show a behavior which was later on called
chaotic. As a consequence ol the interesting pictures which were produced
in the following years there was a big boom about chaos lasting for almost
30 years, cf. [Gle88, Man91|. According to [Kel93|, chaos theory studies
the behavior of dynamical systems that are highly sensitive to initial condi-
tions, an effect which is popularly referred to as the butterfly effect. Small
differences in initial conditions (such as those due to rounding errors in nu-
merical computation) yield widely diverging outcomes for such dynamical
systems, rendering long-term prediction impossible in general.

We will call a dynamical system chaotic if there is a subset of the phase
space such that the flow restricted to this subset is conjugated to shift dy-
namics, which is a prototype of a chaotic dynamical system. The occurrence
of shift dynamics in a dynamical system is proved with the help of an in-
termediate step which is called Smale’s horseshoe. This is a geometric con-
struction of a chaotic dynamical system which is easier to detect in a given
dynamical system. Using this idea we will present with Silnikov chaos an ex-
ample of a three-dimensional ODE which exhibits chaotic behavior. Routes
to chaos in dissipative systems by sequences of local bifurcations will briefly
be described subsequently in §3.4. The occurrence of chaotic behavior in
Hamiltonian systems is discussed in §4.5. In the present book, chaos will
not play a central role, but one should keep in mind its existence already
in low-dimensional dynamical systems. Our presentation ol this subject is
based on [GH83|.
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2.5.1. Shift dynamics. We will use shift dynamics as a prototype of a
chaotic dynamical system. On the set

Yo=1{a:Z—{0,1} : a = (ai)iez }

which is equipped with the distance

d(a,b) = 27 Vla; —by.
JEL
we define the shift ¢ : X9 — 39 by (o(a)); = a;41. Similarly, we define
E; where the index set Z is replaced by N. The subsequent theory will be
formulated for the shift in X2, but can also be formulated in X7 .

Theorem 2.5.1. We have that o € C(X9, X9) has the following properties:

(i) There exist non-trivial periodic solutions to every minimal period;
(it) There exists a dense orbit;

(ii1) The sensitivity w.r.t. the initial conditions holds, i.e., for every
a E_Eg m’r_z.d every 0 > 0 there exist b € Yo and j = 0 such that
d(o?(a),o?(b)) = 1, although d(a,b) <.

Proof. (i) The 1-periodic solutions are a=...00000...and a=...11111....
The 2-periodic solutions are generated by 00, 01, 10 and 11, and the 3-
periodic ones by 000, 001, 010, 100, 110, 101, 011 and 111, etc.

(ii) Consider the orbit to the initial condition a, consisting of all finite se-
quences that generate the periodic solutions, i.e.,

a = ...0000[0100011011000001010100110101011111000000010010. ...

Right of | we have the position j = 0 and left of | the sequence is filled up
with zeroes. For a given ¢ > 0 and b € 5 we have to find n € N such
that d(b,c™(a)) < e. For ¢ € ¥ we have d(b,c) < ¢, if at least b; = ¢; for
17| < jo(e). The other ¢; for |j| = jo(g) can be arbitrary. Since a contains
all finite sequences the claim follows by shifting a until the finite sequence
(bj)j=—jo....jo 0ccurs at the positions between —jp and jp.

(iii) Let @ € ¥ and 0 > 0, and set b; = a; for j < jp(d) and aj (5141 #

bios)+1- Then d(a,b) < 8, but d(c?®)T1(a), g? @1 (p)) > 1. O

A general dynamical system is called chaotic if the flow is conjugated to
shift dynamics on a subset of its phase space, i.e.,

Definition 2.5.2. A discrete dynamical system 11 : RY — R is called
chaotic, if there is a set A C R and @ homeomorphism h : A — Xq such
that on A the flows are conjugated, i.e., oo h|y = holl|,.

Remark 2.5.3. This is a very strict definition of a chaotic dynamical sys-
tem. Chaos in the sense of [Dev89] for a map f € C'(M, M), with M some
metric space, is defined by
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(1) the sensitive dependence on initial conditions;
(2) periodic points are dense in M;

(3) topological transitivity, i.e., for all open subsets U,V of M, there
exists k € N such that f*(U)NV # 0. |

Remark 2.5.4. Another definition of chaotic behavior in a system where
all forward orbits are bounded is the occurrence of a positive Lyapunov
exponent [Rue89|. Lyapunov exponents describe how the distance of nearby
solutions evolves in time. They are defined through

1
Mg, ) = limsup (E]Il ||Du(t7u-:j)(p||)

f—r oo

for ¢, ug € RY. For each initial condition ug there are d such Lyapunov
exponents. Very often the Lyapunov exponents do not depend on ugy. A
positive Lyapunov exponent implies a sensitive dependence on the initial
conditions. |

See Exercise 2.18 for an example of a map where conjugacy to the shift
on E}f can be shown explicitly. A related and famous 1D iteration for which
chaotic behaviour can be shown for certain parameters is the logistic map,
see, e.g., [Dev89|, and §3.4.1.

2.5.2. Smale’s horseshoe. The occurrence of shift dynamics in a general
dynamical system is very often proved with the help of an intermediate
step. There is a geometric construction of a chaotic dynamical system,
called Smale’s horseshoe, which is easier to detect in a given dynamical
system than shift dynamics. The construction is as follows. Starting with
S =1[0,1] x [0,1] € R? we define via Figure 2.14 a map f : S — R? such
that f(.5) NS consists of two components, namely the two vertical strips Vj
and V). There exist two horizontal strips Hy and H; with f(H;) = Vj.

e e [l o e o — — f— —

Il

Figure 2.14. Smale’s horseshoe.
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Under iteration of f most of the points of S leave S. The points which
stay in S under all iterations of f define a set

A={z:f(zr)€S, —c0<i< oo}

Remark 2.5.5. The invariant set A C R is called hyperbolic since there is
a continuous invariant splitting of the tangent spaces TAR? = E} & EY with
the following property: There exist constants C' > 0 and A € (0,1) with

a) |[Df " (x)vpe < CA"|v]|ga if v € EX(z),
b) || Df*(x)v|pe < CN"||v||ga, if v € ES(x).

Hyperbolic dynamics, cf. [KH97, Part 4|, is one branch in the description
of chaos. |

The set A has a complicated topological structure.

Lemma 2.5.6. The set A is a Cantor set, i.e., an uncountable, compact,
totally disconnected and nowhere dense set which consists entirely of limit
points.

Proof. Each horizontal strip H; is mapped through f into the vertical strip
Vi = f(H;). We consider V; N H; which is the image of some thin horizontal
strips H;j. We obtain vertical strips V;; = f2(H;;) by two iterations of f.
See Figure 2.15.

Voo ¥

10 1o Yo

Figure 2.15. lteration of the horseshoe map f.

By more forward and backward iterations of f and the intersection of all
horizontal and vertical strips which are obtained in this way we get a closed,

non-empty, completely disconnected set A. Each point in A is a limit point
of A. Thus, A is a Cantor set. []

To each point x € A we associate an infinite sequence a : Z — {0, 1} via
‘i’(ﬂ:) = (ﬂ"i)?z—m if fz(x) € Hg,.
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Theorem 2.5.7. There is a one-to-one map ¢ between A and Xo such that
the sequence b = ¢(f(x)) can be computed from a = ¢(x) by shifting the
indices b; = a;1. The map ¢ is a homeomorphism between the metric

spaces (Xq,d) and (A, ||]|gq)-

Proof. We consider ¢(f(x)) = (b;)2°___ with f'(2) € Hy,. Hence, fi(z) €

1=—00
Hy, . = H,, and therefore b; = a;41 which implies ¢ o f = g 0 ¢.

It remains to prove the continuity of ¢ : A — ¥y and ¢! : ¥ — A,
For x € A and all ¢ > 0 we have to show the existence of a § > 0 such
that d(o(z),od(y)) < ¢ if || —y|| < 6. To a given £ > 0 there exists
a jo = jo(e) such that d(a.b) < ¢ is equivalent to a; = b; at least for
17| < jo. a; and b; can be arbitrary for |[j| > jo. Therefore, the condition

d(d(x), d(y)) < £ uniquely defines two sequences a™ = (a;)", and a~ =

7=0
({11-_):‘,-_:]_ jo—1- Associated with these sequences there are strips V;- and Hg+.
If we choose & > 0 so small that y € V_+ N H - if ||y — z||pa < § we are done.
The continuity of ¢! follows in the same way. ]

As a consequence it follows that if we find a Smale’s horseshoe in a
dynamical system, then chaotic behavior in the sense of Definition 2.5.2 is
present in this system.

2.5.3. Silnikov chaos. Using the idea of Smale’s horseshoe we present a
first example of a chaotic dynamical system coming from an ODE, namely
Silnikov chaos. The presentation is based on [GH83, §6.5.1]. However, we
skip most analytic arguments and argue mostly by pictures. We consider
an autonomous three-dimensional ODE with a homoclinic orbit ~ at the
origin which is assumed to be a hyperbolic fixed point with eigenvalues
A€ Rw @ € C, where Imw # 0. See Figure 2.16(a). Silnikov [Sil65]
proved in 1965 the following result.

Theorem 2.5.8. If | Rew| < A, then the flow S; can be perturbed in such a
way that the perturbed flow §¢ has a homoclinic orbit v close to v and that
there exists a subset of R3 on which the first return map for the perturbed
flow Sy is conjugated to Smale’s horseshoe.

Idea of the proof. By the Hartman-Grobman theorem 2.3.8 we may
assume that the vector field is linear in a neighborhood of the origin, i.e.,
with a := Rew,

(2.32) w=a-+1if.

tre = B
|
o 2
=
=
=
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Figure 2.16. a) The homoclinic orbit in the example of Silnikov,
b) the inner map . : X0 — 21, and c) the outer map ¥,y :
21— 2.

The solutions of (2.32) are given by

T e ((cos Bt)x(0) — (sin Bt)y(0))
(2.33) y | (t) = | e*((sin 8t)x(0) + (cos Bt)y(0))
2 eMz(0)

We define two sets

2.0 :{[:;I,y,z} 2 +y2 :Tg and 0 <z < 31}?
¥ ={(z,y,2): 2* +y* <r§and z = z; > 0}

and assume that these sets are contained in the previous neighborhood.
The solutions go from X to ¥; according to Figure 2.16 b). The inner map
Wint + 20 — 1. which maps a point a € ¥ into the first intersection point
of the associated solution with ¥, maps vertical vertical lines from % into
a logarithmic spiral in ;. The outer map 1, transports a neighborhood
of ¢ through the homoclinic solution into

So={(z,y.2) 2% +y* =1},

$| < 21 }

See Figure 2.16 ¢). The map 1 is defined by ¢ = 1,y © 1y, for all points
X € ¥y with (X)) € ¥y and has the same asymptotic behavior as 1j,; for
z — 0 since for z — 0 the time needed by the solution to come from X
to X1 becomes infinite, whereas the time needed by the solution to come
from 23 to Xy stays finite. Hence, a rectangular set R around the entrance
point p of the homoclinic orbit is mapped into a spiral like structure. See
Figure 2.17. The assumption | Rew| < A is necessary that this picture really
occurs, for more details see [GH83, §6.5.1]. Therefore, graphically we have
found a Smale’s horseshoe for . []
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Figure 2.17. Smale’s horseshoe in the Silnikov example.

2.6. Examples

The following series of examples is intended to give some familiarity with
the notions and ideas introduced so far.

Example 2.6.1. a) For the potential V(x,y) = (2% — 1)? 4+ y* we find
~VV(z,y) = —(4x(z* — 1),2y), leading to the fixed point (z,y) = (0,0),
which is a saddle point of V, and to the fixed points (41,0), which are
minima of V. For every r > 1 the set {(z,y) : 22 + y? < r?} is absorbing.
The attractor A is given by [—1, 1] x {0}, consisting of the three fixed points
and the heteroclinic connections between the unstable fixed point (0,0) and

the stable fixed points (£1,0).

b) For the potential V(x,y) = (z? — 1)2 + (y* — 1)? we find that any
neighborhood of the unit square @ = [—1,1] x [—1,1] is an absorbing set.
The global attractor is @@ = W*((0,0)). |

P )
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Figure 2.18. Phase portraits for Example 2.6.1 a) and b).

Example 2.6.2. We consider

=y and §=-—cy+ax—2°.



2.6. Examples 65

There is a simple mechanical interpretation of the orbits of this system as the
orbits of a particle moving in the double-well potential F(x) = —%xg - %Lxl
with friction —cy. In partiular, for ¢ = 0 we have a similar situation as in
Example 2.3.20, i.e., orbits are level lines of the energy E(x, &) = %:EIE+F(:E),
see also Example 4.1.2 below for a general discussion.

The system possesses the fixed points (z,y) = (£1,0) and (x,y) = (0,0).
The linearization at the fixed point (z,y) = (0.0) yields the eigenvalues
A2 = —¢/2 4 \/c?/4+ 1. Hence, (0,0) is a saddle for all values of ¢. The
unstable eigenspace is spanned by ¢; = (1, 1), the stable one by ¢o = (1, —1).
The linearization at the fixed point (x,y) = (1.0) yields the eigenvalues
Mo = —c/2++/c2/4—1. Thus, (1,0) is a center for ¢ = 0 (Figure 2.19(a)),
a stable vortex for 0 < ¢ < 2 (Figure 2.19(b)), a stable node for ¢ > 2
(Figure 2.19(c)), an unstable vortex for —2 < ¢ < 0, and an unstable node
for ¢ < —2. The same classification holds for the fixed point (—1,0). The
mechanical interpretation is that for ¢ > 2 the friction is so large that the
particle approaches the minima o = +1 of the energy monotonically.

For ¢ > 0 the system is dissipative, and the stable manifold W((0,0))
separates the stable manifolds W((1,0)) and W,((—1,0)), i.e., the domains
of attraction of (1,0) and (—1,0). The global attractor consists of the three
fixed points and the unstable manifold of (0,0).

Figure 2.19. Phase portraits for Example 2.6.2; invariant mani-
folds in light grey, and nullclines as dashed lines.

For ¢ = 0 we have homoclinic solutions and so W, ((0,0)) = W,((0,0)),
and the center manifolds of (+1,0) can be defined as small disks around
(£1,0). To show the existence of the homoclinic solutions for ¢ = 0, instead
of the energy argument that E(x, 1) =const= 0 we may also use the symme-
try (reversibility) (¢, x.y) — (—t,x, —y) under which the system is invariant.
Hence, with t — (z(t),y(t)) also t — (xz(—t), —y(—t)) is a solution. The un-
stable manifold of the origin intersects the fixed space ¥ = {(z,0) : x € R}
of reversibility transversally. W.l.o.g. taking this intersection at ¢ = 0, the
orbit can be extended to £ > 0 by reflection at ¥. See Figure 2.20.
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Figure 2.20. Persistence of homoclinic connections in planar systems.
In non-reversible systems an additional parameter is needed for the in-
tersection of the stable and unstable manifold. In reversible systems the
fact that the stable manifold intersects the fixed space {y = 0} of the
reversibility operator transversally can be used for the persistence.

This homoclinic orbit persists under small perturbations respecting the
reversibility of the vector field due to the transversal intersection. Such
transversibility and symmetry arguments often also work when other argu-
ments, such as the above energy argument, fail, see, e.g., Remark 13.3.1.
For general perturbations (¢ > 0) the homoclinic orbit breaks up in accor-
dance with the fact that the probability that two one-dimensional manifolds
intersect in a two-dimensional phase space is zero. |

The following examples are applications from mathematical biology; ex-
amples of this type, combined with diffusion lead to the important class of
reaction diffusion systems, see Chapter 9.

Example 2.6.3. (Lotka-Volterra)We consider the predator-prey system
(2.34) t=xla—y), y=ylr—c), a,c>0

with z,y > 0 (r = prey, y = predator). In case of no predators, i.e., y = 0,
the prey will grow with some exponential rate according to & = ax. In case
of no prey, i.e., x = 0, the predators will die with some exponential rate
according to §y = —ecy. In case of predators, i.e., y > 0, the prey will be
killed by the predator via the term —ay with a rate proportional to the
number of predators. On the other hand the term xy gives an exponential
growth of the number of predators with a rate proportional to the number
of preys.

The unique non-trivial fixed point is (zg, y9) = (¢, a). Its linearization

A_(m—y —.1') _(D —c)
I T N @y)=(ca) v 0/

possesses the eigenvalues A = =+iy/ca such that (zg,1yg) is a centre for the
linearization. Thus, no stability result can be concluded from Theorem 2.3.4
a) for the nonlinear system.
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However, ¢o(x,y) = x +y — cln(x) — aln(y) is conserved for (2.34), i.e.,
:i]—tqﬁ{:r:,y) = (. Since (x,7) # (0,0) for (z,y) # (xg,yo) the solutions move
on the level lines of ¢. Calculus yields that ¢ has a unique critical point,
namely a minimum in (xg,yp). Thus, (xg,y) is nonlinearly stable and all
other solutions move on periodic orbits around (xg, yp). This behavior agrees
with observed data, for instance of canadian lynx and snowshoe hare pelt-
trading records of the Hudson Bay Company between 1845 and 1935, cf.
[Mur89|.

The Lotka—Volterra model (2.34) as the oldest predator-prey model was
partially motivated by the observation that during and shortly after world
war I the fraction of predator fish caught in the mediterranecan sea increased,

when the total fishing decreased. Let (x,y)(t) be a periodic solution of (2.34)
with period T'. Then

1 T T
TZ?/D x(t)dt = ¢, ﬁz?fﬂ y(t)dt = a.

This holds due to %fﬂTi dt = %J[r a—ydt = z(Inz(T) — Inz(0)) = 0,
hence ¥ = a, and similarly for ¥ = ¢. Fishing can be modeled by a simple
modification of (2.34), namely to replace a,c¢ by a — p and ¢ + p, where
0 < p < a denotes the “fishing pressure”. Depending on p, the fraction of
predators hence is

yp)  _a—p
z(p) +y(p) a+c
which is a decreasing function of p.

1

See also Exercise 2.19 for some modification of (2.34), for which the
conserved quantity ¢ becomes a genuine Lyapunov function. |

Example 2.6.4. (SI and SIS diseases) We are interested in the dynamics
of some disease which proceeds on a time scale much shorter than the lifespan
of its hosts. Thus, we assume that the size of the population is unchanged
and that in the population of size N a fraction S of individuals is healthy,
but susceptible to this disease, while a fraction I is infected. A general ODE
model describing the evolution of the fractions S and I reads

S=—f(S1), 1I=f(S1)

where f(S,I) is the rate of infections. The simplest model is f(S,I) = 3185,
which in chemistry would be called the law of mass action, see also §9.1.
Here S is called the pairwise infectious contact rate. Using S+ 1 = N yields

I =BI(N —1).

L]
4

[t is easy to see that in this model with 5 > 0 the whole population becomes
infected.
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A slight extension is given by SIS models, where infected recover and
become susceptible again with a rate v. Thus

S =—f(S,I)+~I, I=f(S1)—~I.

Introducing dimensionless variables © = S/N,v = I /N, = ~t, and using
u+ v = 1 we obtain
v’ = (Rg(1 —v) — 1)v,

where Ry = BN/~ is called the reproductive ratio of the disease and where ’
denotes the derivative w.r.t. the new time variable 7. For Ry < 1 the disease
dies out, but for Ry > 1 it becomes endemic, i.e., it reaches the steady state
1 —-1/Ry as t — oo. Vaccination reduces the number of susceptible and
hence [y. Note that for desease control it is not necessary to vaccinate all,
but sufficiently many to decrease Ry below 1. |

Example 2.6.5. (Mathematical ecology) The Kolmogorov form of the
equations for 2-species interaction in mathematical ecology is

(2.35) = uM (u,v), 0 = vN(u,v),
where (u,v) = (u,v)(z,t) are population densities and their respective
growth rates M and N are smooth functions from Ri to R. The mod-
els (2.35) are further classified as
predator-prey (PP) d,M < 0 and d,N > 0 for u,v > 0,
competition (C) 9d,M < 0 and 9,N < 0 for u,v > 0,
symbiosis (S) d,M > 0 and d,N > 0 for u,v > 0.

Usually, further conditions are imposed, namely

(PP1) dkp > 0 such that M (u,0) < 0 for u > ky,
(PP2) 4 a function [ such that N(u,v) < 0 for u > 0 and v > [{u).

(C1) dk¢ > 0 such that M (u,0) < 0 for u > ky,
(C2) dlp > 0 such that N(u,v) < 0 for v > [.

(S1) 3 a function k such that M (u,0) < 0 for u > k(v),
(S2) 3 a function ! such that N(u,v) < 0 for v > I(u),
(S3) k(v)=0(v)ysee and I{u) = o(u)y—no-

Biologically, for instance (PP1) and (C1) essentially mean that even if there
are no predators (v = 0), then the growth of the prey population saturates
at kg. By (PP2) and (C2), the predators saturate at [(«). Finally, symbio-
sis means that each species thrives with the other, but (S3) ensures limits
to this symbiotic growth. The condition (S3) should be complemented by
demanding that there exists at least one non-trivial fixed point.
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As examples consider
(1) a=u(l—u—wv),
(2) 4=u(l—u—2v), ©v=2v(1—u—av),
(3) @ =wu(2arctan(2v) —u), © = v(3arctan(2u) — v).

In (2), @ > 0is some parameter. Clearly, (1)=(PP), (2)=(C), (3)=(S). After
determining the unique fixed points (u,v)* with uv > 0 for (1) and (3), the
phase portraits can be conveniently sketched by considering the signs of the
growth rates M,N. For (1) we may additionally use the fact that, e.g.,
(1/4,3/4] x [1/4,3/4] is positively invariant.

For (2) we note that for & = 1 we have M = N, and thus a line {u+v =
1} of fixed points. For a # 1 we again have a unique non-trivial fixed point.
In particular, for &« > 1 (o < 1) the v species (the u species) dies out. For
« > 1 the biological interpretation is that for u = v the growth rate N of v
is smaller than that of u, due to higher damping (faster saturation) of the
growth of v by itself, hence u “wins”. ]

v(u —v)

[l
4

Figure 2.21. ODE phase portraits for (PP), (C) (o = 1 and a = 2)
and (S). For a =1 in (C) we have a line {u4+v=1} of fixed points. For
equations of the form (2.35) a convenient way to start the phase portrait
is to consider the regions defined by the nullclines, i.e., M = 0 and

N = 1.
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Example 2.6.6. The van der Pol equation [VdP26]| is given by
(2.36) i+e(u?—a)i+u=0, u(t)eR,

where a@ > 0 and 0 < £ < 1 are some parameters. As initial conditions
we take u(0) = a and @(0) = 0. This describes some oscillator with small
amplitude-dependent damping. It is known and might be expected from the
form of the equation, that for every fixed e > 0 and small £ > 0 there is a
unique periodic solution. For £ = 0 we have solutions u(t) = Ae' + c.c. with
A € C arbitrary, and thus for £ > 0 we try a two-scale ansatz ol the lorm

(2.37) u(t) = A(et)e™ + c.c..
Using u? = A%e?wt + 2| A|% + A’e 2wt this yields
O0E”): —w?+1=0, =w=1,

O@EY: 0= i(-zd—iﬂ +ad — AJAPR)! — A% 4 e

and thus equating the coefficient of e'e’ to zero vields
d ] J

(2.38) —A=—(aA - A|A]?),
dr 2

which is called the Landau equation for this problem. Introducing polar
coordinates A(t) = p(7)e?7) gives p/ = %p(n: — p?). ¢ = 0, with the
abbreviation ' = —=. From this, or directly from (2.38), we can see that |A|
converges to /o, which predicts that u approaches the circle with radius
2/ up to O(g) terms. Incidentically, although nonlinear, (2.38) can be
explicitly solved. Via r = p? and ' = r(a — ), and via v = 1/r and
v = —aw + 1, we find the solution r(t) = arg/(ro+ (o —rg)e” "), and hence

N 1/2
(2.39) Mﬂzm( ' ) 1

(o = pgle™ " + g

with p(0) = pp = a/2, and ¢(7) = ¢y = 0. Figure 2.22 compares some
numerical solutions to (2.36) with approximations via (2.37) and illustrates
the distortion of the limit cycles of (2.36) from the circles described by (2.37)
as £ becomes larger. Approximation results for this special problem can be
found in [Ver96|. For PDEs on unbounded domains such a perturbation
analysis is one of the most powerful tools. In Part IV of this book and such
PDEs we prove error estimates for such formal approximations. |

Exercises

Exercises 2.11 and 2.12 should be done with some software for ODE phase
portraits, e.g., xppaut or pplane, and we also recommend to use such software for
illustration after the analyvsis for the other planar ODEs, e.g., in Exercises 2.10,

2.15, 2.19, and 2.20.
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Figure 2.22. Left: numerical solution of (2.36) and approximation via
(2.37), e = 1, € = 0.2. Right: Distortion of circle p = 2y/a by higher-
order terms.

2.1. Find the general solution of @(t) = Ax(t) with

70 0
a)A:(g }1) bjA:(g ;) dA=[0 6 1
0 0 4

2.2. Find the general solutions and the solutions of the initial value problems with
2(0) = 2(0) = 1for: a)@(f)+3&(t)+2x(t) =0, b)Z(t)+5z(t)+4x(t) = cos(3t).
2.3. Solve the initial value problems

d d

£ — = 1. :]ﬂ —N = Sa. :1.
a) Y =y y(0) =1, b) Y (cosz)y, w(0)

2.4. Prove that edt8 = e4eP for d x d-matrices A, B, if AB = BA.

2.5. Compute real-valued logarithms of the matrices

1 1 0 11 0 a a 10

01 1), (o 5] |02 1], 0 e al

0 0 1 0 0 3 | r
() 0 —a a

with a > 0. Are the solutions unique?
2.6. Consider jj + 2dy + (k(t)* + d*)y = 0, with k(t + T) = k(t), T = r + 5,

B 0 for t € [U!TJ'-
amd k(1) =1 for  te[nT).

U(T,0) =U(T,r)U(r,0). Show that the Floquet-multipliers are given by

with » > (. Compute the evolution operator

_odr+3) [ T r
= ¢ z —— ¢4/ — —1
P1,2 2 1

Find the domain of stability in which |p; 2| < 1.
3 4

2.7. 1) Solve 41 = Bz, with B = (4 3

) . ii) Mlustrate selected orbits of of

‘;I:T'E. -1 — B':I'.T'E. f'U'I'

N R I R A RO
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2.8. Consider the one-dimensional ODEs

- 0, if u=~0
¢ T o= _ 2 = F .3- . ] . Y . y
a) iU =u—u*, b} u+ du” — u”, c) { _sin(1/u),  ifuo0.
Find the fixed points and compute their linearization. Which fixed points are stable
and which fixed points are unstable? Sketch the phase portraits.

2.9. Consider f:R?* = R?, f(u) = Au + g(u) with
Au = (auy,acug, cug), glu) = (0, acuqug, 0),

where a > 1 > ¢ > a~! > 0. According to the discrete Hartman-Grobman theorem,
cf. Remark 2.3.9, there exists a homeomorphism A such that h='o foh = A. Show
that h cannot be Lipschitz-continuous.

Hint: Clearly h™1 o f" o h = A™. Show that this implies

C_Tth.gl:u1 , {]? {3”'{;.3:] — {lﬂhg({l_”’uj . U, 'Hg) = ﬂh-] lT'H] . U, E‘,nugjlhgl:{l_nu-[ \ U., ug}.

Next show that ho(uy.0,0) = 0 and hs(0,0,u3) = 0, if h is Lipschitz-continuous.
Then obtain a contradiction for n — oo,

2.10. Consider & =y, § = —cy — x + 2, with ¢ € R a parameter. Find the fixed
points and compute their linearization. Which fixed points are stable and which
fixed points are unstable? Sketch the phase portrait for different values of ¢. Find
the stable, the unstable and the center manifolds for the fixed points. |

2.11. Find the possible w-limit sets for @ = y, § = = + ey — =% + 0.1z%y, with
e € [-0.09,-0.07]. Compute values of £ € [—0.09, —0.07] where a qualitative
change of the periodic orbits occurs. Hint: Unstable objects can be found by
t— —t. |

()= (1) G) - (G ah)

Plot the phase portrait for o« = 1,5,10. Find the fixed points and the periodic
solutions. Which of them are stable? Find the maximal o* > 1, such that there
exists a non-trivial stable periodic solution for all a € [1,a*|. (Hint: Consider the
phase portrait for a € (10,12) by computing the w-limit set for the initial condition
(z,y) = (0.1,0.1).) Let o = 12. Find the fixed points and the associated stable
and unstable manifolds. |

2.12. Consider

2.13. Consider @« = f(u) with f € C*(R* R?). Let Q C R be open and simply
connected. Assume the existence of a b € C'(R?* R) with div(bf) > 0 in Q. Use
the integral law of Gauss to show the non-existence of a periodic orbit in (2.

2.14. Use the idea from Example 2.4.12 to prove that & = z—y—a®, § = z+y—y*:
has a periodic solution.

2.15. Discuss the stability of the fixed point (x,y) = (0,0) and sketch the phase

portraits for the following systems; compare with & = y,y = —r and explain the
qualitative differences.
a)t =y, y=—x°. b)i=y", =299,

Hint for a) Consider V(x,y) = az® + y? with suitable .
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2.16. Consider I + §(z)& + 25z = 0 with §(x) = 8 for |z| = 1 and é(z) = —6 for
|| < 1. In order to show the existence of a periodic orbit consider the Poincaré
map Gy 57 = Sy and Gy : Sy — S3, where S = {(z,@) : o = =1, @ = 0},
So = {(x,&) : 2 =1, & > 0} and S3 = {(z,4&) : @ = 1, & < 0}. Use then the
symmetry of the problem.

2.17. Let X be the set of all 0 — 1 sequences (s;)jen with the following property.
If s; =0, then s;4; = 1, i.e., ¥’ consists of all sequences without two succeeding
zeroes. Prove that:

a) the shift ¢ maps ¥’ into itself;

b) there exists a dense orbit in ¥';

¢) the set of periodic orbits is dense in ¥'.

2.18. Prove that the shift ¢ on ¥, is conjugated to the tent map f : [0,1) — [0,1)
defined by

oy 2c,  forxz e [0,1/2),
f{x}—{ 20— 1, forxze[l/2.1).

Hint: show that ¢ o f = o 0 ¢ where ¢(x) = (2;)jen for . =D 777 2;277.

2.19. The dynamics of the prey predator system (2.34) is not robust under pertur-
bations. Consider (2.34) with the modification & = x(a(z) — y) with a(z) = ae™ 77
for a 7 = 0.

a) Give a biological interpretation of the modification.

b) Show the asymptotic stability of the fixed point (z,y) = (c.alc)).

¢) Use the Lyapunov function ¢(z,y) = ¢ +y — ¢lnx — a(¢) Iny to prove that all
solutions starting with x(0) > 0 and y(0) > 0 converge towards this fixed point.
d) Sketch the phase portrait.

2.20. Consider the 2-species interaction systems

. 2 . 2 S 2
) W =u (m —u) (@) = u (v—u - 1), (3) @ =u-—u 2—|— 1T3|s*
0 =v(u—v), v o=v(u—v+3). o= 2v— vt

all on u,v > 0. For each system, compute the nontrivial fixed point and its lin-
earized stability, and sketch the phase portrait. Classify the systems according to
Example 2.6.5.






Chapter 3

Dissipative dynamics

In this chapter we provide the strategy and the tools to tackle dissipative
systems, which are characterized by the existence of a compact absorbing
set. In such systems very often through so called bifurcations complicated
and eventually chaotic dynamics occur il some external parameter is varied.
In applications such an external parameter can be for instance an external
heating or the concentration of a chemical substance. A typical scenario is as
follows. For small values of this parameter all solutions are attracted to some
asymptotically stable fixed point. If the value of the parameter is increased
the fixed point becomes unstable. Then more complicated dynamics can
be expected in a neighborhood of the unstable fixed point, for instance
new fixed points or time-periodic solutions may bifurcate, i.e., appear in a
neighborhood of the first unstable fixed point. A further increase of the
external parameter leads to instabilities of the bifurcating solutions. Then
quasi-periodic solutions can occur. The next bifurcation may already lead
to chaotic dynamics.

PIRITLOCT iNCICEs

Figure 3.1. Complicated dynamics occurs in dissipative systems
as a parameter is increased.

-‘\-JI
g |
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After introducing a number of elementary bifurcations for one- and two-
dimensional systems we introduce with the Lyvapunov-Schmidt reduction and
the center manifold theorem two reduction methods which allow to find these
elementary bifurcations in higher dimensional systems, too. Center manifold
theory turns out to be a very powerful tool. Besides the construction of the
bifurcating solutions it also yields information on their stability. If a fixed
point changes from stable to unstable, then all nearby solutions are attracted
with some exponential rate towards the center manifold, i.e., the interesting
non-trivial dynamics happens on the center manifold of the fixed point. So
called normal form transformations allow to analyze the dynamics on the
center manifold. We will present this method in the context of the proof
of the Hopf bifurcation theorem, i.e., we use it to prove the bifurcation of
time-periodic solutions. The chapter is closed by sketching some routes of
bifurcations to chaotic behavior in dissipative systems.

3.1. Bifurcations

We present a number ol elementary bifurcations and explain how the implicit
function theorem and the Lyapunov-Schmidt reduction can be used to prove
their occurrence in more complicated systems.

3.1.1. Examples of elementary bifurcations. We start with a globally
attracting fixed point which becomes unstable when an external parameter
is changed. The following examples are the simplest ones which however
turn out to be the 'generic’ (see Remark 3.1.10) bifurcations occurring at a
fixed point.

Example 3.1.1. (Pitchfork bifurcation of fixed points) Consider
= f(x,p) = px — a°,
with 2 = z(t) € R and p € R. The linear stability analysis of x = 27 = 0
gives: x] = 0 is asymptotically stable for p < 0 and unstable for g > 0.
At p = 0 a real eigenvalue crosses the imaginary axis and two further fixed
points x5 3 = £,/i biturcate from &7 = (. There Is an exchange of stability:
for p < 0, 7 = 0 is stable; for g > 0, ] = 0 is unstable and x5 5 = =,/
are stable, since for p > 0 the linearization A = (pu — 322)| e=ay ., = —2p has
the negative eigenvalue —2pu. Since the fixed points only exist for po=> 0,
where x7 = 0 is unstable, this bifurcation is called a supercritical pitchliork
bifurcation. In case f(x,u) = pux + ° = 0 we can explicitly compute the
bifurcating unstable branches z3 3 = 4-/—p for u < 0. These exist where the
primary solution x] = 0 is stable, and the bifurcation is called a subcritical
pitchfork bifurcation. See Figure 3.2. |
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Figure 3.2. Super- and subecritical pitchfork bifurcation of fixed
points.

There are two other elementary bifurcations of fixed points, namely the
transcritical bifurcation and the saddle-node bifurcation.

Example 3.1.2. (Transcritical bifurcation of fixed points) Consider

$:,u,$—$2,

with = z(t) € R and g € R. The trivial fixed point z = z]7 = 0 is
asymptotically stable for p < 0 and unstable for o > 0. For p = 0 a
real eigenvalue crosses the imaginary axis. There exists another fixed point
x5 = u, which coincides with the trivial solution x7 = 0 for p = 0. Since
in general we know a priori only the trivial solution, we say that the fixed
point x5 = u bifurcates from the trivial solution 7 = 0. For the transecritical
bifurcation an exchange of stability takes place: for p < 0, 27 = 0 is stable

and x5 = p is unstable; for g > 0, 7 = 0 is unstable and x5 = p is stable.
See Figure 3.3. |

[
x

- Im 1 Im

e

l
Re Re TH__,H'H ' "
- l

H<lg =iy

Figure 3.3. A real eigenvalue crosses the imaginary axis leading
(here) to a transcritical bifurcation.

Example 3.1.3. (Saddle-node or flip bifurcation of fixed points)
Consider

T = [l — mz,
with x = z(t) € R and p € R. Two fixed points zj, = +,/j1 appear at
pt = 0. The linearization around x7 5 gives F2,/p. Thus, x7 is stable and x5
is unstable. See Figure 3.4. The origin of the name saddle-node bifurcation
can be seen in & = p — 22, § = —y: for this system, (z5,0) is a saddle and
(x7,0) is a stable node. See Figure 3.4. |



78 3. Dissipative dynamics

Figure 3.4. Saddle-node-bifurcation.

There is another elementary bifurcation which may occur when a glob-
ally attracting fixed point becomes unstable, namely the bifurcation of pe-
riodic solutions from a fixed point.

Example 3.1.4. (Hopf bifurcation) Consider

(3.1) &y = pwy + 29 — 21 (22 + 23) and iy = —x + pwy — o2 4 23),

with x;(t) € R and g € R. The linearization A = (,u 1) around = = 0

—1 pu
possesses the eigenvalues A\ » = p£i, L.e., two complex conjugate eigenvalues
cross the imaginary axis for g = 0. See Figure 3.5. Introducing polar

coordinates 1 = rsing and x9 = rcos¢ with r > 0 and ¢ € R/(2nZ) gives
F=pur—r> and (;3:1.
Hence, a family of periodic solutions

{2 = Zperll, 1, P0) : w1 = /psin(l + ¢o), 2 = \/pcos(t + ¢o)}

bifurcates from the trivial solution = = 0 at g = 0. This is called a super-
critical Hopf bifurcation. For fixed p > 0 the family attracts every solution
with an exponential rate O(exp(—2ut)), see Figure 3.5.

\ T s
i | ]
| | —

Im Im Y e~
r'.-. -.'-"- . U N

1 0 1
Figure 3.5. Two complex conjugate eigenvalues cross the imagi-
nary axis and the phase portrait for (3.1) for p > 0.

I"| .

In §3.3 we shall see that this bifurcation occurs generically when a fixed
point loses stability due to two complex conjugate eigenvalues crossing the
imaginary axis. |
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Example 3.1.5. (Subcritical Hopf bifurcation with turning point)

Consider
r\ (&g -1\ (x 2 4 (*
(:&)_(1 E)(?J)HT T)(y)’

with 7% = 2% +y°. The occurrence of z? 4+ y* on the right-hand side suggests
the use of polar coordinates which yields 7 = er + r? — r°, b = 1. Thus,
for e < 0, with small |g|, there exists an unstable periodic solution r = rg =
@{\/F‘D The second (stable) fixed point r, = O(1) of # = er+r® —r® yields
a stable periodic solution, see Figure 3.6. The bifurcation is subcritical. The
small amplitude non-trivial branch exists in the parameter regime (¢ < 0)
where the trivial solution is stable. Due to the turning point and the O(1)
amplitude stable periodic orbits in the suberitical regime, this is also called
a hard bifurcation since in systems described by such a model the solution
may suddenly “jump” to the O(1) amplitude stable periodic orbit, because
in applications noise will push the solution beyond the unstable periodic
orbit. In confrast, supercritical bifurcations (stable non-trivial solutions
only start to exist after the trivial solution becomes unstable) are soft, since
then the bifurcating stable periodic orbits have O(4/2) amplitude. |

el

_—

Figure 3.6. Subcritial Hopf bifurcation with turning point

3.1.2. Bifurcations of fixed points. It is the purpose of this section
to prove the occurrence of transcritical and pitchfork bifurcations of fixed
points from a fixed point in case when the branch of the bifurcating solutions
cannot be computed explicitly. The following analysis is based on scaling
arguments and the implicit function theorem. The detection of fixed points
for the ODE & = f(x, ), where p € R, leads to the algebraic equation

(3.2) fz,p) = 0.

Throughout this section we restrict to analytic f : R? — R. Assume that
a solution (xg, ptg) of (3.2) is known, i.e., f(xg, g) = 0, and assume that
Oy f(xo, ptg) # 0. Then, by the implicit function theorem there exists a
unique smooth solution x = x(u) of (3.2), i.e., f(x(p), ) = 0, in a neigh-
borhood of (xg, pp). This solution can be extended outside the neighborhood
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of (xg, o) with the same argument until the assumption o, f(x (), p)) # 0
is no longer satisfied. In such a point (xg, o) a new branch of solutions can
bifurcate from this family of solutions n — (x, u)(n). This so called bifur-
cation point can be analyzed with the Newton polygon which is explained
subsequently. It turns out that generically only two situations for the bifur-
cations of fixed points can occur, namely the transcritical bifurcation from
Example 3.1.2 or the pitchfork bifurcation from Example 3.1.1.

Scaling arguments. One way to establish the existence of bifurcating
solutions in the general case are scaling arguments and the implicit function
theorem.

i€ R. Hence, x = 27 = 0 is the trivial solution for all g € R. For all values
of p € R we have 9, f|,—0 = 0. Hence, it is sufficient to consider

Example 3.1.6. Let f(x,pu) = px + 2* +sinz. Then f(0,u) = 0 for all

Opflo=o = (pt — 22 + cos x)|p—0 = p + 1.

Thus, a bifurcation can only take place when p + 1 = 0. Therefore, we
introduce the small bifurcation parameter ¢« = g + 1. In order to find
Example 3.1.2 in the present problem we rescale # = ay and introduce

Fy,a) =a *flay,1+a) =y +y* + O(a).

Thus, for a = 0 we have the simple equation F(y,0) = y + y* having the
solutions y7 = 0 and y5 = —1. According to

Oy | (y,0)=(y3,00 = (1 +2Y)|(y,a)=(y3,0) 7 0
we can apply the implicit function theorem to solve F' = 0 in a neighborhood
of (y,a) = (y7,0) for y and and obtain y] = 0+ O(a) and y3 = —1+ O(a).

Hence, beside the trivial solution 7 = 0 we also found the bifurcating
solution =4 = a + O(a?). ]

Example 3.1.7. Consider f(x, ) = pr+sinz. Again r = x7 = 0 becomes
unstable at 1 = —1. Let o? = 4+ 1 and = = ay. The rescaled problem

, ] 1 . .
F(y* &) — {];'_'jf({};y__, 1 + “53) =y — Eyd + O(Hg) =0

can be explicitly solved for « = 0. Using the implicit function theorem

we obtain y} = 0+ O(a?) and Ys3 = +v/6 + O(a?), hence 7 = 0 and

Th 3= +v60 + O(a?) for a > 0. ]
Also more general situations can be handled by scaling arguments.

Example 3.1.8. Consider
(3.3) flr,e) =" +xe +° =0.



3.1. Bifurcations 81

We have the trivial solution (0, 0) for which the assumptions of the implicit
function theorem are not satisfied, i.e., d,f(0,0) = d-£(0,0) = 0. Again we
are interested in non-trivial solutions x = x(<) near the origin.

We make the ansatz xz(z) = ev(e) and obtain
F(v,e) = 2f(ev,e) =v* +v+¢e =0.

For ¢ = 0 we find the non-trivial solution v = —1. We additionally have
JpF'(—1,0) = —1 # 0 such that we can apply the implicit function theorem
and obtain a smooth solution v = vj(e) = —1 + O(¢). Hence, we find
a non-trivial solution z¥ = —¢ + O(e?) for f = 0. However, the ansatz
x(e) = 2v(e) yields

F(v,e) = 3f(c%0,e) =0() +v+1=0.

For ¢ = 0, we find the non-trivial solution v5 = —1 and d,F(—1,0) =1 # 0.
Hence, we can apply the implicit function theorem and obtain a smooth

solution v = v3(g) = —1+ O(e). Therefore, we found a second curve of non-
trivial solutions x5 = —=240(£?) for f = 0. The expansions correspond to
the solutions
£ g2
x19(e) = ~5 + 1 ¢
of (3.3), which only can be computed explicitly since (3.3) is a second order
polynomial w.r.t. x. |

The Newton-polygon. In the last example there exist at least two curves
of non-trivial solutions. Since we have a polynomial in the example we can
be sure that we found all solutions. For non-polynomial problems the scaling
argument can be made rigorous with the help of the Weierstrass preparation
theorem which allows to bring analytic f into a polynomial form w.r.t. one
of the variables, cf. [CH82, §2.8]. With this preparation it is then clear
that the solutions which we will find with the scaling arguments are the only
non-trivial solutions near (x,e) = (0,0).

A systematic approach to find the scalings is as follows. Assume that
f can be expanded in some convergent power series near the origin, i.e..
flx,e) = Zin Gz e™. Whenever the coefficient a,,, € R is nonzero,
make a dot at (m,n) € Ny x Ny. Then take the lower convex hull of all dots
in the Ny x Ng-plane. This hull is the so called Newton-polygon with finitely
many line segments with endpoints (m;, n;) and (m;+1, ni+1) and slopes —a;.
Associated with each of these lines there are p; solutions x}(g) = %0 (¢)
of f(x,e) =0, where p; = m; — m;_;.

Example 3.1.9. The Newton polygon for
flz,e) =a° +32°c 4+ 2xe* +° =0
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0 1 2 3

Flgure 3.7. Ncwtﬁn I}{]l}?gﬂﬂﬁ for f(x,g) = 2° +xe+e and for f(x,2) =
a2 + 327 4 2we? 4+ £°

vields vy = 3, p1 = 1 and as = 1, p2 = 2. With the ansatz z(z) = £%v(e)
we obtain

3{1 3 + 3514—2& 2 + 2F3+uv -I—u — 0.
The first three terms are of the same leading order for @ = 1. The third and
the fourth term are of the same leading order for o = 3.

For @ = 1 we obtain F(v,e) = v? + 30% + 20 + O(e?) = 0. For ¢ = 0

we find the non-trivial solutions v7 = —1 and v = —2. Since 9, F(—1,0) =
(302 4-6v+2)|y——1 = —1 # 0and 9, F(—2,0) = 2 # 0 by the implicit function
theorem we find the non-trivial solutions vi(g) = —1 + O(£?) and v5(g) =

—2 + O(£?) or equivalently z%(c) = —= + O(e?) and z3(c) = —2¢ + O(&?).
For a = 3, we obtain F(v,e) = O(¢*)+2v+1 = 0. For £ = 0, we find the
non-trivial solution v5 = —1/2. Since 9,F(—1/2,0) = 2 # 0 by the implicit
function theorem we find the non-trivial solution v}(g)=-1/2 + O(£?) or
equivalently z%(c)=—2%/2 + O(£°). ]

Remark 3.1.10. (The genericity of transcritical and pitchfork bifur-
cations) If w.l.o.g. we assume that the trivial solution is given by x = z* =
0, then there exists a smooth function g : R? — R with f(x,u) = zg(x, p).
If we further assume that the bifurcation point is given by (x () = (U 0),
then 9, f(0,0) = 0, f(0,0) = 0. This gives the condition ¢g(0,0) = 0 such

that

g(x, 1) = grox + gorpt + g20° + gz + goop® + @(|$|:j + |H|3):

with coefficients g;; € R. Generically we have g9 # 0 and gg1 # 0 such that
we find a bifurcating branch with = = —gl_ﬁlgm,u—F O(p?), i.e., a transcritical
bifurcation. However, symmetries such as f(xz,p) = —f(—x, ) can force
g1o = 0. Solving the equation g(x, ) = 0 w.r.t. g and using the Newton
polygon we find by the ansatz pu(z) = 2°s(x) that goip and gapx® are of the

same order. We obtain

G(x,s) = x_zg(i‘-, fﬁ) = g015 + g20 + O(x) =
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and hence s = —gﬂ_ll_qgg such that p = —gﬂ_llgggmg +0O(x%), i.e., depending on
the sign of gﬂ_ll g2p a sub- or a supercritical pitchfork bifurcation occurs. More
coefficients can vanish, but this is a degenerated situation, which requires
more symimetries.

By a small perturbation the vanishing coeflicients can be made non-
zero. This is called unfolding of the bifurcation, cf. [GS85, Chapter IIIJ.
Such unfoldings are robust w.r.t. other small perturbations, i.e., additional
parameters different from the unfolding parameters will not change the so-
lution set qualitatively. |

3.1.3. The Lyapunov-Schmidt reduction. We consider now an ODE
&= [(x,p)

with x(t) € R? in case d > 1 under the assumption that at g = ug one
simple eigenvalue crosses the imaginary axis and that all other eigenvalues
have negative real part. See Figure 3.8. We remark that for the subsequent
analysis it is sufficient that all eigenvalues except of one are bounded away
from the imaginary axis, 1.e., eigenvalues with positive real part are allowed,
too.

Figure 3.8. Spectral situation in case of a fixed point becoming unsta-
ble via a pitchfork or transcritical bifurcation.

In order to establish a pitchfork or a transcritical bifurcation we use
the so called Lyapunov-Schmidt method, which allows to reduce the d-
dimensional problem f(x, ) = 0 to a one-dimensional one. So far we have
restricted ourselves to problems f : R x R — R. In principle, the assertions
from §3.1.2 remain valid also in the general case f : B x R — B with B
a Banach space. This means that under the previous spectral assumption
generically only transcritical and pitchfork bifurcations occur. In contrast
to the examples above, x and g are no longer equivalent. We distinguish
between the variable x and the parameter pu.

Only to avoid a number of technicalities we restrict ourselves in the
following to B = RY. By the implicit function theorem we can compute a
solution = = x(u) for growing p until M = 9, f(z(u), p) € R4 is no longer
invertible. We denote this point by (z{, o). Under the previous spectral
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assumption non-invertibility is equivalent to the fact that exactly one of
the d eigenvalues of M is zero. W.lo.g. we assume that the associated
eigenvector is given by e;. In order to apply the implicit function theorem
in this situation, we split the system into two parts, namely into a part
where the implicit function theorem can be applied and into a part where
it cannot be applied. Denote by P a projection on span{e;} = (1,0,...,0)
and let P = I — Pj. Moreover, we set x; = Pjx, denote by Q2 a projection
on the range of M, and let ()1 = I — (2. Then, we consider

Qif((z1,20), ) =0, and Qof ((x1,x2),p) = 0.

We find that 0,,Qxf(xo. pto) € RI~1¥4-1 ig invertible since it possesses the
(d — 1) non-zero eigenvalues of M. Hence, the second equation can be
solved locally w.r.t. xo, i.e., there exists a solution xo = x9(xy, it). Inserting
this solution into the first equation gives the so called reduced bifurcation
problem

—

f("rlsﬂ') = Qlf((j:l:m?(xlsﬁ))zﬁ) = 0.
After this so called Lyapunov-Schmidt reduction we are in the same situation
as in the previous section. We have to find the zeroes of a smooth function

}'H: R? — R. If symmetries are present in the problem, then the projections

can be chosen in such a way that the symmetries are preserved by the
reduction [GS85, Chapter VIIL.3|.

Example 3.1.11. Consider
Nz, y,€) =ex — yx — z = 0,
fi(ﬂf, i, E) =Y + 2332 + ’yEEE = ().

The origin (x,y) = (0,0) is a solution for all ¢ € R, and we are interested in
non-trivial solutions close to it. The linearization

g 0
3{:313;}(,{1:fEN(:ﬂ.y]:{[’aU] = (O 1)

has the eigenvalues £ and 1. Hence, a bifurcation is only possible for £ = 0.
The kernel is given by {(x,0) : x € R} and the range by {(0,y) : y € R}.
Thus, the above system is already in the form needed for the Lyapunov-
Schmidt reduction, and the second equation can be solved w.r.t. y. In order
to obtain an approximate solution we consider an iteration of the second
equation, namely

Yy = —2?% — yQEE = 2% — (—23:2 — ygfg)g 2= 922240 (:—:2:.-:’1) :

Inserting the solution y = —22° + O(e*2*) into the first equation gives the
bifurcation equation

filz,y(z,e),e) = cx — (—Zf + O (:—:2;1:4)) - =cx+x+0 (EEIE') = (.
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Dividing this equation by x gives e41240 (Egm’l) = () which can be analyzed
by the Newton polygon. We find a subcritical pitchfork bifurcation, i.e.,
non-trivial solutions z*(¢) = +v/—c + O(e) and y*(c) = O(e) for e < 0. |

Consequence. When a fixed point becomes unstable by a simple eigen-
value crossing the imaginary axis, generically a transcritical or a pitchfork
bifurcation occurs. Hence, even in higher-dimensional phase spaces for this
spectral situation no new bifurcations can occur.

Remark 3.1.12. The Lyapunov-Schmidt reduction has certain disadvan-
tages. It does not provide information about the stability of bifurcating solu-
tions. Treating Hopf bifurcations via Lyapunov-Schmidt reduction leads to
an infinite-dimensional problem. In order to find 27 /w-time-periodic solu-
tions of the ODE #(t) = f(x, i) the problem is transferred by using Fourier
series (1) = ) ;7 7€ to an infinite-dimensional stationary problem for
the Fourier coefficients 7;. With the help of the Lyapunov-Schmidt redue-
tion the problem can be reduced to a two-dimensional one, cf. [CHB82,
§1.4|. The construction of homoclinic and heteroclinic solutions with this
method again leads to an infinite-dimensional problem and requires special
properties of the underlying ODE, cf. [PS07]. ]

3.2. Center manifold theory

Center manifold theory is an alternative way to find the elementary bifur-
cations from above also in higher space dimensions. Additionally, it often
vields information on the stability of the bifurcating solutions. Moreover, in
contrast to the Lyapunov-Schmidt reduction with this method Hopf bifur-
cations and the occurrence of small amplitude homoclinic and heteroclinic
solutions can be handled as finite-dimensional problems.

If a fixed point becomes unstable, all solutions are attracted with some
exponential rate towards the center manifold, i.e., the interesting non-trivial
dynamics happens on the center manifold of the unstable fixed point. In
general, only polynomial approximations of the vector field on the center
manifold are known. If the center manifold has two and more space dimen-
sions, so called normal form transformations help us to analyze the dynamics
on the center manifold. In the next section we use center manifold theory
and normal forms to prove a general Hopt bifurcation theorem.

We already formulated in Theorem 2.3.19 the invariant manifold theo-
rem. The part about the center manifold is now made more precise. We
consider

Ue =Beue + ﬁc(ucra Usg, u‘ﬂ)r
(3-4) s =Bgsug + Es(“m g, Hu)a

fl‘.,.-l!:--.u:. :Buuu + g*u ('H-{_:} u:‘i} u'ﬁ')ﬂ
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Figure 3.9. When a fixed point becomes unstable the bifurcating so-
lutions can be found on the exponentially attracting center manifold.
(a).(b) before and after the bifurcation of a stable periodic orbit on M...

with u. € E. = R% u, € B, = R% u, € E, = R™ some finite-dimensional
vectors, B, a matrix with eigenvalues on the imaginary axis, B a matrix
with eigenvalues with negative real part, B, a matrix with eigenvalues with
positive real part, and g, : RY — E.. g, : R* - E, and g, : R* —» E,,
d=d.+ ds; + d,, are C”l—mapﬂ without constant and linear terms.

Theorem 3.2.1. (Center manifold theorem) There exists a neighbor-
hood U C E. of u. = 0 and a C"-map h : U > u, — h(u.) such that the
manifold

We ={u =ue® h(ue) :ue € U, (g, Uy) = h{ue)}

is invaritant under the flow of (3.4). W, is called the center manifold. The
reduced flow is determined by

(3.5) e = Bette + ge(te, hs(te), hy(u)).

The function h contains no constant and no linear terms w.r.t. u, such that
the center manifold W, is tangential to the central subspace E,. associated to
the eigenvalues with vanishing real part. In general the center manifold is
not unique.

Some parts of the theorem, namely the invariance, the existence, and
Lipschitz-continuity instead of r-times differentiability of the center manifold
will be proven in §13.1. Here we will discuss some of the assertions of the
theorem and concentrate on its application by giving a number of examples.
With the first example we explain how center manifold theory can be used
to handle bifurcation problems although the central eigenvalues are only on
the imaginary axis for one particular value of the bifurcation parameter

Example 3.2.2. For p close to zero consider the trivial decoupled system

(3.6) i = px — 1z, = —1.
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For pu < 0, the origin (x,y) = (0,0) is stable. For p = 0, we find the one-
dimensional center manifold W, = {(x,y) € R? : y = 0}. In order to handle
non-zero values of p with the center manifold theorem the above system is
extended to

i =pr—a3, y=-—y. [p=0.
For this extended system we find the two-dimensional center manifold W, =
{(p,x,y) € R? : y = 0}. Note that after introducing ji = 0 the term pz is
no longer a linear, but a nonlinear term. Since j = 0 implies that p is a
constant, the two-dimensional center manifold is foliated by one-dimensional
invariant manifolds. See Figure 3.10. Hence, the additional equation i = 0
can be canceled again and on the two-dimensional center manifold u can be
considered again as a parameter. Therefore, by applying the center manifold
theorem in a sloppy way the two-dimensional bifurcation problem (3.6) can
be reduced to

&= pur —x°

in the one-dimensional center manifold W, = {(z,y) € R? : y = 0}. Obvi-
ously, the reduction is trivial in this case, i.e., h = 0. In summary, bifurcation
problems can be handled with the help of the center manifold theorem by

introducing the equation gt = 0. |

v,
SV S TN
/I

/

/

7

Figure 3.10. Reduction of the system & = pz —a®, § = —y, 1 =0
to a two-dimensional center manifold which is foliated by invariant one-

dimensional manifolds.

The next example shows how to compute approximations of the reduc-
tion function h and of the reduced system on the center manifold.

Example 3.2.3. For i close to zero consider
i = pxr+a° — xy, = —y + 227

Like above we extend the system by the equation g = 0. The linearized
system is given by
r=0, yg=-y, p=0,
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and hence E, = {(p, x,y) € R : y = 0}. Therefore, we make the ansatz
y = h(z, p) = ax® + bux + cp® + O(|ul” + |[*),

and from ¢ = —y + 22? we obtain 2axd + pui + ... = —(azx?® + buxr + cu® +
...) + 2x%. Since @ = px + ..., by comparing the coefficients it follows

t?: 0=—-a+2, xp: 0=—=b p*: 0= —c
As a general rule, no powers p" without x can occur in h, and therefore
W, = {(16,2,5) € R® : y = 202 + O(|puja® + |a]*)}.

Moreover, the function h cannot contribute to the quadratic terms of the
reduced system which here is given by

i = pe+ 25 — 2(22%) + h.o.t = pz — 2> + h.o.t.,

i.e., the fixed point (z,y) = (0,0) is stable also for = 0. We explain below
that stability on the center manifold implies stability in the full system in
such a situation. At g = 0 a supercritical pitchfork bifurcation occurs. |

The following two examples are about the non-uniqueness and the non-
smoothness of center manifolds.

Example 3.2.4. In order to illustrate the non-uniqueness of the center
manifold we consider

(3.7) i=a y=-u.

Obviously, the central subspace E. is given by the z-axis. The solutions of

the ODEs are given by x(f) = ]_Tfm and y(t) = ype . Elimination of time

t yields y(z) = (yoe™/*0)el/®, For z < 0 we have limy_y0 20 ¥\ (z) = 0,
i.e., every solution approaches the origin in a flat way. For x > 0 we find
that y = 0 is the only solution which approaches the origin. Thus, we find
infinitely many different C°°-center manifolds which are tangential to E. at
the origin by glueing together the obits in the left half plane with the positive
real axis. This shows that center manifolds are non-unique in general. The
only analytic center manifold, i.e., with a convergent power series, is the
z-axis. See Figure 3.11 for the phase portrait of (3.7). |

Example 3.2.5. In order to illustrate the non-smoothness (and non-unique-
ness) of the center manifold we consider

Tr=—pr, Yy=-y, p==0

with 0 < p < 1. The vector field is C™ and FE. is given by the (z, u)-plane.
Obviously W, = FE. is a center manifold. However, the trajectories satisfy
rj:l—my = p2 and are given through y(z) = Clz|Y#*. If r < 1/p < r+ 1 with
r € N, then the trajectories for fixed px are in C*, but not in C"*!. Each of
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Figure 3.11. The phase portrait of & = 2, § = —v.

these curves is tangent to y = 0 and so the whole of these trajectories forms
another center manifold. In a ball of radius g < 1/r this center manifold is
C", i.e., the larger r is chosen, the smaller is the center manifold. |

Remark 3.2.6. In case of no eigenvalues with positive real part there is a
neighborhood in which all solutions are attracted to the associated center
manifold W, with some exponential rate @'(e_m) for a 8 > 0. More precisely,
in [Van89, Theorem 5.17] it is shown that in this case there are strictly
positive constants C' and 3, such that for all z3 in a neighborhood of the
center manifold there 1s a fp € R and a x. € W. such that

|z(t, z0) — z(t — to, ze)|| < Ce 7.

As a consequence the stability of bifurcating solutions is solely determined
by the reduced ODE on the center manifold. |

Similarly, center manifolds can be defined for discrete dynamical sys-
tems.

Example 3.2.7. We consider the discrete dynamical system

. J _ 2
Tyl = Ty + Tplin Yn+1 = AYn — T,

with 0 < A < 1. We find E. = {(x,y) € R? : y = 0}. In order to compute
the center manifold we make the ansatz

y = h(z) = ar® + bx’ + (5‘(1:4)

and find
alr +zlaz? + .. ) + bz +z(az? + .. )P + ... = Maz? + bz +...) — 2?
which yields a = —ﬁ and b = 0. Hence, we have
j:Z
y = h(z) = — +O(z")

1 — A
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and find for the reduced equation

1.2

3 )
+0(h) = a0 (1- 1225 +06D).

Loy

ﬂ_]_—}\

Lp+1 — L

Therefore, x = 0 is asymptotically stable in the reduced equation which
implies the asymptotic stability of the origin (x.y) = (0,0) in the full system,
similarly to the previous Remark 3.2.6. |

Example 3.2.8. (Saddle-Node bifurcation on center manifold) We
consider

(3.8) iP=c+2°+y*? and = —y+2°

with small . For € = 0 we have the fixed point (z,y) = (0,0) with eigenval-
ues 0, —1 with neutral direction (1,0). Thus we expand the center manifold
as y = h(x,g) = ax® + bxe + c® + ..., which yields a = 1, b = =2, ¢ = 2
and hence & = ¢ 4+ 2° + O(z?) as reduced equation. We have a saddle-node
bifurcation with two fixed points —/—¢ (stable) and /—¢ (saddle) for £ < 0
and no fixed point for £ > 0. Thus we do not actually need h. See Figure

3.12 for the phase portrait. |
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Figure 3.12. Saddle-node bifurcation on center manifold; e= — 0.1. .

As already said, some parts of the center manifold theorem, cf. Theorem
3.2.1, namely the invariance, the existence, and the Lipschitz-continuity of
the center manifold will be proven in §13.1. There we will explain that center
manifold theory is not restricted at all to the finite-dimensional situation.
In Part TV it is used for the construction of bifurcating spatially periodic
solutions of pattern forming systems, but also in the construction of traveling
wave solutions in unbounded cylindrical domains.
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3.3. The Hopf bifurcation

In case that two complex conjugate eigenvalues cross the imaginary axis, the
analysis of the system can be reduced to the analysis of the associated two-
dimensional center manifold. For the ODE on the center manifold, however,
a large number of coefficients have to be computed, namely six coefficients
for the quadratic terms and eight coeflicients for the cubic terms. Hence, at
a hirst glance a big zoo of possible dynamics can be expected. However, this
is not true. By normal form transformations the problem can be reduced in
polar coordinates to

(3.9) F=uvr4+uvrc+... and ¢=1+...,

with v, 19 € R, i.e., to the computation of two efficient coefficients. Ignoring
the higher order terms this system has already been discussed in Example
3.1.4. Therefore, in case that two complex conjugate eigenvalues cross the
Imaginary axis, under some non-degeneracy condition, always time-periodic
solutions occur, either as sub- or supercritical bifurcation.

Theorem 3.3.1. Consider & = A,x + g(x) with x(t) € R? and ||g(z)|| =
O(||z||?) for  — 0. Assume that for p = pg the matriz A, possesses two
eigenvalues A+ = *xiw with w # 0 and that all other eigenvalues possess
strictly negative real part. Furthermore assume that dR’r"!”“ lp=po 7 0. If
vy # 0 in (3.9), or more precisely v # 0 in (3.13) b{.EUw then a one
parametric family of periodic solutions bifurcates from x =0 al = pg. The
period of the bifurcating solutions is 2w /w+ O(|p — pol|) and their amplitude
is of order O(|pu — pol'/?).

Proof. For the somewhat lengthy proof we introduce the new bifurcation
parameter ¢ = p — pg and extend the ODE system with € = 0. Then we
apply the center manifold theorem and reduce the full system to a system
on the three-dimensional center manifold associated to the eigenvalues AL
and the variable ¢.

On the center manifold M, for arbitrary coordinates (y,z) € R? the
reduced system can be written as

y = a 1’y+ﬂ|23+ﬂ-12uyg+f{-1_113;34-1’?1[}.33‘ +f1]dﬂyg‘|‘ﬂ|2IJ23
+ai12yz +ﬂﬂﬂ3“’3‘|‘0( 2(l|+y))+y|*+2]*),
(3.10) 2 = apytasztasoy’tasyztasgezitaszy’+asnyz

+H-212y32+t12m¢3+0( (|I|+|y|]+|y|d+|3| ),
e = 0,

where the values of the real-valued coefficients a. = a.(¢) depends on our

: S - L : aiy a
choice of basis. The only restriction so far is that the matrix A= ( 1 T2 )
(2] @22
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possesses the eigenvalues
A(p) = Hw + O(e).

At a first view, all kinds of dynamics seem to be possible. However, the
svstem can be simplified heavily with a so called normal form transform. In
order to do so we diagonalize (3.10) and obtain

¢ = wep -+ tx{mscl + r:;u{ma:_l
12 1 12
+ﬂ'ﬂ2n‘?% + A011€16-1 T gty t+ -
(3.11) ¢_1 = —iwe_ + ajjpeer + ajgEc—
2 2 2 2
+agoct + agyic1c-1 +aggcy + ..,
e = 0,

with ¢y = ¢-1 and coefficients . € C. The idea of the normal transform is
to eliminate all terms which are not in resonance with the linear ones. As
an example consider cf"il in the equation for ¢;. It oscillates as e 2" and is
therefore not in resonance with ¢;, which oscillates as €. Therefore, this

¢? | term be eliminated. With this heuristic argument the only terms which

. : . n—1 :
remain in the equation for ¢; are those of the form £™ef'¢”7", and in the

equation for c_; those of the form ¢}~ !¢ . This heuristic argument can

be made rigorous by making a number of near identity changes of variables.

3.3.1. Normal form transforms. We consider the autonomous system
&= Axr + f(x)
for z(t) € RY, with A € R¥™? and

f(z) = fa(x) + fs(x) + falx) + ...

with fn(kx) = k™ f,.(x) for all k > 0, i.e., f,, is a vector in RY whose entries
are homogeneous polynomials of degree m in the variables z1, ..., z4. Hence,

fml
fim = :
fmd
1s an element of the vector space
Zml—l—,..—l—md:m ﬂ:}nl...mﬂr_m;m Tt I?d )
Vin = U = : afﬂq_..-md cR p,
Zml—l—...-r-mdzm Exﬁu---md:ﬁ;”] T I::?d /

the space of vector valued homogeneous polynomials of degree m in the
variables xi,..., 4.
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We look for a near identity change of variables which allows us to elim-
inate as many terms as possible in order to make the system as simple as
possible. Therefore, we make the ansatz

=y +hy),
where
h(y) = ha(y) + ha(y) + haly) +
with h,, € V,,. We obtain
dh
x-w+€5-—ﬂw+hmn+fm+h@m
and therefore
, oh
i1+ a—y) Ay + h(w)) + £y + h(w)
ol;
&)

In order to eliminate all quadratic terms in fo we have to find an ho such
that

192 .
=Ay — y ——Ay + Aha(y) + fa(y) + O(|lyl*).

Jh:
—3—;Ay + Aha(y) + f2(y) = 0.

With the above interpretation of he as an element of the vector space Vs,

Ohs

(Lah2)(y) = —a—yﬂy + Ahs(y)

is a linear map of V5 into itself which acts linearly on the coefficients oz, .

Similarly, in order to eliminate terms of order m we have to solve the

linear system
ah Ty

Ay

where _ﬁn represents the nonlinear terms of degree m after the application
of the transformations hs to h,,_1.

Ay + Ah(y) + fm(y) = 0,

For our purposes it is sufficient to restrict ourselves to the case of a
diagonal A, i.e., A = diag(A1,...,Ag). Then in the space V,,, the linear map

T . . .
L 4 possesses the eigenvectors y,"' -... -y, “e;, where e; is the 7 unit vector

of R?. The associated eigenvalues are given by u = Z§=1 miAr — Aj. In
order to see this, we consider the " component

dh,
Z 5 "I Nk — Aihmj = ph;
p—1 YYk
of the eigenvalue equation L sh,, = ph,,. Inserting the above eigenvectors
shows the statement. Therefore, L 4h,, = g, can be solved w.r.t. h,, in all
eigenspaces with eigenvalue p # 0. We found
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term non-resonance condition can be eliminated
o0 s —2X = 0Xo+ A = =2i4+i#£0 Ves
1C1C_1 —0A — 22X + A = —2(—i) +i##0 ves
ap2c? | —0A; — 2 + A = —2(—i) +i#0 yes
a30C; —3M —0Xo+ A =-3i+1#0 Ves
agrcie_1 | =20 —1dg + A = —2i — (—i)+i=0 no
Dilgﬂltf!:‘il 1A =2 o+ A= -1 —2(—1)+1#0 yes
(voac>. ! —0A1 = 3Aa+ A\ =-3(-1)+i#0 yes

Table 1. Non-resonance conditions for the terms in the first equation of (3.11).

Lemma 3.3.2. Assume A = diag(Ay,...,Ay). Then in order to eliminate
the term yy"'-. . -yy'® in the " equation we need the non-resonance condition
d
(3-12) ZTH;E}'.;E — ;’\j ?5 (.
k=1

3.3.2. Continuation of the proof of Theorem 3.3.1. We now make a
normal form transform for (3.11). In Table 1 we list the various terms in
the first equation of (3.11) and their non-resonance conditions. Hence, after
the transformation we obtain for the new variables b; = ¢; + O(|e|(|e1| +
c-1]) + [e1]? + |e-1]?) that

EJ] =iwby + F1eb +’f15%b_1 + @(|52|(|f}1| + [b_1]) + |bl|4 -+ |b_1|4),
b1 = —iwb_1 + f-16b_1 + 7-1b1bZ 1 + O(|[(|br| + [b-1]) + [ba]* + [b-1[*).

with b] — E, ."Hl — ."H—l — ﬁ?‘ + iﬁt‘? and M1 = Y—=1 = Vr + ’i‘”}“;, where .ﬁ-r: ,3?;;
. vi € R. Introducing polar coordinates b; = re'? gives the system

o= Brer + 31+ O(%r +rt),

¢ = wPie+yrt+ 0+ ).

Hence, we have a system which can be analyzed for small . Ignoring the
higher order terms we have r = O(y/g) for the bifurcating time-periodic
solutions. For the scaled variable i defined by r = \/er we find the approx-
imate time-periodic solution 75 = — 8, /~,. Depending on the sign of ~, we
have a sub- or supercritical bifurcation of time-periodic solutions. In order
to prove the persistence of these solutions under the neglected O(e?)-terms
we construct the associated Poincaré map II. for which the periodic solution
is a fixed point. The fixed point is therefore a zero of

F(7(0),€) = ™ /2(T(7(0)) — 7(0)).

=

We have F(79(0),0) = 0 and 81 F(79(0),0) = —4n 8w~ ' # 0 such that the
implicit function theorem can be applied and a fixed point 7(0) = 7-(0) of

(3.13)
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I1. exists for £ > 0, too. Associated to this fixed point are periodic solutions
of (3.13), (3.11), and finally of (3.10). Therefore, we are done. [

3.3.3. An example and further remarks. In applications very often
the parameter space has more than one dimension, i.e., the parameters are
given by p € R™. In principle, this situation can be handled in the same
way as above by varying the parameters individually. Generically, the set
{p e R : F(x(p),p) = 0,0.F(x(p),p) = 0} of possible bifurcation values
becomes a (m — 1)-dimensional manifold. Here we consider the following
example of a 2-parameter bifurcation/stability diagram.

Example 3.3.3. Bifurcation diagram for a (toy) problem from chem-
istry. The system

(3.14) a=p—alk+ ;32), 3 = -84+ alk+ ;5’2)

serves as a (drastically reduced) model for so called cubic autocatalysis in
chemistry. Here, a, 3 are concentrations (hence a, 5 > () of some substances
and the parameters p, £ > 0 are some reaction rates. Unlike other reagents,
here represented by «, that participate in the chemical reaction, a catalyst,
here represented by 3, is not consumed by the reaction itself. The above
model describes a situation where the so called educt « is supplied into the
system at constant rate p and converted into 3 with rate s + 32. Thus, the
catalyst 3 catalyses its own production, hence the name autocatalysis.

The unique fixed point of (3.14) is given by
(", 8%) = (n/( + p*), ),

with the associated linearization

2 2 2
(W +r) =2p7 /(R4 p7)
3.15 A~ f |
) (e G
First, we discuss the eigenvalues of A which are given in terms of p = trace A
and g = det A by
P’

_P P
{316} )\]12 — 9 T A 1

This associated bifurcation/stability diagram is plotted in Figure 3.13. The
meaning of this diagram is as follows. Starting, e.g., with p,q in the sn
regime (p < 0 and 0 < ¢ < p?/4) and crossing, e.g., the line ¢ = p?/4.
the fixed point changes type from sn to sf, cf. (3.16). Next, depending on
the nonlinearity, we may expect a Hopt bifurcation when crossing the line
p = 0,q > 0, which is therefore called Hopf line. The point (p,q) = (0,0) is
called Bogdanov-Takens or co-dimension-2 point since two parameters are
needed to describe the possible bifurcations in its neighborhood.
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Figure 3.13. Bifurcation diagram for & = Ax in terms of the trace p
and the determinant ¢ of A. The abbreviations stand for: sn: stable
node, two stable real eigenvalues; sf: stable focus, two stable conju-
gate complex eigenvalues; uf: unstable focus, two unstable conjugate
complex eigenvalues; un: unstable node, two unstable real eigenvalues;
saddle points: two real eigenvalues, one stable, the other unstable.

The transfer of Figure 3.13 to the fixed point (ag,Sy) and to the pa-
rameters [, k& yvields to the solution of a number of algebraic equations. For
instance, the Hopf line is given by solving the 4th order equation

trace A = —(pu — (1 = 26)® + 6/ (1 4+ k) /(12 + &) = 0,

hence

pi2(K) = % ((1 —26) + (1 — gﬁ)uz)

In summary, we obtain the bifurcation diagram plotted in Figure 3.14, while
Figure 3.15 shows two selected phase portraits. We will come back to such
systems in Chapter 9. |

1/2

Remark 3.3.4. Besides the analytical study of bifurcating branches close
to bifurcation, i.e., the analysis of the reduced equation, there is the big field
of numerical path following (or continuation) and bifurcation analysis. The
basic idea of continuation is as follows. Given a solution (zq, ug) € R* of
f(x, ) = 0 with 9, f(xg, o) # 0 we choose a small § > 0, let u = pg + 9,
and use the Newton scheme to compute z(p). In detail, we use the iteration

L+l = Lp — (a:z:f(:ﬂﬂvﬁ))_lf(m'm .Iu')

with starting point xy. The scheme converges for 6 > 0 sufficiently small and
we set x(p) = limy,_,~ ,. Replacing (xq, to) by (z(po + 6), po + §) we can
start again and compute solutions x = x(u) until 9, f(z(p), u) = 0. In case of
O f(xo, o) # 0 we can interchange the role of z and p and obtain a solution
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Figure 3.14. The bifurcation diagram for (3.14) is to be read as follows.
If, e.g., we fix K = 0.1 then we cross the Hopt line at approximately
i1 22 041 and pe = 0.77. At these lines Hopf bifurcations can be
expected. Path following methods may allow us to follow the family of
periodic solutions in the parameter plane.

o thzn.

¥ - 1,=0|]
1.5} \

2

0.5¢

Figure 3.15. Phase portraits for (p, k) = (0.5,0.2) (left) and (pu, k) =
(0.5,0.1) (right)

i = p(x), i.e., we have a smooth curve (x, u) = (z, p)(s) parameterized with
s until simultaneously 0, f(xz(s), u(s)) = I f(x(s), u(s)) = 0.

There are variants of this idea [Kel77, Kuz04, Doe07, Sey10]| which
auntomatically allow the continuation of branches around folds and beyond
bifurcation points, the detection and localization of bifurcation points, and
branch switching at bilurcation points. One standard method is so called
(pseudo-)arclength continuation, which is implemented in the package AUTO,
' Doe07, Deal6|, see also XxppAUT, Erm02]|. Many of these methods can
also be applied to bifurcation problems in PDEs and are important tools

there. A recent package specifically designed for elliptic systems in two
space dimensions is pde2path, [UWR14, DRUW14]. |
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3.4. Routes to chaos

The chapter is closed by sketching two routes of bifurcations to chaotic be-
havior in dissipative systems, namely period-doubling, which is based on an
infinite series of local bifurcations, and homoclinic explosion, which is a so
called global bifurcation. There are many other routes to chaotic behav-
ior, but we will only comment on one of them, namely the Ruelle-Takens
scenario.

The theory of turbulence developed by Landau [LL91] in 1944 is based
on the assumption that more and more pairs of complex conjugate eigenval-
ues cross the imaginary axis. This route to chaos is called the Landau-Hopf
scenario. In 1971 Ruelle and Takens [RT71| showed that these infinitely
many unstable eigenvalues are not necessary for the occurrence of chaos.
The scenario starts with a stable fixed point and provides a very short route
to chaotic behavior only using local bifurcations. The first bifurcation is a
Hopt bifurcation leading to time-periodic solutions. Then the time-periodic
solution becomes unstable via a pair of complex-conjugate Floquet multi-
pliers crossing the unit circle leading to quasi-periodic solutions. The next
bifurcation leads to a three-dimensional invariant torus where nearby chaotic
behavior can be found. This route to chaos plays a certain role in hydro-
dynamical applications, but now we focus on the route with infinitely many
period-doublings.

3.4.1. Period-doubling. Period-doubling is realized in nature in a num-
ber of systems, as cardiac diseases, leaking water-taps, laser dynamics, and
various chemical reactions. It occurs if a periodic orbit becomes unstable
and a stable periodic solution with roughly the double period occurs, and
if this repeats under further increase (or decrease) of some parameter, see
Figure 3.16.

Figure 3.16. Sequence of period-doublings for a periodic solution

For the analysis of this phenomenon we consider the associated Poincaré
map II. The fixed point of II, which is associated to the periodic orbit,
becomes unstable via a real Floquet multiplier crossing the unit circle at
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—1. The fixed point becomes also unstable for the second iterate of the
Poincaré map II%, but now via a real Floquet multiplier crossing the unit
circle at 1. On the center manifold associated to the Floquet multiplier —1
we have the following situation. If

My = 74 ar? + 0(3:3), then I’z =2+ ;f’ﬁ:’.':"':j + 0(:1:4),

such that for T1? a pitchfork bifurcation occurs. The two stable bifurcating
fixed points for II? corresponds to a 2-periodic solution for IT itself, since for
II no bifurcation of fixed points occurs. Hence, a new periodic orbit with
twice the period is bifurcating from the old one. Assuming that this new
periodic orbit becomes unstable in the same way and that this procedure
goes on and on we finally come to chaotic dynamics. A famous ODE example
showing this behavior is by Rossler |R6s76].

Example 3.4.1. The Rossler system. Consider the ODE

z ~(y + 2)
dly) = r+by |,
z b+ z(x — a)

where typically b = 0.1 and a € IR serves as a bifurcation parameter. Starting
from an asymptotically stable periodic orbit for a=4 we find for increasing a
a period-doubling sequence, cf. Figure 3.17. See, e.g.. [PJS92, §3.3] and the
references therein for a more detailed introduction to the Rossler system. |

3.4.2. The logistic map. There is a discrete model problem for the period-
doubling route to chaos, namely the logistic map

Tn+1 = pan(l —xn) = Fan)

with 4 > 0 and z, € R. We have for the n'" iteration F'*(x) = —oco for
n—ocifx <0oraz>1. For g€ [0,4] the map F maps the interval [0, 1]
into itself. In the following we restrict ourselves to values p and g in these
sets. More details can be found in [Dev89], including a discussion of chaos
in the strict sense of Definition 2.5.2 in the logistic map for parameter values
=2+ \/5

The condition F(z) = px(l —z) = x gives the fixed points 7 = 0 and
2y =1—1/p. At py = 1 a transcritical bifurcation of fixed points occurs.
The linearization around the fixed point z* is given by y,.1 = F'(x2")y,
where F'(z*) = u(1 — 22*). For 2* = 1 — 1/u we obtain

F'(a%) = p(1 = 2(1 = 1/p) =2 — pu.

Hence, this fixed point is stable for ¢ € (1,3) and becomes unstable at

111 = 3 via some period-doubling. A stable two-periodic solution appears.
See Figure 3.18.



100 3. Dissipative dynamics
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Figure 3.18. The map F* for p = 2.9, p = 3 and p = 3.1. A pitchfork
bifurcation occurs which corresponds to the occurrence of a two-periodic
solution for F.

A further increase of u yields an instability of the two-periodic solution
at a value ¢ = po. We find a pitchfork bifurcation for F* and so the
occurrence of a four-periodic solution for F'. A further increase of j yields an
instability of the four-periodic solution at a value y = p3. We find a pitchfork
bifurcation of F® and so the occurrence of an eight-periodic solution for F.
Interestingly, there is an infinite sequence of such bifurcations and so a
further increase of p yields an instability of the 2"~ !-periodic solution at a
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value pt = p1,,. We find a pitchfork bifurcation of F?" and so the occurrence
of a 2"-periodic solution for F.

Even more interestingly, the period-doublings show some asymptotic
behavior. It can be proved rigorously by computer-assisted proofs that the
limit

it Hn — Hn—1

=00 Un+1 — Hn
called the Feigenbaum constant, exists, c¢f. [CE80]. As a consequence we
have the existence of fio = limy, o0 ptn, = 3.57, too. A recent overview about
the theoretical background of the occurrence of these limits is [Avill|. For
most values g > pi the system exhibits chaotic behavior. In Figure 3.19
the w-limit set for starting point xg = 1/2 is plotted as a function over the
bifurcation parameter p. There are isolated regions on the p-axis where
no attractive chaotic behavior occurs, the so called windows of stability.
Beginning at 14 /8 = 3.83 there is for instance a range of parameters p with
a stable 3-periodic solution. There is a general theory [Dev89, §1.10] that
for maps from R to R solutions of period 3 imply the existence of periodic
solutions of every period m € N, known as the Theorem of Sarkovskii.

~ 4.6692,

0—
2.5

Figure 3.19. The w-limit set for starting point xy = 1/2 is plotted as a
function over the bifurcation parameter pu. For every fixed p the iterates
Tn....Txenr with N and M sufficiently large are plotted.

For ODEs the instability occurs in a one-dimensional center manifold
where the dynamics can be described via a one-dimensional Poincaré map
and hence it can be expected that the route to chaos via period-doublings
may occur in ODE systems, too. Another example is the so called chemostat,
see lixercise 3.6.

3.4.3. Homoclinic explosion — the Lorenz attractor. The Lorenz at-
tractor [Lor63, Spa82| is a famous example of a three-dimensional ODE
with chaotic dynamics. It was found by the meteorologist E. Lorenz in 1963
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as a lowest order approximation for convection in fluids and is considered as
a cartoon weather model. It is given by

= oy —x),
pr— 1y — Tz,
= —Bztay,

IS 2
|

(3.17)

h!l

with ¢ = 10 and 3 = 8/3 fixed. Numerical simulations of this simple model
for p = 27 show a complicated irregular dependence of the solutions on the
initial conditions and the occurrence of a so called "strange” attractor. A
rigorous proof for the occurrence of chaotic dynamics in the Lorenz model
(similar to shift dynamics (Y2, o) defined in §2.5.1) has been given [Tuc02].
We now explore the route to chaos in a bit more detail.

For any o, 3,p > 0 any large enough sphere around (0,0, p + o) is ab-
sorbing. This can be shown with the Lyapunov function

Vizg.y.z)=2>+y* +(z—p—0)”.
With a = min{20, 2, 5} we obtain

d
V== 2ox% — 2y* —2B2° +28(p+ o)z

= 2022 — 2y — Bz —p—0)? — B2+ B(p+ 0)*
<—aV+8(p+o0)
Hence, for t large enough by Gronwall’s inequality we obtain

28(p + 0)?
- .

V(t) =

By Theorem 2.4.4 there exists the global attractor A = w(B), for which

numerical simulations show its geometric complexity. The attractor has a
dimension less than three since the divergence of the vector field

Oy, (o(y2 — 1)) + Oy (py1 — y2 — 11y3) + Oy (—Bys + y1y2) = —(0 + 1+ )

is negative and, therefore, every test volume shrinks to zero for ¢ — oc. For
p = 27 numerical experiments show a non-integer Hausdorff-dimension of A
of approximately 2.04.

The behavior occurs by a global bifurcation which is called homoclinic
explosion. The route to chaos for the Lorenz system is as follows when
p is increased from 0 to 27, for ¢ = 10 and § = 8/3 fixed. The z-axis
is an invariant set, and the origin is a stable fixed point for p < 1. The
linearization of (3.17) around 0 is

—ag —ao 0
Vi(@y,2)=|p-—2 -1 -z
y v =
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At (x,y,z) = (0,0,0) we find the eigenvalues

o+ 1
2
such that at p = 1 a bifurcation of fixed points occurs which turns out to

be a supercritical pitchfork bifurcation. For p > 1 we have two non-trivial
fixed points X7, X5 with

(3.18) z=p—1 and z=y==+/B(p—-1).
The eigenvalues of V f(X{,) are the roots of

pA) =X+ (0 + B+ 1A+ B(o + p)A + 208(p — 1),

From this we find that the fixed points X7, are stable until p = ppepr =
24.74, where two complex conjugate eigenvalues cross the imaginary axis.

It turns out that a suberitical Hopf bifurcation occurs. This means that for

< c g . : : .
p = propt unstable periodic solutions near X[, exist, which shrink to X,

as p — PHopf-
Figure 3.20 gives some numerical illustrations: In general for p € (1, 24|
the two parts S; and Ss of the one-dimensional unstable manifold of the

origin are connected with the three-dimensional stable manifolds of the fixed
points X| and X;. Though it is difficult to see, there is a value p = pgiohal &

1
Ma=-T =t oo+ D2+ do(p—1), s =B,

(a) Sy2 for p = 13. (b) S1.2 for p = 13.91.

(¢) Sy for p = 24. (d) A visualization of the attractor.
809 —

50- ! s S ; ,-',‘ 3 )
401 i 'h.._. . .._-_:__..... ::I,

40- :

30-

20-

10- \//ED

: 0
~20 0 -20

20

Figure 3.20. The unstable manifolds of the origin in the Lorenz
system for different p (a)-(c¢), and the “Lorenz attractor” for p = 27
(d), visualized by one trajectory.
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13.91 where the two parts S and Sy are connected with the two-dimensional
stable manifold of the origin and form two homoclinic connections, see Figure
3.20(b). For p < Pelobal the part 57 connects to X7 and Sz to X3, see Figure
3.20(a), and vice versa for p > pgen. This behavior is the origin of a so called
homoclinic explosion, cf. [Wig88|, and creates the chaotic behavior in the
system. Therefore, chaotic behavior is present in the system already for p
close to pglobal, but becomes only attractive for larger values of p. Figures
3.20(c) and (d)) illustrate the different behavior for p = 24 < ppepr and
p =27 (Figure 3.20(d)).

An elementary but more detailed introduction to the Lorenz system
can be found in [Str94, §9], including explanations of simple mechanical
and electronic systems able to simulate the Lorenz system. together with
applications to send encrypted messages.

Exercises

3.1. For the following ODEs &= f(x) determine all fixed points and their stability
in dependence of the parameter pelR. What bifurcations oceur at what u?
a) i=p+6+4x—x2%, b)i=2—p+a(p—4)+3z*-2°, c)i=p+z(p—1)—a%

3.2. Compute the non-trivial solutions close to the origin for
2 4
EXT — Yxr® — T
T, = = ().
f(z,y.¢€) ( y+ 22 )

3.3. Check the stability of (z,y) = (0,0) for the following systems by calculating
the center manifold, cf. [Wig03].

(a) &= —ay — 2%, § = —y + 22, (b) & = a?y — a°, y = —y + 2%, and

o () (4 DE)-(%)

3.4. Which of the following systems has periodic orbits close to z = (z,y) = (0,0)?
Does Theorem 3.3.1 apply?

2
i ~ — —H 1 o | |2
[:d'} - 1 _.”'2) -~ |*"’| =y
2
—/ 1 = i
(b) 2= _‘”’ r—|z?z, p€ R, with small |ul.

1 —p

. (0 -1 2 — xy
(¢) 2= 1 U)+( Ty )

3.5. This exercise (from [Str94|) brings together a number of concepts treated
above, namely bifurcation, center manifold calculations, and non-trivial gradient
dynamics. The system

Ui = f1(9) := ksin(¥y — Ya) — sin v,
Uy = fo(¥) := ksin(ds — ¥;) — sin Do,

with ¢ = (v1,72) and parameter k > 0 describes two rotating magnets between
two fixed magnets, in a geometry as follows:
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Two magnets able to rotate on an axis in between two lixed magnets
8

N X B

2

a) The system has exactly nine fixed points in [—m,7]° for & < 1/2. Determine
these and their stability.

b) What bifurcation occurs at k = 1/27 What new fixed points emerge?

¢) Find a potential V such that ¥ = —VV (¥).

d) Sketch a phase portrait for 0 < k < 1/2 and a phase portrait for k > 1/2.
Remark. Doing ¢) first and then the rest is a good idea.

3.6. The Chemostat. The chemostat is an industrially used “predator-prey sys-
tem” to cultivate bacteria. In case of 3 species the system is modeled by

_ mys(t)
§(t) = (1 — s(t)) — (1
(1) = (1= s(t) = 25 1),
: mys(t) maoxa(t) )
T (t) = xq(t — \
t1(f) = 21(?) (nl +s(t) as + x1(t)
mozy(t) maxs(t) )
L) = { —1 - ,
3:2{ } TE( ) (ﬂlg + illif a3 -+ Ig(ﬁ} '
maxo(t)
t) = 5 —11.
in(t) = aa(t) (2220 1)
a) Explain the modeling.
b) Let o(t) =1 — s(t) — Zh i (t). Show that 6(t) = —o(t) and use this to prove
that the w-limit set of any solution (s(t),x(t),...,: 1:3{{]} is contained in

Q={(s,21,...,23) : S—I—Z:-::;; = 1}.
k=1

c) Substitute s = 1 — Zi_l x into the equations for @), and try to reproduce the
period-doubling shown in Figure 3.21.

3.7. Let Q.(x) = 2 + ¢. Prove that for all ¢ <7 L there exists a unique g > 1 such
that (). is conjugated to F,(z) = px(l — x) thmugh the map h(z) = ax + 3.

3.8. Consider the iteration z,.; = T\ (x,), where

2z for x € [0,1/2],
Th(x) = A

2 — 2, for z € (1/2,1].
a) Prove, x* = 0 is an asymptotically stable fixed point for A = 0 sufficiently
small.

b) Compute 77 = T) o Ty and find graphically the 2-periodic solutions,
i.e., solve Tf(:r.,) = x by finding the intersection points of the functions
x Ti(x) and z — .
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(b) N (©

0
g
X

Y ? 01 015 0.2 0.25 01 015 0.2 0.25

Figure 3.21. Period-doubling bifurcation in the 3 component
chemostat. (mq,me,m3) = (10,4,3.5), (ay,a2) = (0.08,0.23), and
az = 0.4,0.3,0.225,0.2 in (a)-(d), respectively. (e,f) Poincaré sec-
tion to 1 = 0.3 for as = 0.225 and a3 = 0.2, respectively. For
az = 0.2 the time span is ¢ € [0, 200].

¢) Find for A = 4 the structure of the set
Sy={x:TV(x) € [0,1] ¥n € Np}
What kind of dynamics do you expect in 5,7

3.9. With z =z + iy und ¢ = a + ib the discrete dynamical system

W”-:b{mvﬂ} - (TE o HE +a, E’Ily + h}

can be written in the complex form f.(z) = 2 +¢. The Mandelbrot set is sketched
in Figure 3.9, and is the set of all ¢ € C for which the sequence (z, )nen, defined
through z,41 = felzn), 20 = 0, is bounded.

a) Prove that m,; possesses an asymptotically stable fixed point (zg,yo) if
| f2(20)| < 1. Express the fixed points of Dm, (20, o) in terms of f.

b) Find the fixed points of m, ; and compute their stability. Show that the
set, of all ¢, for which an asymptotically stable fixed point zp(e) exists is
given by the interior of the cardioid

c(t)=3—3(1—e")?, teR

¢) Compute the fixed points of 72, = 7,4 © Tap. Show that the non-trivial
2-periodic solutions of m, ; are asymptotically stable for |¢ 4+ 1| < %
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d) Which periods can be expected in the different parts of the Mandelbrot
set? For this consider the eigenvalues of the linearization in the fixed
point zg(c) for different values of ¢ at the boundary of the cardioid.

Im(z)
=

-2 -1 0
Re(z)

Figure 3.22. The Mandelbrot set, cf. [Man91].






Chapter 4

Hamiltonian dynamics

In the systems considered in Chapter 3, the evolution changes the volume of
sets in phase space. However, many systems in nature conserve this volume,
especially those of classical mechanics. For these systems we will discuss
their dynamical properties, as stability and instability, and the occurrence
ol chaotic behavior. Our starting point of the bifurcation analysis of dissi-
pative systems usually was a system with a globally attracting fixed point.
In conservative systems such things cannot exist, and so we start from a
completely integrable system, i.e., from a system in which all solutions can
in principle be computed explicitly. It is the main purpose of this section to
contrast the behavior of dissipative and conservative systems. Hence, essen-
tial parts in usual courses about Hamiltonian systems will be skipped. For
an overview we refer to the textbooks [Arn78, Thi88, MH92, HZ11], or
the selection of reprints [MMB8T7].

4.1. Basic properties

The basic rule of classical mechanics is that the force f : RY — R? acting
on a mass point at a position ¢ € R? equals the product of mass m and
acceleration ¢, 1.e.,

(4.1) mgG = f(q).

For simplicity we set m = 1 in the following. In a conservative system, to a
given force f : R? — RY there exists a potential U : R? — R with f = -d,U.
Introducing the momentum variable p = ¢ € R? gives the first order system

J | s 2 :
‘ q\ _ p _( 20(pll?) N _ ( OH

109
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where H : R*! — R given by H = %||p||? + U is called the Hamiltonian and
where

_ 0 I D 2d
J_(—I U)E]R

is a skew symmetric operator with I the identity matrix in R4*¢, All classical
mechanical systems can be written as a Hamiltonian system

(4.3) i = JVH(u),

with u(t) € R?*!, H : R*® — R the Hamiltonian, and J € R?¥*%? the skew
symmetric operator from above. For VH locally Lipschitz-continuous, there
exists a unique solution u = wu(t, ug) of (4.3) with initial condition u|;—g = ug,
cf. Theorem 2.2.1. An important property of (4.3) is the conservation of
energy.

Theorem 4.1.1. The Hamiltonian H is constant along a solution, i.e.,
H(u(t, uo))=H(uop).

Proof. Let u = u(t) be a solution of the Hamiltonian system (4.3). Then

d
aH(u(it)) =(VH) u(t) = (VH)' JVH =0,
due to the skew symmetry of .J. [
In case d = 1 in (4.1) the full phase portrait can be constructed graphi-
cally.
Example 4.1.2. Consider an ODE
(4.4) &= f(x)

with locally Lipschitz-continuous but otherwise arbitrary f : R — R. In
Figure 4.1 we explain how to draw the phase portrait without any formulas
or calculations. Given f, without formulas, we may draw the potential
energy —F'(x). In the top left we do this by first labeling the 4 zeros of
f by x1,...,x4. Setting, e.g., —F(r) = —ﬁ:f(.f}d.f we may plot —F and
find that xq, ..., 4 are stationary points of —F'; here they are extrema since
the roots of f are simple. Note that given —F we obtain I = %:i:2 — F by
simply adding a parabola in & to —F'(u) at each x, see the bottom right for
an illustration. Thus, minima of —F' are minima of E| while maxima of —F
are saddle points for E' with stable direction (0,1) and unstable direction
(1,0). To draw orbits we may think of small balls rolling around on the
energy surface. For instance, consider a ball starting at (z,&) = (x5,0).
It will slowly start to move to the right, thereby loosing potential energy
—F' and taking up speed, hence gaining kinetic energy %mz At = zo it
will have maximum speed, and then has to roll uphill, thus loosing kinetic
energy but gaining potential energy. Thus, it will roll precisely until g,
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defined by —F(xg) = —F(x5), where all kinetic energy has been transformed
to potential energy again. The ball will now roll back, and all together
we obtain a periodic orbit ~q. Similar periodic orbits are obtained for all
starting positions (x,0) with x2 < x < x3, or, equivalently for all (z, )
inside the region bounded by the homoclinic orbit v5 to (x3,0) and passing
through (x7,0). In a similar way all orbits can be constructed graphically.
For instance, the orbit 43 corresponds to a ball coming from the far left with
some large positive speed and rolling through the potential all the way to
a position xg on the (far) right where it reaches some maximal potential
energy —F'(xg) and then rolls back. |

—Fix ' '
fix)
0

'.'|

X- :{5

Figure 4.1. Phase portrait for a general scalar Newtonian system

i = f(x).
The volume of sets in the phase space of Hamiltonian systems is pre-
served.
Theorem 4.1.3. (Liouville) Let
u(t, Q) = {v e R* : Jug € Q: ult, ug) = v}

be the image of a bounded and measurable Q C R?*® under the map ul(t,-),
and let i be the Lebesgue measure in phase space, i.e., du = ldu. For all

t € R we then have
[ aunw = [ dutw.
L} w(t,L2)
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Proof. A change of coordinates yields
/ dp(u) = | |Dygult, ug)| dp(ug).
(£.02) 0

The Jacobi matrix Y (t) = D,,u(t, up) satisfies the differential equation

%Y(g — (D(JVH))(u(t, u)))Y (¢).

Furthermore, the determinant |Y(f)| satisfies
d
EW(M = trace(D(JVH))|Y ().

See Exercise 4.1 for a mef of this formula in R*. Using Y (0) = I, and
2d  2d

trace(D.JVH) Z(it.& Z auh Z thaujH Z Z thamaij =0
=1

=1 1=1

due to the skew symmetry of J and due to the symmetry of the matrix
(0w, 0u, H); j, we obtain the assertion. O

The invariant Lebesgue measure in phase space is called Liouville mea-
sure. The theory of measure preserving dynamical systems is the subject
of ergodic theory, see, e.g., [Wal82, Kre85|. Complicated dynamical be-
haviour in Hamiltonian systems is described statistically in this theory.

4.1.1. Dynamics near a fixed point. As a direct consequence of the
invariance of the phase space volume Hamiltonian systems cannot possess
asymptotically stable fixed points. We start with the discussion of the lin-
earization of the system at the fixed point. The Hamiltonian H must be
quadratic in order to obtain a linear differential equation, i.e.,

1 1 2d
H(u) = E{I‘Jﬂ LUy = 2 Z Uil
t.7=1
Then
1 2d 1 2d
314;;H = E Z (mijnﬁi;cuj -+ mijuiﬁjk) == 5 Z(Tﬂﬂg + TFL;H')HE'?
t,7=1 =1

i.e., w.l.o.g. M can be considered as symmetric. Hence, a linear Hamiltonian
system is of the form

= JMu
0 1 ) and M = M7T.

w1thJ=(_I 0

Lemma 4.1.4. Let A be an eigenvalue of JM. Then also —A, A and —A\
are eigenvalues of JM .



4.1. Basic properties 113

Proof. We have det J = 1, J? = —I and J! = —.J. For the characteristic
polynomial of JM we obtain

p(\) =det(JM — A1) = det(J) det(JM — X)) = det(J*M — \J)
=det(—M — A\J) = det(—M — A\J)det(.])
=det(—MJ + X)) = det((—MJ + \I)")
=det(—=J" MT + A\I) = det(JM + M) = p(=\).
Hence, with A also —A is an eigenvalue. Since JM is a real-valued matrix,

the complex conjugate of an eigenvalue must be an eigenvalue, too. L

A direct consequence is the following lemma, which again implies that
in Hamiltonian systems no asymptotically stable fixed points can exist.

Lemma 4.1.5. A fized point of a Hamiltonian system can only be stable
if all eigenvalues of the linearization lie on the imaginary axis with same
geometric and algebraic multiplicity.

For general ODEs in case that all eigenvalues lie on the imaginary axis
the nonlinear terms decide about stability. For Hamiltonian systems the
quadratic approximation of the Hamiltonian at the fixed point gives addi-
tional information.

Theorem 4.1.6. Let H(u) = ju’ Au+ O(||u|®) with A strictly positive (or
strictly negative) definite. Then u = 0 is stable.

Proof. Let
po(r) =min{H(u) : |u| =r}, pi(r)=max{H(u) : |u| =r}.
Then
po(r) = Shumiar® + O(), p1(r) = Shumant® + O),

where Anin > 0, respectively Apax > 0, is the smallest, respectively the
largest eigenvalue, of the positive delinite matrix A. Then there exists an
ro > 0, such that

1
PU(T) = 1;"‘111111:'“E and 1 (T) < )'ima.xrg-

for all r € [0,7¢]. Given £ > 0 we choose

)\min

0<d <. S min(e, rg).
Then
4
Ju(t, up)|* < po(u(t, ug)) < H (u(t, ug))
;"imin )imln
4 ‘_1 4}"11’1' X ¥ 4:)l"l“Il ) y
=——H(ug) < ——p1(ug) < ——Jug|* < ——6 <&,
)"nmin }‘-min )"nmin min
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Hence, the solution u = wu(t, ug) cannot leave the e-neighborhood, if the
initial condition ug is contained in the d-neighborhood. L]

Example 4.1.7. Let H = ¢* + p%. Then

q=p, P=—4q
The orbits are circles with radius v H and u = (¢, p) = (0,0) is stable. |
4.1.2. Lyapunov’s subcenter theorem. Our next goal is the existence
of periodic solutions. It turns that in each neighborhood of a fixed point with
imaginary eigenvalues we can always find periodic solutions if the eigenvalues
satisfy some non-resonance condition. Before we prove this result, we need
two preparations.

First we introduce angle and action variables for linear systems. We
consider the harmonic oscillator

j = —w’q,
which we write as Hamiltonian system
q§ = wp = OpH, p=—wq=—0,H,
with Hamiltonian H = %m(;ﬂz + qg). Introducing polar coordinates

qg = Vv 2I cos(¢), p = V2Isin(¢)
shows that the new variables ¢ and [ satisfy the Hamiltonian system
p=w=0H,  I=0=-0,H

with Hamiltonian H = w/l. The 27-periodic variable ¢ is called angle vari-
able and the variable I which is preserved under the flow is called action
variable. Such variables play a fundamental role in the description of com-
pletely integrable Hamiltonian systems in the following.

Secondly we explain a reduction method for systems which are at least
partly given in action angle variables. Let H = H(¢,q, I, p) be 2m-periodic
w.r.t. ¢. Moreover, assume that ;H > 0 in some open subset of R??. Then
H(¢,q,1,p) = h can be solved for I = —K(q,p, ¢, h).

From & H =0 and H(¢,q, —K(q,p, ¢, h),p) = h it follows that
O, H + OrH - (=0g, K') =0.
Op. H+ OrH - (-0, K) =0,
and hence using %q’} = J;rH and %ab = (di(ﬁt)_l yields

(4.5) O =01qiOst = Op, H/O1H = 0y, K(q,p. ¢, h),
(46) Sﬁf’pt' = Bﬁpfaﬁ-‘bt = 8@-:‘ H;/BIH = _Bq-iK('?*!pa o, h).
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This is a 2(d—1)-dimensional Hamiltonian system which is 27-periodic w.r.t.
the new time variable ¢.

With these two preparations we are now going to prove

Theorem 4.1.8. (Lyapunovs subcenter theorem) Let u =0 be a fized
point of the Hamillonian system 4 = JV H(u). Let +iw, with w # 0, be sim-
ple eigenvalues of the linearization JD?H(0), and let all other eigenvalues
Aj fulfill Nj # inw for all n € Z. Then there is a neighborhood U of 0 and a
two-dimensional manifold M C U which is filled with periodic solutions with
period close to 2w /w. Moreover, M is tangential to the subspace spanned by
the eigenvectors which are associated to the eigenvalues +iw.

Proof. We seek small solutions o = x, with 0 < & < 1 a small parameter,
and consider the rescaled Hamiltonian

o

- 1 ~
H.(z) = ;H(EI)
By this rescaling the quadratic part of the Hamiltonian stays independent
of £, whereas the higher order terms become small. W.l.o.g. assume that

N w 0 0
D*H.(0)=D*H(0)={ 0 w 0 |,
0 0 A

with A € R2d-1x2(d=1) Thjg form can always be achieved by interchanging
the second and the (d + 1)th coordinate. The coordinates associated to the
matrix A are denoted by . For the first two coordinates ¢; and p; we
introduce polar coordinates §; = V21 cos(¢) and p; = 2 sin(¢). In the
new coordinates we have

H(I.¢,7) =wl + %?:’ETAE+ Ofz).

We look for solutions with H-(I,¢,7) = w. For w # 0 we have 9;H. # 0
in a neighborhood of the origin such that H-(I,¢.7) = w can be solved
w.r.t. I. We write this solution as I = 1 — K.(¢,x). Inserting this ansatz
in H-(1,¢,x) = w yields

K.(0,7) = L~ T O(z).
2w
By the above reduction we obtain a 2w-periodic Hamiltonian system with
new time variable ¢ and associated Poincaré map v.(xg) = (27, 7). A
fixed point * of the Poincaré map 1. yields a periodic solution x(t,r*) =
z(t + 2m,z*). Thus, a periodic solution can be obtained via a zero of the
function F(z*,2) = ¥.(z*) — 2*. We have F(0,0) = 0 since Ky(¢,x) =
ﬁfTAEE and thus r = 0 is a solution of the associated linear autonomous
Hamiltonian system T = %J Az. For the same reason we have Dz F'(0,0) =
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2w .
ew /4 — I. Due to the non-resonance assumption, Dz« F'(0,0) has only non-

zero eigenvalues and hence is invertible. Then, by the implicit function
theurem F(z*,g) = 0 can be solved for ¥* = (). The associated solution
(I, ¢, x) is non-trivial since I # 0. The period is

2 Cl(lb 2w d‘i} 2 dG'J' QD
[df / E_[} zﬁﬂ_fﬂ 100w e

This family of periodic solutions is tangential to span{l.¢} since ||z|| =
O(e). O

4.2. Some celestial mechanics

To give some illustrations of computations in Hamiltonian dynamics we
review some very basic celestial mechanics. A good reference is [Gut94].

4.2.1. The 1-body problem. Let ¢ € R? be the position of a mass point,
e.g., earth, that moves in a radially symmetric potential U(q) = U(||q||). i.e
U(q) only depends on ||g||, e.g. the gravitational potential of the sun. Then

§=—-VU(q)=—-U"(lq])a/|al.

or, in Hamiltonian form

d (¢ B : _ ! 2
4 (p) = JVH(g.p). with H(g.p)=U(g) + 5pl>

This is a 6-dimensional first order ODE, or, more precisely a Hamilton-
ian system with 3 degrees of freedom. Using the angular momentum, see
Exercise 4.8,

aobg — asbo
C:q }{(L ax b= ﬂgbl —{leg
a1bo — asby

the dimension can be reduced. Let C' # (. Then ' is orthogonal to the
orbital plane {ag + 3¢ : «,3 € R}. The area swept until ¢ then is by

Leibniz’s sector formula
1 /! _
- E/ lq(s) x q(s)|ds.
()

This yields Kepler’s second law: the line segment joining a planet and
the Sun sweeps out equal arcas during equal intervals of time, or in modern
I | 1 . 1
formulation: L F(t) = 3|q(t) x q(t)| = 5C.
Now assume that the orbital plane is the ¢-g2 plane, let ¢ = (q1,q2) =
(z,y), and introduce polar coordinates, i.e.

_ (T _, COS @
1= y)  \sing )’
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. . [cosg . [ —sing
p'_q_r(ﬁinqﬁ)-i_r@(mﬂqﬁ)’

and C' and H in polar coordinates become

(4.7) C=123£0, H= %(-'2 Fr202) 4 T ().

From (4.7) we obtain ¢ # 0 and 72 = 2H —r2¢? —2U (r). This vields a scalar
first order equation as follows. Locally we can assume r = r(¢); then

o4 d N o _d 7
I_flf,r(gb)_(dﬁﬂ*?}{ﬁ;? = dlﬁf_{;.}'

Then

In particular

z(H_— U) 2 20H — U)r* 2

AV
(H} o B2 (2
which yields the Clairaut ODE
r' = +g(r), with g(r)=/2C-2(H —-U(r))rt —r2.

Instead of r we use the inverse radius o=1/r, which yields the so called
fundamental equation of the 1-body problem

o =g(1/o)o”.
For the gravitational potential U(r) = —Ar—

(4.8) o' = —\/—02+ac+ 5, with a=24/C% p=2H/C

I we obtain

Lemma 4.2.1. a) We have H > —A?/(2C?) (lower energy bound).
b) For H= —A%/(2C?) the orbit is a circle with radius C*/A.

Proof. Completing the square we write —(¢/')? = 0% —aoc — 3 = (0 — %) —
6/4, where § = a? + 48. Thus 6 > 0 and hence H > —A?/(2C)%. For

H = —A?/(2C)? we have § = 0 and hence ¢’ = 0 and ¢ = a/2. []
Henceforth let § = a® + 483 > 0. We seek solutions of
(4.9) o' = —g(o)

, a—vVo a4+ Vo
with g(¢) = /=02 +ac +Band o € I :=| \/_, Vo
radicand. In particular, an unbounded orbit is only possible for

leleoa<Vief>0e H >0,

| to have a real

while the orbit is always bounded if H < 0. Moreover, from o < ”*’2—"@ we
obtain a minimal distance of the orbit to the origin, i.e.,

2
" 2 Tmin ‘=
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Let o(0) = o with max{0, %} < oy < %. Then we have a local
solution as ¢ is locally Lipschitz near op. Substituting v = %\/E:L: + 5 we
obtain

-

a dx

. du
EI}:
/ —g(u) / \/—u +¢:}:u+;’3 50 —V1—x?

— arccos g — arccos oy,

with o = %( —5)and 0 = %(U — 5). From —1 < oy < 1 we obtain
0 < arccos(op) < w and thus

2
(4.10) (0 —a/2) =0 =cos(¢p+b) with b= arccos(oy).

NG
W.lLo.g. we choose the initial condition oy = 1/r,;, and obtain
(411)  r(0) =17 im{@ with p=C2/A, e=+/1+2HC2/A2,
We distinguish three cases.

(1) 0 €< e <1<« H < 0: Then r(¢) is defined for all ¢ € R and
2m-periodic in ¢. Going back to cartesian coordinates we obtain

TN _ (@) _ COS @
U G2 sing /'
and cos ¢ = (p/r — 1) /e yields (p — ex)? = r* = 2° + y°, and thus
2 g ¢
RO 2 SN N
1 — e2 1—e2  (1—¢2)2
This is Kepler’s first law: The body moves on an ellipse with focal points

(0,0) and (—(2ep)/(1 —e?),0), numerical eccentricity e and major semi-axis
a = —A/(EH) The point (*r*mm U) is called peri center (perihel for a planet

numcrlca] cccentrlmt.m&. e are e = ﬂ.ﬂlf? for Earth, e = U.Z(]tmf‘ for I&f[era::mj,r=
and e = 0.9673 for Halley’s comet. The relatively large eccentricity of
Mercury is of great importance historically since already in the 19th century
it allowed the observation of the perihel precession of Mercury: after each
elliptical orbit Mercury’s perihel is shifted by a few angular seconds. This
contradicts the above (newtonian) calculations, but could be explained by
Einstein’s relativity theory.

(2) e = 1 & H = 0: the existence interval is —7m < ¢ < w, and
geometrically the orbit is a parabola opening to the lelt, yg — —pr + p°.

J)e> 1+ = 1): the orbit 1s the hyperbola y= = (e*—1)xr*—2epr—+p-.
H > 0: the orbit is the 1 bola 1?2 = (e2—1)z%—2 2

Thus we found the orbits for the 1-body problem in implicit form and
without time dependence, determined by parameters H, A and C. Next, the
orbits can be characterized via initial conditions and the time-dependence
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major semi axis \“‘xl ’
4 . ;I [ ] |'
apohel P2 sun/ sun
] o

%
LY

Figure 4.2. Kepler-ellipse, parabola and hyperbola. The areas F7.
F5 are meant to illustrate Kepler's 2nd law.

can be reintroduced. This allows to derive Kepler’s 3rd law: if a. is the
length of an orbit’s major semi-axis, and 77, its period, then T,.f / aff. 18 inde-

. : . . T? 472
pendent of the orbit . More precisely, in this calculus we have Pl Y
for all orbits in the solar systems, where GG is the gravitational constant and
M the mass of the sun, which is a very good approximation to observations.
This is only natural, as Kepler derived his laws from observations.

4.2.2. The restricted 3-body problem. N bodies which move under
the influence of gravity have the Hamiltonian

N o
i”'. ?’H:-E"J"Hfj
H — iy ‘
Z 2m; ; 4 — qj

=1

The solution of the associated differential equations, and the associated ques-
tion about the mechanical stability ol our solar system, have been considered
as essential for mankind. However, it turned out that only the two body
problem (N = 2), see above and Exercise 4.9, can be solved explicitly and
already the three body problem shows chaotic behavior.

There is one intermediate problem, namely the so called restricted three
body problem. There it is assumed that the third body K3 has a very small
mass compared to the other two bodies Ky and K3. The restricted three
body problem is obtained by neglecting the forces of K3 on Ky and K>, such
that their motion is not affected by K3, i.e., they move on Kepler ellipses
around their center of mass.

In a coordinate system which moves with the two larger bodies of reduced
masses it = —1— and 1—u, which lie fixed in —p and 1—p, the Hamiltonian

T+
for the motion of the third body is given by
1
H(q,p) = 5(;9? +p3 +P3) + gep1 — @12 + U(g),
where
2 2
1 —

22 Va+tprt+ag+a Vo -1+t a+a
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The second and third term in H and the first term in U come from the
Coriolis force in the rotating coordinate system. There are five equilibria.
called Lagrangian points, shown in Figure 4.3.

b
2
;"P 4
o o ' —
I..EI".
P

Figure 4.3. The equilibria in the restricted three body problem.

For the stability of these equilibria we first consider

/ 97U  0y0,U 0 0 -1 0\
05,00, U 92U 0 1 0 O
I D2H () — 0 0 9;U 0 0 0
M =D H(u) = 0 1 0 1 0 0
~1 0 0 0 1 0

\ 0 0 0 0 0 1)

For the linearisation JM in these points (especially dy,d4,Ulp, = 0 for j =
1,2and i =1,...,5) we thus obtain

/[ 0 1 0 10 0)
~1 0 0 0 1 0
0 0 0 0 01
M= _2v —9,0,U 0 0 10
—0g, 0, U  —02,U 0 —-100
\ 0 0 —0:U 0 0 0)

We find that the g3, p3-part decouples and leads to the eigenvalue problem
Ry 2
0= A+ 8{?3 U.
ESU > () we have A2 € 1R. For the remaining eigenvalues we have

0 =X +X(0;,U +0;,U +4) + (9; U)0,,U) — (04,04,U)*.

Since d
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It turns out that the points P, P> and P; are saddles and therefore unstable.
In the points P; and P; we find
qlzé — U, qz:i‘/—f, agLU:—g, a;-sz:—g
For 4(% —u1t)? < 1 the cigenvalues are purely imaginary, i.e., the points Py and
Ps are linearly stable. Unfortunately M is indefinite, such that we cannot
conclude on the nonlinear stability of Py and P; with the above theorem.
Nevertheless Py and P5 are realized in nature and play an important role
for space missions. For instance, Sun and Jupiter can be taken as the big
bodies, and in an angle of 60 degrees before and after Jupiter on his orbit
there are the so the called Greeks and Trojans, some families of asteroids.

’ (aqlaqu)Ez __(_ — 1)

4.3. Completely integrable systems

If there are several non-resonant eigenvalues on the imaginary axis, then
there are several families of periodic solutions. In this and the following
section we discuss situations with even more complex structures. We start
with the lincar Hamiltonian system

(4.12) &= .JMz.

We assume that all eigenvalues iw; of the matrix JM are semi-simple and
on the imaginary axis. Then the system can be transformed into

(4.13) qj = w;ipj. Pj = —wjqi, J=1,...,4d,

l.e., into a Hamiltonian system with Hamiltonian

d
_ “Wio a2 2
i = ; - (@5 +15).

Clearly this system is the direct sum of d Hamiltonian systems with d inde-
a1 soane H. — 21 (a2 2 — 1 7 T .
pendent Hamiltonians H; = 5 (q; +pj). The I; = %, H; are conserved also

for the flow of (4.12), i.e., %Ij(r(!}) = 0 for solutions x = x(t) of (4.12).
For the j system the orbits are circles, i.e.,

For (4.12) the phase space decomposes into d-dimensional tori

For one or more vanishing I;s we have dimensions of the tori between 1 and
d. The d-dimensional tori contain so called quasi-periodic solutions

x(t) = glwit, ..., wqt)
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with g : ST x ... x ST — R?4, If the non-resonance condition
wen=wn+...+wgng #0 forall (n,...,ng) €Zx...xZ\{0,...,0}

holds, then the orbits are dense in the associated d-dimensional torus. If for
instance wy; = 2ws and all other w; are non-resonant, then the solutions are
dense in d — 1-dimensional tori.

In the following we study whether this situation persists under perturba-
tions or not. We expect that it is more simple to destroy a torus filled with
low-dimensional solutions associated to a set of resonant ws than a torus
with dense solutions associated to non-resonant ws. Therefore, we expect
non-resonance conditions to play an important role. Moreover, such tori
are not only important for linear Hamiltonian systems but also for special
nonlinear systems, which are called completely integrable, see below.

A coordinate transform y = T'(z) will in general destroy the Hamiltonian
structure of a Hamiltonian system. Only so called symplectic transforma-
tions keep the Hamiltonian structure. For H(y) = H(x) we have

2ed
aﬂ:_,‘ H(T(I)) = Z ays;H(y)&ﬂj Y
k=1

and hence

—

j = (DT)i = (DT)JV,H(x) = (DT)J(DT)"V, H(y) = JV,H(y).
if T is a so called symplectic transformation.
Definition 4.3.1. Let J~!' = —J = J'. The bilinear form
w(vy, vg) = TJTJ“U:;;

is called the symplectic structure induced by J. A transformation y = T'(x)
is called canonical or symplectic if

(DT)(z))J (DT (z) = J Yz e R*.

A Hamiltonian system is called completely integrable if it can be transformed
into the form

(4.14) [j ==0sH=0, ¢;=0,H=w;, j=1,....d

by a symplectic transformation. The Hamiltonian H = H(Iy,...,1;) and

the frequencies wj = w;(I1,...,Iq) only depend on the conserved quantities
Iy,.... 1. If the set

{x € R2¢ . Iy = consty,...,1q = consty}

s smooth and compact then it is a d-dimensional torus. The I; and ¢; are
called action and angle variables, respectively.

Lemma 4.3.2. The map xo > x(t,z0) s symplectic for all t.
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Proof. Consider R(t,-) = (Dxz(t,-)).J(Dx(t,-))’. Then Rl;—g = J and R
solves the linear ODE

R =(Di)J(Dx)" + (Dx)J(Di)"
=JD?H(Dz).J(Dz)' + DaJ(JD*H(Dz))"
=JD*HR + R(JD*H)".
Since (D?*H)" = D?H and J' = —.J we have
JD*HJ + J(JD*H)' = JD?*HJ + J(D°H)'JY = 0.
Hence, R = .J is the unique solution. L]

Example 4.3.3. Let F' = F(f ,®). Then the map induced by b = 07 and
I = 0, F is symplectic, cf. [Arn78, §48]. |

There are various sufficient conditions that ensure that a Hamiltonian
system 1s completely integrable. Here we will only cite one major criterion.

Definition 4.3.4. Let F : R*® - R and G : R** — R be in C'. Then
(F.G} = (V' VG
15 called the Poisson bracket of F' and G.

Theorem 4.3.5. (Liouville’s theorem) Let H : R? — R, and let I} =
H, 1o, ..., 14 be independent integrals in involution, i.e. {I;,I;;} = 0 fori,j =

B

L,...,d. Then the Hamiltonian system 1s completely integrable.

Proof. See [Arn78, §49]. []

4.4. Perturbations of completely integrable systems

The question occurs how robust completely integrable systems are under
perturbations. The answer turns out to be rather delicate and has to do with
number theory. The starting situation is as follows. Consider a Hamiltonian
of the form

(4.15) H(¢,1) = Ho(I) + cHi (¢, I,¢)

with I € R4, ¢ € T?, and £ a small parameter. The associated Hamiltonian
system reads
b= 0rHy + 0 H\(1,0), I =—cd,H(I,0).

Hence, the action variable I only changes slowly in time. The idea is to
find a change of coordinates such that the transformed system is of the
original completely integrable form. According to Example 4.3.3 we obtain
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a symplectic transformation if we take a so called generating function F' :
R2?? 5 R and define a relation between the old and new variables through

-

6=0:F(¢,I) and I =0,F(,1).
We look for a transformation near the identity and therefore choose
(4.16) F(¢,1) = oI +cf(¢,1),
which yields

el

6 =0:F = ¢ +c0zf, I =0sF =1+¢cdyf,
and therefore

¢ =¢—cOif + O(?),  I=TI+ed;f+O().
Plugging this into the Hamiltonian gives

H($, 1) =Ho(I + £d5f) + eH1($,1,0) + O(c?)

=Hy(I) + £[0;Ho - 05 + Hi(9,1,0)] + O(?).
The idea is to eliminate the terms of order O(e) by finding f such that
STHU agf + H, (155, i 0) = 0.
If we find such an f, then we can go on and find in the next step another
symplectic transformation which then eliminates the O(£?) terms, etc., until
finally all perturbations are eliminated. Before we do so we look at the prob-

lem to eliminate the terms of order O(¢) in more detail. Given H |_(q15; 1.0)
and Ho(I) we seek f: T4 x RY = R, such that

(4.17) OpHo(I) - 951 (6, 1) = —Hy(,1,0).

Since [ is periodic in ¢ we expand, for fixed I, the problem into Fourier
series, cf. §5.2.2. Thus,

(o) = Z ape’™?. Hy(¢) = Z be . k= (ky.....kq).
keZd keZd
Next we set

gt i

w(I) = d7Ho(I) = (wi,. .., wa) (D).
For k £ 0 we obtain i(w - k)ag = —by. Thus, if w -k # 0, then
iby,
w-k’
is determined and the term bkeik'a can be removed from Hy. If there are no
resonances at all, i.e., if w-k 7 0 for all £ € Z\ {0}, then formally all O(¢)

terms can be removed except of by(/). However, this term can be included

ap =

——

into Hy(I) as a correction. Obviously the non-resonance condition for the
elimination of the higher order terms is not changed since the left-hand side
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of (4.17) is not changed. If there are no resonances until the n*" step, then

the perturbation up to terms of order O(c") can be removed. We have the
following approximation theorem.

Theorem 4.4.1. If the normal form transformations allow to remove all
terms up to order O(c"), i.e., if O;H = O(e"*t1), then there exist Cy and
gg > 0 such that for all e € (0,ep) we have in the original coordinales

sup | 1(t) — I(0)|| < Cie.
te(—=1/em,1/en)

—

Proof. We have ||I—1(¢,I)|| < Cye for a Cy > 0, and, since ||f|| = ||d{-f;ff|| <
Cae™ 1 for a Cy > 0, we have
1T(t) = T(0)]| < Ca|t]e"*! < Cae
for all [t| < 1/". This yields
[1(t) = L) || <[[1(¢) = I()|| + |1 () — I(0)|| + [[1(0) — I1(0)]
<(2C3 4+ C3)e =: (e,

So far we did not consider the convergence of the above Fourier series
in the normal form transforms. This turns out to be complicated due to
so called small divisor problems. This means that for given w € R? and
(arbitrary small) ¢ > 0 there always is a k € 7% such that

k- w| < 4.
Hence, the divisors in the series for f become arbitrarily small and the

convergence of the Fourier series is a serious problem. The problem is solved
by restricting the set of possible frequencies.

Definition 4.4.2. A vector w € R? is called of type (L,~) if for all k €
Z4\ {(0,...,0)} we have
k- w| = Llk|™”

We remark that for given v > d and almost all w € R there exists
a L > 0 such that w is of type (L,v), cf. [Arn88, page 114]. To study
the analytic properties of the generating function F we use the following
functions spaces.

Definition 4.4.3. For n € N define the spaces

b ={a: 2" = C: lall¢,, = lao| + ) |ak||k|" < oo}.
kerd

Remark 4.4.4. We have that a € ¢, ,, implies Flac C}', where
CP={f:TY - R: f n times continuously differentiable},
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which is equipped with the norm || f|lc; = ZE|=D ”afpf”f:'{j where ||f||f:g‘ _
supged [f()], and where = : a > f is defined by f(¢) = ez apet?,
cf. §5.1. |

Lemma 4.4.5. Let w € RY be of type (L.~) and b € £1.,, with by = 0. Then
a, defined by a = %“; Jork#0,ay =0, is in {1 5.

Proof. We have

lalle, oy = > axlk[* = )

keZd\ {0} keZd\{0}

bi;

Ll P | A

The correspondence of the exponent n in the weight of ¢, in Fourier
space to regularity w.r.t. ¢ in physical space implies that in ecach iterative
step we lose regularity of the Hamiltonian H. In order to eliminate the
perturbation completely, infinitely many steps are necessary. Hence, there
will be a loss of infinitely many derivatives. This problem can be solved by
working in a space of analytic functions or by using some artificial smoothing
in the so called hard implicit function theorem, cf. [SR89], when working
with Hamiltonians of finite differentiability. The convergence is based on the
quadratic convergence of the Newton scheme. This approach results in the
famous KAM-theorem named alter Kolmogorov, Arnold and Moser. We

choose the analytic version and set
Asp(I7) ={(1,¢) e R" x C" : |[I = I"| < p, [Im(¢pj)| <o,j=1,...,d}.

We define the norm of a function f which is analytic w.r.t. ¢ on A, (/")
by
”f”mp = sup (L, 0)].
(1,9)EAG o (17)

In nonlinear Hamiltonian systems in general the frequencies vary in a non-
trivial manner with I, i.e., djw = E‘%Hn does not vanish. Since there is
a dense set of resonant frequencies in R? it cannot be expected that the
phase space is completely filled with tori after the perturbation. Therefore,
in any neighborhood of a torus T¢ with a non-resonant w there is a torus
T with a resonant w. This means that next to any torus for which the
transformations can be carried through to arbitrary order there is a torus
in which low order perturbations influence the dynamics in the torus and
may destroy the torus. Nevertheless, almost all tori persist in the following
sense.

Theorem 4.4.6. (KAM) Let w(I*) = w* be of type (L,~) and lel the
Hessian Hng be wnvertible in I™. Then there exrists an =y > 0 such that
Jor || fllo., < €0 the Hamiltonian system has quasi-periodic solutions with
frequencies w*, i.e., the torus to I = I” persists under the perturbation. Let
V C R? be an open set with finite Lebesgue measure, where the Hessian 0% H
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is invertible. For all § > 0 there is an gy > 0, such that for all = € (0,2q)
there is a set P. € V x T% with the following properties. The Lebesqgue
measure (1 of (V x T\ P- is less than &, and for all (Iy, ¢o) € P- the orbit
through (I, ¢o) is quasi-periodic.

Proof. See [Arn78, Way96| or | KP03, §2| for a review. []

Hence, for small perturbations most of the phase space is still filled with
torl. In between the tori chaotic behavior may occur. This 1s explained
subsequently in §4.5.

In R* the KAM-theorem yields a stability theorem since the invariant
tori form two-dimensional hypersurfaces in the three-dimensional energy sur-
faces. In higher space dimensions the d-dimensional tori cannot separate do-
mains in the 2d — 1-dimensional energy surface, but we expect that solutions
need a long time to wander around the tori. This is called Arnold-diffusion
and is mathematically formulated in Nekhoroshov’s Theorem below.

An important motivation of these investigations again comes from celes-
tial mechanics, in particular the question of the stability of our solar system.
If we ignore mutual gravitational forces between the planets then we obtain
a completely integrable system. The forces between the planets compared to
that of the sun have a ratio of £ = 1/1000. Hence, the interplanetary forces
can be considered as small perturbations. Quite obviously it is impossible to
say whether our solar system is resonant or non-resonant, i.e., whether the
ratios between different rotation times are rational or irrational. In spite
of the fact that the rotation times of Jupiter and Saturn have a ratio of
about 2/5, our solar system seems to be remarkably stable. As said above,
heuristically, even in the resonant case we expect the solutions to need a

long time to wander around the remaining tori. This can be made precise
for so called steep Hamiltonians, cf. [AKNO06, §6.3.4].

Definition 4.4.7. An analytic function is called steep if it has no real ex-
trema and if all complex extrema are isolated.

Theorem 4.4.8. (Nekhoroshov) Let Hy = Hy(l) be a steep function.
Then in the perturbed Hamiltonian system for a sufficiently small perturba-
tion e Hy we have

(4.18) |1(t) — I1(0)||ga < &°
for0 <t < %ﬂxp({;—ﬂ), where a,b,c > 0 only depend on Hy.

Remark 4.4.9. KAM-theory is used as an explanation for the so called
Kirkwood gaps. Figure 4.4 shows the number of asteroids in the main aster-
oid belt as a function of their orbits major semi-axis in astronomical units
(AU), where 1 AU is the length of the major semi-axis of the earth’s orbit.
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At certain values there are gaps in the distribution, and these correspond to
low resonances between the periods of the asteroids and Jupiter. |

Asteroid Main-Belt Distribution
Kirkwood Gaps
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Figure 4.4. Kirkwood-gaps (ssd.jpl.nasa.gov/images/ast_histo.ps)
Courtesy NASA /JPL-Caltech.

4.5. Homoclinic chaos

It is the purpose of this section to explain that in the part of the phase
space which is not filled with invariant tori for small £ > 0 chaotic behavior
can be expected. In between these torl there are periodic solutions and
their stable and unstable manifolds. If there exists a heteroclinic connection
with a transversal intersection of stable and unstable manifolds then a Smale
horseshoe map and hence shift dynamics and chaotic behavior can be found.
If for a map f : R — RY the stable and unstable manifolds W, and W, of
a hyperbolic fixed point p intersect transversally in a point ¢, then due to
the invariance of the manifolds there must be infinitely many intersections.
See Figure 4.5. Hence complicated dynamics can be expected. Recall that
a fixed point p for an iteration f : R? — RY is called hyperbolic if the
linearization d, f(p) possesses no eigenvalues on the unit circle.

Theorem 4.5.1. (The Smale-Birkhoff homoclinic orbit theorem)
Let f: RY — RY be a diffeomorphism such that p is a hyperbolic fized point,

and let g £ p be another point in which there is a transversal intersection
of the stable manifold W(p) and the unstable manifold W, (p). Then there
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Figure 4.5. A transversal homoclinic point ¢ implies infinitely
many intersection points of the stable and unstable manifolds due
to the invariance of the manifolds.

erists a (hyperbolic) set A on which an iteration of [ is homeomorphic to
shift dynamics.

Idea of the proof in R?: We are done if we find for an iteration of f
a Smale’s horseshoe, cf. Figure 2.14. W.l.o.g. let the saddle p be in the
origin. By the Hartman-Grobman theorem, c¢f. Theorem 2.3.8, the saddle
(z,y) = (0,0) has a neighborhood in which after some change of coordinates
the dynamics is given by

Tpy1 = Ap  and  Ypip1 = fYn

with [p| > 1 > |A]. W.lo.g. we can assume g, A > 0. If this is not the case
we consider the second iteration f2. Then we consider

S={(z,y) eR?*:0<z <4, |yl <6}

for § > 0 sufficiently small. The k** iteration of [ applied to S for k suffi-
ciently large looks as sketched in Figure 4.6. Hence, we found a horseshoe
in case of a homoclinic transversal point. []

This idea can be applied to 27-time-periodic systems by considering the
time 27-map II.. We derived from a 2d-dimensional Hamiltonian system the
2(d — 1)-dimensional 27-time-periodic Hamiltonian system (4.5)-(4.6). The
d-dimensional tori break up and periodic solutions occur which are fixed
points for the associated time 2m-map 11.. For a variety of systems numer-
ical experiments indicate a transversal intersection of the associated stable
and unstable manifolds and the occurrence of chaotic behavior between the
persisting invariant tori, cf. [Wig03|.

Remark 4.5.2. For time-periodic perturbations of an autonomous system
with a homoclinic orbit the occurrence of a transversal intersection of the
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Figure 4.6. Smale’s horseshoe in case of a homoclinic transversal
point. The light gray rectangle is the set S and the dark gray set

is £%(S).

stable and unstable manifolds can be established by finding single zeroes of
the associated so called Melnikov function, cf. |(GH83, §4.5]. |

Exercises

4.1. Prove that ¢ = (traceM )y for y = detY’, where Y (t) € R?*? satisfies Y = MY
for M = M(t) € R**?,

4.2. The “6 — 12 Lennart-Jones potential” models the forces between two neutral
particles (atoms or molecules), namely an attractive van der Waals force at long
ranges and a repulsive force at short ranges due to overlapping electron orbitals.
[n a simple (dimensionless) form it is given by F(u) = au™'* — bu™% where u is
the distance between the particles and a,b > 0 are suitable constants. Choose
a = 0.001 and b = 1 and discuss the phase portrait of the system ii = —F'(u).

4.3. Consider the pair # + w?x = 0, i + p?y = 0 of (uncoupled) harmonic oscilla-
tors. Write this as a Hamiltonian system. Find two integrals in polar coordinates,
Discuss the cases (i) w/p rational and (ii) w/p irrational.

4.4. Given r, u > 0, write down explicitly a circular solution of the 1-body problem

i = —uq/llqll*, ¢ € B2, i.e., find initial conditions qg, gy such that the solution
satisfies ||q(t)|| = r for all t € R.

4.5. In dimensionless form, the first “Post-Newtonian” approximation for the orbit
of a planet around the sun is

dgu 4+ u = a + su?,

where v = 1/r and (r,#) are the polar coordinates of the planet and a,s > 0 are
parameters. Discuss the phase portrait of this system.

4.6. Let M € R"*™ be nonsingular and symmetric and £ : R™ — [ be smooth.
Write the Newtonian equation MZ + VF(z) = 0 as a Hamiltonian system.

4.7. Write the 4" order ODE u"” + qu” + f(u) = 0 as a Hamiltonian system
for (w,u',u",u""). Hint. Let z=(u,u") and derive a system Tz"4+VV (z)=0 with
non-singular TeR?*2.
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4.8. Consider the 1-body problem % (?}) = JVH(q,p),H(q,p) = Ulqg) + %|}'}|2.
dt \

Show that the angular momentum C' = g x ¢ is constant.

4.9. (The 2-body problem) Consider two mass points with positions ¢; € R?
and masses m; that move under mutual gravitational attraction. The equations
are

migy = Fa1, maga = Fia,
with
¢ — qil)(qi —q;), g(r) = G/r.
This problem can be completely reduced to the 1 body problem. For this consider
the center of mass gs = (myq) + mog2)/ms, with ms = m; + mo. Find the ODE
for g, and express the orbits ¢; 2 via gs and orbits of the 1 body problem for the
distance g = g2 — q;.

4.10. Let F,G, H : R*" — R be smooth. Show that (a)
(F,{G, H}} + {G.{H, F}} + {II, {F,G}} = 0.
(b) F is an integral of & = JVH iff {F.H} =0. (c) $F(u)={F H}.

Fij = mimjg(

4.11. Let F = F(f, ¢). Show that the map induced by b = O7F and I = 0y F is
symplectic.






Chapter

PDEs on an interval

The second part of this book is about nonlinear dynamics in countably many
dimensions. It contains this chapter about PDEs on an interval and Chapter
6 about the Navier-Stokes equations.

We start with ordinary diflerential equations in R*, where R™> stands
for the spaces R or R”, i.e., for the spaces of real or complex (identifying C
with R?) sequences (a;)jen or (a;)jez. In this book these countably many
ODEs arise from PDEs, for which the spatial variable lives in a bounded
domain. For function spaces on such domains very often a countable basis
exists. By an expansion of the PDE w.r.t. this basis, for instance by an
expansion into Fourier series in case of rectangular domains and suitable
boundary conditions, the PDE can be transformed into an ODE in R

Example. Consider the linear heat equation dyu = 92u for z€[0, 7]
with boundary condition u(0, t)=u(m, t)=0. Expanding

Wz, t)= Zm (t)sin(kxz),

kel

the PDE is formally equivalent to the countably many (uncoupled) ODEs
d= _ 79~ ¢ ., S SN
Srup=— k“uy, for the sequence of Fourier coeflicients (. )pen. |

There are major differences between finitely and infinitely many dimen-
sions due to the non-equivalence of norms in infinite-dimensional spaces
and due to the loss of compactness of bounded closed sets. As a conse-
quence, in infinite dimensions there can be stability w.r.t. one norm, but
instability w.r.t. another norm. On the other hand there is a large class of
equations, namely dissipative systems with smoothing properties, where the
choice of the phase space does not matter. We however do not aim at a

133
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complete functional analytic treatment of such PDEs posed on bounded do-

mains with dynamical systems concepts. For this we refer to the textbooks
[Hen81, Hal88, Rob01].

Most dynamical system questions addressed in this part will be more
involved when one considers PDEs on unbounded domains, as we do in Parts
I1I and IV of this book. Hence, one of the main purposes of this section is
to prepare for the additional difficulties as they appear in transferring the
dynamical systems concept to PDEs posed on unbounded domains.

In §5.1 we consider the non-equivalence of norms, the loss and regain of
compactness, and the local existence and uniqueness theory for countable
many linear and nonlinear differential equations in R*. In §5.2 we discuss
a number of basic function spaces, in particular those that are isomorphic
via Fourier series to some sequence spaces. We explain local existence and
uniqueness of solutions for some prototype linear and nonlinear PDEs, most
of which will later be considered also over unbounded domains, and, more-
over, explain how to prove global existence results. For these, the main
tools are energy estimates and Gronwall type inequalities. We also give a
characterization ot the attractor of the so called Chafee-Infante problem.,
the scalar equation dyu = 9%u + au — u? on an interval (0, 7) with Dirichlet

boundary conditions u|;—g, = 0, where a € R is a parameter.

5.1. From finitely to infinitely many dimensions

We consider systems of countably many linear and nonlinear differential
equations. We discuss continuity of solutions w.r.t. time and some abstract
local existence and uniqueness theory for ODEs in R®°. Moreover, we explain
how to differentiate and integrate in spaces of infinitely many dimensions
and very briefly recall some basic facts from functional analysis, in particular
compactness, which plays a crucial role for the dynamical systems point of
view for PDEs

5.1.1. Non-equivalent norms. Concepts such as convergence in R? or
stability and instability for ODEs in R? are independent of the chosen norm
in R?. The reason for this is the equivalence of norms in finite-dimensional
vector spaces, c¢f. Theorem 2.1.1. Setting v = (u1,...,uy), examples for
norms in R? have been

1/2

d d
lulls =3l flullz= | S ]
j=1 j=1
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and more generally ||u||, := (Zd_l |?1j|f’]1fp, 1 < p < oo, and finally ||ul|~ =
max;—1, g4 |uj|. We have for instance

lulloo < llullp < d/P|lullo.

In infinite dimensions there are infinitely many non-equivalent norms. The
norms which we use in this section are as follows.

Definition 5.1.1. Forp € [1,00) and # € R let
L/p

lulle, w2y = | D lunl? max(1, |n])P

neL
Forp=oc and 8 € R et

llly, ,rz) = sup |u,| max(1, [n])°.
ned

We set
fp,ﬂ(ﬁﬁ) ={u:Z = R: |lully, @z < oo}

Similarly, we define ||£’ S(rry and by, o(RY). We use the abbreviations
”'pr. and L for |- ||£ o (R>) -:mnf.:’ lpa(R>).

The norms for different p or different ¢ are not equivalent. As a conse-
quence a sequence can converge in one norm towards 0 while it diverges to
oc in another norm.

Example 5.1.2. For the sequence (u™);,en, with ' € £, S(RM) for fixed
m defined through «]' = 6,,,/n, we have ||u™|,, , =1/m — 0 for m — oo,
while ||u™||y, , = m — oo for m — oc. |

Remark 5.1.3. The spaces {,y are Banach spaces, i.e., complete normed
vector spaces. We recall that a metric space M is called complete, il every
Cauchy sequence in M possesses a limit in M. The spaces £y are Hilbert
spaces, 1.e., complete normed vector spaces where the norm is induced by a
scalar product. The space ¢og = {u: Z — R : u, # 0 for finitely many n}
equipped with the £1 norm is not complete. See Exercise 5.1. |

5.1.2. Linear differential equations in E*. For notational simplicity in
the following we work with equations in RY. The results for R% are exactly
the same. We consider linear differential equations

d . d
E“ — Au, i.e., = — Uy = Z A Usj.
JEM

We briefly recall the basic notions of semigroup theory which is the abstract
version of the subsequent analysis.
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We are not interested in such equations in greatest generality and there-
fore restrict ourselves mainly to equations having to do with PDEs, i.e., we
consider A in diagonal form or with Jordan blocks of finite size. In this
situation the equation can be solved explicitly, but the analytic properties
of the solutions still turn out to be rather subtle. In case of A in diagonal

form

d
— U = Apr
dt k kg

we find the solutions
ug(t) = e tuy (0).
Solutions u(t) to linear differential equations in R with constant coefficients

are arbitrarily smooth w.r.t. t. In RY this is no longer true. Even for the
boundedness additional conditions are necessary.

Lemma 5.1.4. Let sup,cy ReAp = a < oo. Then for every § € R, Ty > 0,
and p € [1,00] the curve t — u(t) is bounded in £,y fort € [0, Tp].

Proof. We have [[u(t)le, , < (suppen [ )][u(0)[|e, , < e [u(0)]]e,,. O

The next question is the continuity of the curve ¢ — u(t) in the spaces
€p.9. Which conditions do we have to impose on the eigenvalues A; to have
continuity? We put this question into a bigger framework, namely the theory
of semigroups. The solution operator T'(t) = diag(e?, e ...) defined
through T'(t)u(0) = w(t) is an example of a semigroup of bounded linear
operators, here from £, 5 to £, .

Definition 5.1.5. Let (X.||-||) be a Banach space. A one-parameter family
T(t), 0 <t < oo, of bounded linear operators from X to X is called semi-
group of bounded linear operators on X, if

(1) T(0) =1,
(ii) T(t + s) = T(t)T(s) for all t,s = 0.
The linear operator A : D(A) — X, defined by

D(A)={ue X: 1131-1.[{? T(t)u — u exists },
Au = lim LU= e D(A),
t10 t

is called the infinitesimal generator of T'(t).

According to the semigroup property, for the continuity of the maps
t +— T(t) or t — T(t)u the continuity at { = 0 is sufficient, cf. Remark
5.1.11. There are different concepts of continuity for semigroups. The first
one is as follows.
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Definition 5.1.6. The semigroup is called operator-continuous if

lim || 7(t) - I]| = 0

where || - || denotes the operator norm.

Example 5.1.7. Consider @ = Au with u(t) € R? and A a d x d-matrix
with constant coefficients. Then T'(t) = e/ defines an operator-continuous
semigroup in R? since

X0
le"d — 1) = (1Y (A)F /R < [t))| Al — 0 for £ — 0. |
=1

Theorem 5.1.8. Lel suppcp Akl = « < oo. Then for every 6 € R and
p € [1,00| the associated semigroup is operator-continuous in £,q for all
t € R.

Proof. We have [[u(t) — u(0)ls,, < (supgers [t — 1) [u(0)]r,, < [e®* —
L |lu(0)[¢,, — O for t — 0. This implies |[T°(t) — I|¢, ,—»e,, < e — 1] = 0
for ¢ — 0 and so continuity holds. ]

For completeness we remark that a semigroup T'(?) of bounded linear
operators on X is operator-continuous if and only if the generator 4 : X —
X is bounded, cf. [Paz83, §1, Theorem 1.2]. Hence, as seen in the above
example, the solutions of finite-dimensional ODEs always define an operator-
continuous semigroup.

Since linearized operators in PDEs are usually unbounded, the generated
semigroups are in general only strongly continuous.

Definition 5.1.9. A semigroup T'(t), 0 <t < oo, of bounded linear opera-
tors in X s called strongly continuous semigroup, or Cy-semigroup, if

lfiﬁ]l |T(t)u — ul| =0 for each v € X.

Theorem 5.1.10. For every 8 € R, p € [1,00), and u(0) € £, 4, the curve
t — u(t) is continuous in €,g fort > 0 if and only if sup;ey Redj = a < oo,

Proof. Let € > 0. Using the triangle inequality in £, 9 we have that

|u(t) —u(0)|,,

N o0
= (e = @) PP )74 (3 [ = D O)Pnp?)
n=1 n=N+1

= 81 + 59
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for a N € N suitably chosen in the following. In order to prove that s; +s9 <
¢ for t = 0 sufficiently small we first estimate so by choosing N so big that

oo
sp < (e +1)( D |un(0)P|nf) P < £/2.
n=N+41

For this N we then find a tg > 0 such that for all t € (0,ty) we can estimate

s1 < ( max |e’}‘”f’ — ID[u(0)|| e < /2.
n=1,....v

Therefore, we are done. L]

Remark 5.1.11. Since T'(tg + h)u—T(tg)u = (T'(h)—1)T(tgp)u — 0 and
T(to—h)u—T(to)u = =T(to—h)(T(h)—1)u — 0 for h | 0 the right-continuity
in tgp = 0 implies the continuity in every tg > 0 if the semigroup is uniformly
bounded on every compact interval, ¢f. Lemma 5.1.4. In fact the assumption
of the uniform boundedness on every compact interval is satisfied for Cy-
semigroups due to a deep result from functional analysis, namely the uniform
boundedness principle, cf. [Paz83, §1.2, Theorem 2.2|. ]

For &t = Au, with A in diagonal form, for p € [1,00) every bounded
trajectory is also continuous in t. However, there is no uniformity w.r.t. the
initial conditions u(0). In £, ¢ the assumption about the boundedness of
the eigenvalues A; is also necessary for continuity as the following example
shows.

Example 5.1.12. Let A\, = —k?. Then there exists an u(0) € £, for
instance u(0) = (1,1,1,...), such that ||u(t) —u(0)|¢., = 1 for every t >0
such that continuity cannot hold. ]

Solutions of ODEs in RY are smooth if the data is smooth. In R for
u(t) = (e*u,(0)),en additional conditions about the cigenvalues A, are
necessary.

e The m'™ derivative u"™ (1) is given by ul™ (t) = Amerty, (0). For

u(0) € £,9 we can guarantee the m-times differentiability of ¢ —
u(t) in £, 9 if the eigenvalues are in a set

{A e C:tRed < a—mln|ImA|}

for some constant a € R, cf. [Paz83, §2.4, Theorem 4.8]. As an
example we consider A,, = — Inn+in. In order to have the m-times
differentiability we need that u!™(t) € £, ¢ which follows if

sup |[(—Inn + in)™e 1M = gup |(—=Inn + in)™n "t < oc.

nel nelM

This means that the curve is one time differentiable for ¢ € (1, 2],
two times differentiable for ¢t € (2, 3], etc.
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e For u(0) € £, we have the analyticity of ¢t — w(t) if the eigenvalues
are in a sector

Sap={A € C:Rel < a—bln|ImA|}

for some constants ¢ € R and b > 0, cf. [Paz83, §2.5, Theorem
5.2]. As an example we consider A\, = —n+(—1)"in. The function
t — e, (0) can be extended analytically into a sector of the
complex plane. For t = ¢, + il; we find w(f, +it;) € £, ¢ if

— — LI 1 .
sup |el " HED I L) < gup e
nel el

ﬂ[_tr+|ti|}| ..,_:: %)

which holds if |t;| < .. Such generators are called sectorial and play
a major role in the analysis of dissipative systems. The associated
semigroup (e*!),cn is called analytic. We come back to this in
§6.3.

Im

Im

Re

Figure 5.1. The picture shows the regions where the spectrum of the
generators must be contained in to have a continuous (left panel), a
differentiable (middle panel), or an analytic (right panel) semigroup.

We refer to the textbook [Paz83| for a thorough introduction to semi-
group theory. Generators of Cy-semigroups are characterized by the theorem
of Hille-Yosida, cf. [Paz83, §1.3, Theorem 3.1| or the Lumer-Phillips theo-
rem, cf. [Paz83, §1.4, Theorem 4.3].

5.1.3. Differentiation and integration in Banach spaces. Before we
proceed with the consideration of nonlinear infinite-dimensional ODEs, we
need some additional functional analytic tools. For the stability of fixed
points in ODEs the linearization, i.e., the derivative A = Df € R4 of a
vector field f : RY — R? plays a central role. Hence, the concept of deriva-
tives has to be generalized from R? to general Banach spaces X. The same
is true for integration. In the iteration scheme used in the proof of the local
existence and uniqueness theorem [or ODEs, a continuous function on an
interval with values in R? is integrated. If this iteration scheme is trans-
ferred to PDEs, then a continuous function on an interval with values in
some infinite-dimensional Banach space has to be integrated. Such integra-
tions occur in other iteration schemes used for PDEs, too. Hence, we have
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to define the integral of a continuous function on an interval with values in
some Banach space. It turns out that the usual definition with Riemann
sums is sufficient for our purposes.

Let us start with the derivatives. The Gateaux derivative is a general-
ization of the concept of the directional derivative. In Banach spaces the
derivative is also called Fréchet derivative, cf. [AA11].

Definition 5.1.13. Suppose that X and Y are Banach spaces, that U C X
is open, and consider F': X — Y. The Giteaux derivative DF(u)[v] of F
at u € U in the direction v € X is defined as

DF(u)[v] = lim Flut ) = F(u) S F(u+ 1v)
T—) T dT —0

If the limitl exists for all v € X, then F' is called Gateaur differentiable at u.
F: X =Y is called differentiable in w € U if there exists a bounded linear
operator A = A(u) : X =Y such that

' | F(u+ h) — F(u) — A(u)h||y
im
h—0 || x

= 0.

ThE fl_lllﬂti(]]] ]I . RE — R Wlth
]_1| lfy_—u?gﬁ;éﬂ
f(:r:) { * J

0, elsewhere

is a finite-dimensional example of a function for which every directional
derivative exists, but which is not differentiable. In infinite-dimensional
spaces less ‘exotic’ examples are possible.

Example 5.1.14. Consider X =Y = L?(0,1) and F(u)(z) = sin(u(x)).
We show that F' is Gateaux differentiable, but not differentiable at « = 0.
We have

F(u+7v) — F(u) . sin(Tv(x))

li =1 = 0 =
lim . lim - cos(0)v(x) = v(x)

due to the differentiability of sin : R — R. For the Fréchet differentiability
we can vary v not only along lines. Due to the above computed Gateaux
derivative the only possible candidate for the derivative A(0) is the identity.
We set

| nm, ifz e (0,1/n?)
un(1) = { 0, elsewhere

and find
| F'(vy) — F(0) — A(O)vp|ly _ |vn |y — 140
lom | x lon x
although |[v,| ;2 = 7/n — 0 for n — oo. We remark that with the choice
X =Y = C’E([D, 1]) equipped with the sup-norm the map F would be
analytic. ]
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However, in spaces with additional algebra properties, virtually all re-
sults from complex power series carry over.

Example 5.1.15. Let (X, ||-||) be a Banach space. Then Y = L(X,X) =
{F': X — X : linear, continuous} is a Banach space equipped with the
operator norm

IAll = sup{[[Aullx : [Jullx =1},

For A,B € Y we have that AB and A" are in Y with ||AB|| < || A|l||B].
and [|A"|| < [|A]". Therefore, the series F'(A) = exp(A) = > 1, ﬁflk is
convergent in Y. We have the continuity and the Fréchet differentiability

of FF:' Y = Y with DF(A) = F(A). The analyticity of F follows like for
real-valued power series, cf. Exercise 5.3. |

Next we come to the integration of continuous functions f : [a,b] — X
with values in a Banach space X. Let P = {xg,...,z,} witha =xp < 21 <
.o < Ip_1 < Ty = b be a partition of the interval. Its fineness is defined by

|P|| = max{|z;j41 —z;| : j=0,....,n—1}.

Let £ = (&1,...,&,) with & € |zj_1,2;|. Then define the Riemann sum
S P) =) f(&)(wj—xj1).
i=1

Definition 5.1.16. A function [ : |a,b] — X is called Riemann integrable
iof the limit

lim S(&(n), P(n))

TL—+00
exists for every sequence (£(n), P(n)) with lim,_~ ||[P(n)|| = 0. If the limat
exists, then we define the Riemann integral by

b
/f{x)d:r: lim S(&, P).

1P| —0

Theorem 5.1.17. Continuous functions f : [a,b] — X are Riemann inte-
grable.

Proof. We have to show that for every £ > 0 there exists a 0 > 0 such that
for all (&L_,.P]j]j (ggﬁpg) with ||P||| < 0 and ||_P2|| < 0 we have ||S(£1P|) —
S(E‘g! PE)”.-"& < e

We set P; = P; U P, and choose an arbitrary £2. Then by the triangle
mequality we have

|S(E", P )—S(&% Po)||x <||S(E, P1)—=S(E% P3)lx + [|S(&%, Ps—S(&7, P2)|x
<e/24¢e/2<e.
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where we used

Ny
IS(E', P1) — S(€7, P3)llx =||Zf —Fj1) = ) f(E) (@) —zj)llx
7=1
Ny wi(j)—1
(5.1) < Y T Hf(f;::) - f(5£+1)||x Tpg1 — Tk
J=1 k=n(j-1)
where [Z;_1,7;] = Uf{jnu )|k Tp41]. See Figure 5.2.
HU. :‘il 12 13 .1"'.4 x5 .."Eﬁ :'i-llr
X El X,

Figure 5.2. The partition P is drawn below the line and Ps above the
line. In this example we have a(0) =0, a(1) =3, a(2) =7,.

By uniform continuity of f, which follows from the continuity of f on the
compact interval |a, b, we have that for all £ > 0 there exists a § > 0 such
that |y~ 5| < & implies f(y) ~ @) lx < 552 Hence, if | P3| < | P < &

is chosen sufficiently small, (5.1) can be estimated by

&
ke Th—1] < <. []
Z 2(b — &)|Th L, 1|_2

Remark 5.1.18. Not {:-nl;s,r tlm Riemann integral can be generalized to func-

tions u : R — X, with X some Banach space, but also the Lebesgue integral,
cf. [Alt16, §A1]. |

5.1.4. Nonlinear differential equations in R°. Since in general the
ODEs in R"® obtained from PDEs have unbounded A.s the right-hand side
is no longer Lipschitz-continuous from £, g to £, 3. Thus, the Picard-Lindelof
theorem no longer applies and has to be replaced. The simplest idea to
obtain a contraction as in the proof of the Picard-Lindelof theorem is the
use of the variation of constant formula, cf. §2.1.3.

For simplicity we first consider

d
(5.2) = Au+ B(u,u),
where u(t) € £, 9, where A is a diagonal matrix with entries A\j, satisfying
(5.3) sup ReAp, = 8 < oc,

k

and where B is a bilinear symmetric map from £, 4 into £, ¢ satisfying

(5.4) 1B(u, v)lle,, < CBllulle,qllv]le

p. A"
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In order to prove the local existence and uniqueness of solutions of (5.2) on
an interval [0, Tp| we use the variation of constant formula to rewrite (5.2)
nto

(5.5)  a(t) = e u(0) + / DAB(u(r), u(r)) dr =t F(u)(t).
0

Definition 5.1.19. a) A function u € C°([0,Tp],€,9) which satisfies (5.5)
is called a mild solution of (5.2).

b) A function u € C'([0,Tp],lpe), with Au € C([0,Tp),Lp0), is called a
strong solution of (5.2), if (5.2) holds in £, for every t € (0,Tp).

Clearly, every strong solution is a mild solution. Conversely, a mild
solution which satisfies v € C'([0,Tp],4,6) and Au € C([0,Tp],£€,4) is a
strong solution. In the following until further notice solutions will always
mean mild solutions.

Theorem 5.1.20. Assume (5.3) and (5.4). For all Cy; > 0 there exists a
Ty > 0 such that for all w € £, with [[wlle, , < C1 we have a unique solution
u € C(|0,Th],4,0) of (5.2) with initial condition u(0) = w.

Proof. We fix a (s > 0 and show that for T € (0, 1) sufficiently small the
right-hand side of (5.5) is a contraction in the set

M = C([0, To], {u(t) € lpp : [[u(t) — ™ u(0)[|¢, , < Ca}),

and apply the contraction mapping theorem. M is a complete metric space,
but since the metric is induced by a norm we will use the norm notation in
the following. We use the abbreviation C3 = sup,,c s |[ul|ar < Cre® + Cs.

In a first step we prove that F maps M into itself. We have

| F(u) — (Etﬁi.‘,{[}})tg[}”ﬂf = sup |[[F(u)(t) — EM“{DWEF,Q
te]0,To

|
: A
< sup | / =IAB(u(r), u(r))dr |, ,
te|0.7p] J0

t ,
< sup /e-"j“_ﬂ||B(U(T)aﬂ(7'}}||fp,ud7'
L0715 O

<Tpe’ToCpC3 < O

for Ty > 0 sufficiently small.



144 h. PDFEs on an interval

Secondly, we find that F is a contraction since

|F(u) — F(v)|ar = sup [|[F(u)(t) — F(v)(t)le,,
tE[ﬁrTﬂ]

.t
< sup ||/ efi_Tjﬁ(B[u(Tj,u(T)]—B(TJ{T),T.J(T)))dT||E?pa
te[0,Tp] S0 |

!' ’
< sup f " B(u(r), u(r)) — B(v(r),v(1)) e, , A7
te[0,Tp] J0 |

< Tpe"™ sup || B(u(r) + v(7),u(r) — v(7))le, 4
TE[[’,TD]
< 2Tpe 0 CaCslu — v||ar < |Ju — v||ar/2

for Ty > 0 sulliciently small. [l

This procedure of constructing solutions to ODEs in R™ can be extended
to a wider class of problems. We consider again

(5.6) %u = Au + B(u,u),

where u(t) € ¢,p, but now with the following assumptions:
e A\ a diagonal matrix satistyving
(5.7) le"ulle, , < Core™t™|ulle,,,
for an a € [0, 1), a constant Cy_,., and 6 — r > 0.
e B a bilinear symmetric map from £,y into £, , satisfying
(5.8) 1B, ), < Crllully ool

The property described by equation (5.7) is called smoothing since the evo-
lution operator maps for £ > 0 the space £, into £,y and since functions
whose Fourier coeflicients are in £, are smoother than functions whose
Fourier coeflicients are only f£,,. Many of the subsequent examples will
satisfy estimates like (5.7).

Example 5.1.21. Consider ),, = —n?. We have the decay estimate

2 _
||(E’H”tun}new| p.0 <suple " tﬂEH'u”E?hﬂ < Ct gﬁ”u”%’“’

nel
which corresponds to smoothing of functions in physical space, see Example
5.2.19. |

Remark 5.1.22. Smoothing is not directly related to regularity w.r.t. time
t, as the following examples show. In case A, = 0 for all n € N all eigenvalues
are identical and contained in a sector. However, the associated semigroup
is the identity which is not smoothing from ¢, , into £, for r» < ¢ although

we have an analytic semigroup (w.r.t. time). In case \, = —n? +i(—1)"n?
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obviously the eigenvalues are not contained in a sector and the semigroup is
not analytic (w.r.t. time t = ¢, + it;) since

(—n2+i(=1)"n?) (. +it;) | —n2t,+(—1)" 1, |

sup |e = sup |e = o0
neld nel
for t; # 0. However, we have the decay estimate
S I | —
| un)nenlle, p < sup [ E R [fu]l,, o < CEO2ully, . |

nel

In order to prove the local existence and uniqueness of solutions of (5.6)
on an interval [0, Tp|, we again use the variation of constant formula

(5.9) u(t) = e™u(0) + / IAB(u(r), w(r))dr =: F(u)(t).
0

We show that for Ty € (0, 1) sufficiently small the right-hand side of (5.9) is
a contraction in the set

M = C([0,To], {u(t) € Lyg : [|u(t) — ™ u(0)||¢, , < Ca}),

where ||u(0)[lg,, < C1 and Cy > 0 is a fixed constant. In a first step we
prove that F' maps M into itself. With ('3 as above we have

| F(u)— (e u(0))0l[pr = sup [[F(u)(t) — e u(0)]e,,
te[0,Th)

t
< sup ||/D E{f_T}AB(H(T),'H(T))d‘?‘”fﬁﬂ

te|0, 1]
< sup Gy [ (¢ =)D Bu(r), w0
1€[0,To] 0
< Cy_p(1 — ) tTiePToopc? < ¢y
for Ty = 0 sufficiently small.
Secondly, we find

|F(u) = F(v)|lar = sup [[F(u)(t) — F(v)(t)|le, ,
te[0,Th]

< sup | f =DM Bu(r), u(r)) — B(r),v(r)))drlr,,

te[0,Th]
< s / Cor(t — )P B(u(r), u(r)) — Blo(r), v(r))l, , d
te|0,Th

< CH_T-(I - C}:)_IT{;'_&EHTU S[IJI;" | ||B(“'(T) + H(T)ﬁ H(T) - H(T})pr,a
te|0, 1y

< 2Cy)_ (1 —a)™! ffg_“cﬁtft'ﬁgﬁgﬂu — v

M < |ju—v||p/2

for Ty = 0 sufficiently small. Hence, the contraction F' possesses a unique
fixed point in M and so we have proved
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Theorem 5.1.23. Assume (5.7) and (5.8). For all Cy > 0 there exists a
Tp > 0 such that for all w € £, ¢ with ||w|ly, , < C1 we have a unique solution
u € C(|0,To], Lp0) of (5.6) with initial condition u(0) = w.

Remark 5.1.24. Both theorems obviously also hold if B is replaced by a
general locally Lipschitz-continuous map from £, into £, or £,, respec-
tively, i.e., for instance in the latter case that for all ', there exists an L
such that max(||lufle, ,, [|v|le, ,) < C1 implies

IN(u) = N(w)lg,,, < Lifu—vls,

Every polynomial nonlinearity is locally Lipschitz-continuous in this sense. |

Moreover, Theorem 5.1.20 and Theorem 5.1.23 are prototypes for other
local existence and uniqueness theorems for semi-linear evolutionary PDEs
below.

5.1.5. A first look on Fourier series. PDEs with periodic boundary
conditions for the spatial coordinates can be transferred to ODEs in R*® with
the help of Fourier series. Here we give the definition and some elementary
properties. For later purposes we consider here the d-dimensional situation.

Definition 5.1.25. A series of the form
(5.10) u(z) = Y upe™,

ik-x

is called Fourier series, its partial sums u(xr) = ZW{N upe'™ ™, are called

Fourier polynomials of order N, and Ty, is called the k™ Fourier coefficient.

See §5.2.2 for more details, in particular a number of convergence results
for (5.10). Since our main interest is in nonlinear PDEs we also have to
handle products of functions in physical space with Fourier series. The
point-wise multiplication in physical space correspond in Fourier space to
convolution. That is,

u(x)v(x) = Z lpethe Z V0™ | = Z Z Ut | €7

keZd meZd keZd \meZd
This motivates the definition of the convolution
(ﬁ* :ﬁ}k — E - Uk—mUm.
meZd
For the control of the nonlinear terms in Fourier space we need

Lemma 5.1.26. (Young’s inequality for convolutions) For p € [1, ]
we have
[ % Vllg, < [[ulle, [[V]]e, -
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Proof. For p € [1, 00| we find

@ % lg, :(YJ y: T O |P) /P < {Z(Z 1G5 )P) P

ke, med lef med
= 1Py [0ah)P) P < Nfidlle, 1]z,
lef med
The case p = oo is obvious. []

Young’s inequality for convolutions allows us to prove that the £; g-spaces
are closed under convolution if # is sufliciently big. In order to do so we prove
the following version of Sobolev’s embedding theorem

Lemma 5.1.27. For m —d/2 > n there exists a C > 0, such that
|lly, , vy < Clltllg, ,, (ma)-

Proof. With p, = max(1, |k|) the estimate follows [rom

[@les,n = D (@l = 3 [l py ™"

keZd keZd
1/2 1/2
= Z k| Pk Z P = C”“‘”a‘-’z,m:
keZd keZd
. ~2(n— *
since ) ;. za pk(n m) < oo, due to m — d/2 > n by assumption. n

We use this embedding to establish

Lemma 5.1.28. a) For all m > 0 there exists a C > 0, such that for all
u, v € €14, we have

||ﬁ * T?| él,'.rn. E C”JEHEL,TH

:E;HEL,IN '

b) For all m > d/2 there exists a C' > 0, such that for all u,v € {y,, we
have

||ﬁ * {":”EE,'IFE- E C‘HEHEE,TH

ﬁ||’|?-IE,,:|11 '

Proof. a) Since pj* < C(p",+ p;") with C' = 2™ for py, = max(1, |k|) using
Lemma 5.1.26 it follows that

o = D1 W mpl <Y Y [ tipy

keFd |74 keZd jeFd
<C ) > (@alpy + laxolp)
keZd |[cFd
<C(|[ulley olIVlley o + elley, [0lley0) < 2C ulley ,, 12]ey -

[
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b) With Lemma 5.1.26 we have
% Blley,,, =( D | D @i’ |)"?

kEEd EEE“{

<(OY (Y [ar—@l (B + 1))
keZd [e7d

<C(|[Julp™ * [0|[leg,0 + ll[u] * [0[p™{|£2,6)

<C(|[ulleg,m [Vller.0 + Nller o V1] e, )-

The final assertion follows from Sobolev’s embedding theorem |[v|;, , <

Cllvlle,,, for m > d/2. m

We now give a number of classical examples of nonlinear PDEs over in-
tervals with periodic boundary conditions. In fact, over unbounded domains
each ol these equations will play an important role in this book. For the

modeling and physical background of the equations we refer in particular to
Part IIIL.

Example 5.1.29. Let u(xz,t) = u(x+2m,t) € R, A(X,T) = A(X +27m,T) €
C, and ug(t), Ar(T) be the associated Fourier coefficients.

a) The Kolmogorov, Petrovsky, Piskounov (KPP) equation dyu = 0%u +u —
u? transforms into

Ouy, = _kgak + ﬁﬁ; - Z ﬁk—mﬂ]iﬂ.'
mez
b) The Allen-Cahn equation d;u = 9%u + u — u? transforms into
. E.—"‘-\. o~ o s .
Oup = —k“ug + uy — Z Z U —n U —1 U]
med [eZ
c) The Burgers equation dyu = 0*u + d,(u?) transforms into
it =~k +ik Y Ui,
e

d) The Korteweg-deVries (KAV) equation dyu = d3u + 0.(u?) transforms
into
Oty = —ik*uy, + ik Z Uk U -
med

e¢) Using (FA); = E—j the Nonlinear Schrodinger (NLS) equation dpA =
0% A +i|A|? A transforms into

oA = KA 41 Y Y Aesrm A,
meZ leF
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f) The complex Ginzburg-Landau (GL) equation 97 A = (1+ia)d5 A+ RA—
(1+i8)|A[?A, with «, 3, R € R, transforms into
Or Ay = —(1 +ia)k? Ay + Ay — (1 +ip) Z Z Aps1-m A Ap,.
mel led

Except lor the KdV equation, for all equations from above the local
existence and uniqueness theory can be handled with Theorem 5.1.20 and
Theorem 5.1.23. The linear parts are given by the eigenvalues A\, k € Z,
where

a), b) My = =k +1, ) A\ = —k%,
d) A\, = —ik?,  e)\y = —ik?, 1) A= —(1 +ip)k? + 1.

In a), b), ¢) and f) we only need that (e*?),cz : la9 — €2 is bounded for
fixed . Since the nonlinear terms in a), b), e) and f) are bi- and trilinear
maps from £y g — £5 ¢ for 8 > 1/2 we have the local existence and uniqueness
for these equations in £y for 6 > 1/2 according to Theorem 5.1.20. Since
for ¢) and d) the nonlinear terms are only bilinear maps from £, g1 into £, g

we need an estimate
(5‘] ] ) || (Ulkf)kEE”Ppﬂ _:"fp,:-1+1 E C I[lﬂ:“:(-l 1 t_ﬂ:)

with a € [0, 1) for the semigroup in order to apply our local existence and
uniqueness result from Theorem 5.1.23. According to Example 5.1.21 such
an estimate is true for ¢) with a = 1/2, but not for d). The KdV equation
is a so called a quasilinear (hyperbolic) equation. There is local existence in
5 g for 8 = 3, for instance. However, the proof is more involved, cf. [Paz83,
&8, Theorem 5.6] or §8.2 for further remarks. |

5.1.6. Loss and regain of compactness. We close this section with a
number of comments on compactness, which is a crucial concept to define
attractors in dynamical systems. In metric spaces there are the following
equivalent characterizations of compact sets, cf. |Alt16, §2.5].

Definition 5.1.30. Let (M, d) be a complete metric space.

a) A set A C M is compact if every covering of A by open sets contains
a finite subcovering.

convergent subsequence with limit in A.

c) A set A C M is compact if A is closed and pre-compact, where a set
A C M is said to be pre-compact if for every £ > 0, there exists a finite
subset {s1,s2,...,8,} of A such that A C |J;_, B(sk,e), where B(sy,¢)
denotes the open ball around s, with radius .
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Compactness arguments in the sense of b) were used a number of times
in Part I. Examples are the existence, respectively the non-emptyness, of w-
limit sets and attractors. For the term ‘pre-compact’ also the term 'totally
bounded’ is used in the literature. In R? compact sets can be characterized
by the theorem of Heine-Borel.

Theorem 5.1.31. In R? a set is compact if and only if it is closed and
bounded.

In infinite-dimensional spaces compactness is more restrictive due to
the fact that the theorem of Heine-Borel is no longer true as the following
example shows.

Example 5.1.32. Consider the closed unit ball in (R", |||~ ). The sequence
(Up ) perny with u, = e, satisfies ||u, — tm||co = Onm such that no convergent
subsequence can exist. Variants of this example works in all norms from
above such that the closed unit ball is not compact in any of the norms
from Definition 5.1.1. ]

The equivalence of compactness to boundedness and closedness is a
precise distinction between finite- and infinite-dimensional Banach spaces
[Alt16, Satz 2.9]. There are famous theorems about the characterization of
pre-compact subsets of function spaces. These are the Arzela-Ascoli theorem
[Alt16, Satz 2.11], the theorem of Riesz [Alt16, Satz 2.15], and Sobolev’s
embedding theorem [Alt16, Satz 8.9).

Compactness in infinite-dimensional spaces will be regained by smooth-
ing properties of the evolution operators. For instance the evolution operator
of Example 5.1.21 maps bounded balls of £3 ¢ into bounded balls of #5; for
every fixed ¢ > 0. Since the subsequent version of Sobolev’'s embedding
theorem 5.1.33 guarantees that bounded balls of 5 ; are pre-compact sets
of £3 9, the evolution operator of Example 5.1.21 maps bounded balls of ¢3 g
into pre-compact sets of £2 9. This property will be used for showing that
w-limit sets and attractors for such systems are non-empty. The following
theorem is also known under the name Rellich’s embedding theorem.

Theorem 5.1.33. The space £,y can be compactly embedded into the space
bpr forallp =1 and 0 > r.

Proof. For notational simplicity we restrict to the index set N. Compactly
embedded means that every bounded set of £,y is pre-compact in £, ,.. Due
to the homogeneity of the spaces it is sufficient to prove that the unit ball of
€59 can be covered by finitely many balls of £, with radius . In order to
do so we consider the first ng coordinates. The restriction of the unit ball of
£p.p to these coordinates is a pre-compact set in R"?. Hence, for every £ > 0
it can be covered by finitely many balls B.(z;) of R™ w.r.t. the £, -norm
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and with z; € R" for 5 = 1,..., N. We claim that the unit ball of £, g
is contained in the union of the balls B, 5((z;,0)) of lp(RY) if we choose
(ng + l}"'_'g < £/2. This follows since for u = ((ug)k=1....ng: o) in the unit

ball of £,4(R") we have a j € {1,..., N} such that

lu=(2;, 0)lle,,,. < 1((ur)r=1....n05 0)= (25, O)llg,. , +1[(0; o) e, . < €/24¢/2=¢,

where [|((wg)k=1.....n0»0) — (27.0)|¢,, < £/2 due to the construction of the
points z; and where ||(0, uoc)||¢,, < /2 due to

) o
tr <O JunPln) 2 < sup 0TS unfPn[P)1P

10, ux )|
no+1 n=ng+1,...,00 no+1
<(no +1)"77)/(0,ucc)le, , < /2
for ng sufficiently large since ||(0, Um)”Ep,a < 1. ]

5.2. Basic function spaces and Fourier series

PDEs posed on spatially bounded domains are very often isomorphic to
ODEs in R°°. Thus, the abstract set-up from the last section can often be
applied to solve PDEs posed on spatially bounded domains. However, a big
part of PDE theory is concerned with problems coming from the bound-
ary of the considered domains. These play almost no role in this book,
i.e., they are circumvented by considering almost all systems subsequently
with periodic boundary conditions or on the real line. This allows us to
concentrate on phenomena coming from the equations. In other words, a
complete functional analytic treatment of PDEs posed on bounded domains
with dynamical systems concepts is beyond the scope of this book. For this
we refer to the textbooks [Hen81, Hal88, Tem97|. However, in Part IV of
this book some of the methods to handle problems posed on cylindrical do-
mains R x ¥, with ¥ ¢ R? a bounded domain, are explained. In this section
we concentrate on PDEs where the spatial coordinate lives on a bounded
interval with periodic boundary conditions. Such problems can easily be
related to ODEs in R®™ with the help of Fourier series. These explanations
are embedded in some theoretical background about basic function spaces
and Fourier series.

5.2.1. Basic function spaces. The solution u = u(-,t) of a PDE is for
fixed ¢ in some function space. Here, we introduce some basic function
spaces following [Alt16, W1o87]. In the following let Q C R? be an open
set, x = (x1,...,xq9) € 2, n=(n1,...,ng) amulti-index, |n| = ni+...+ngq,
and Jy = 03! ... 0y,
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Continuous and differentiable functions. The space of continuous
functions in €2 is

C'(QR) ={u:Q — R: uis continuous},
equipped with the norm

Julleo = sup u(a)|.
rell

The space of m-times continuously differentiable functions in €2 is
Cﬂl (ﬁ'.- R) = {T_L : ﬁ — R - 5%14’, 1s continuous fDI' |J| — [-]'.' s Ti"i’,}._l

equipped with the norm

lullep = D 18fullco.

0<l|jl=m

From the definition it is clear that for u € C™(£2,R) we have ||u]
if €2 is bounded. More generally, we define

Cy (4, R) = {u € C"(LR) : ||lullom < oo}

G‘Eu ﬂ'.’,: C‘{j=

For @ = Q = R the function u(z) = z is in C", but not in C}. For
bounded, C}" is dense in Cg" For the treatment of unbounded 2 we define

Clunif (U R) = {u:Q — R :u is uniformly continuous for

|J}| =0,...,m, ||“| om < DG}
t

For Q@ = R the function u(z) = sin(z?) is in C}, but not in Ci??unif‘ For
similar reasons CJ'(R,R) is not dense in C}(R,R), but Chunir(R,R) in
G,

Holder spaces. The spaces Cp and CJ"* are not the optimal choice for
solving linear PDEs. Even for arbitrarily smooth boundary 9€2 the boundary
value problem

(5.12) Au=f inQ,  ulpn =0,

unif

(R,IR). All these spaces are Banach spaces.

unif

for f € Cf in general does not possess a solution u with optimal regularity,
cf. Example 5.2.4 on page 157. Optimal regularity holds for the subsequently
defined Holder-continuous functions and Sobolev functions, i.e., for instance
for (5.12) from f € C%* it follows u € C%®. For a € (0, 1] we define

CU(OR) ={u:Q = R:u is a -Holder-continuous, [|u/lcoe < oo}

equipped with the norm

u(z) — uly)|

[z =yl

lullcoa = llullgo +  sup
$,yEﬁ,$#y1|ﬂ:—y|£|
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and, for k € N and « € (0, 1],
CFOQR) ={u: Q= R:PuecC for |j|=0,....k
OFue O ||lullgra < o0}

equipped with the norm

Jullcre = Nullger + 3 103l o,

|3|=k

All these function spaces are Banach spaces, cf. Exercise 5.9. C%1(Q, R) is
the space of Lipschitz-continuous functions.

Lebesgue and Sobolev spaces.  Unfortunately, the above spaces are
not equipped with a scalar product and so tools from linear algebra related
to orthogonality are not available. A natural choice of a scalar product for
functions would be

(5.13) (U, v) 2 =Lu($)mdx

However, if the above spaces are equipped with the above scalar product
they are not complete w.r.t. the induced norm. For instance the sequence

1, for |z| <1—1/n,
Up(x) = 0, for x| > 1,
n(l—|z]), for|z|e(1—-1/n,1),

is a Cauchy sequence w.r.t. the norm induced by the L*-scalar product.
However, the limit function is not in CE although u,, € CE? for all n € IN.

Since the limit of a Cauchy sequence of Riemann integrable functions
is in general no longer Riemann integrable the Riemann integral has to
be replaced by the Lebesgue integral in order to define complete function
spaces [Alt16, §A1]. In order to define the Lebesgue and Sobolev spaces we
introduce

C(Q,R) ={u:Q — R:wuis arbitrarily many times differentiable}
and
Cot(QQR) ={u e CT(QR) : u has compact support in 2}

where the support of a function is defined by supp(u) = clga{z € Q : u(x) #
0}. The Lebesgue spaces are defined by

~ 1/p
D(O.R) = cly (CROR), where Julr = ( [ u(o)Paz)
0

for all p € [1, 00). By construction all these spaces are Banach spaces consist-
ing of equivalence classes of Cauchy sequences, with two Cauchy sequences
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in the same class if their difference converges to zero. The LP-spaces con-
structed in this way coincide with the spaces known from measure theory.
The space L?(€2, R), respectively L?(€2, C), is a Hilbert space equipped with
the scalar product (5.13).

For the solution of PDEs so called Sobolev spaces turn out to be useful.
For p € [1,00) and Q bounded we define

WP, R) = clifpmp (CF(Q,R)),
where
ullwms = (3 10ulf,) /7
j|<m
and
Wo " (4, R) = el jyym (C5~ (2, R)),
for general (). Since the sum in the definition of || - [[jm» is finite there

are various equivalent norms such as ||u||yym» = Z|j|{m |&ul| p. By con-

struction these spaces are Banach spaces, too. The spaces H™ (), R) =
Wm2(Q,R) and HJ'(2,R) = W/*(2, R) are Hilbert spaces equipped with
the scalar product

(U, V) gpm = Z (P, Djv) 2

|§|=m

By Sobolev’s embedding theorem [Alt16, Satz 8.8.], Sobolev spaces can
be embedded continuously into classical function spaces. We have

W™P(Q,R) = C™*(Q,R) if m—d/p>n+a,
i.e., there exists a C' > 0, such that for all u € W"P?
||'?J.||Cn_.u- i C’H’M”ﬁfmm

and in the equivalence class of u € W"™P there is a representative u &

C™(Q,R). For the proof of special cases see Lemma 5.1.27 and Lemma
5.2.3.

A different characterization of these spaces is (e.g., [Alt16, §1.25])
WTPQR)=4{u: Q2 > R:uec LP for la|=0,...,m, ||ullwms < oo},

where 9%u denotes the o' weak derivative of u. For Q@ ¢ R the function
0% € LP(,R) is called o weak derivative of u € LP(Q,R) if for all
¢ € C5°(Q,R) we have

[ @u(a)ofz)dz = (-1 [ u(@)@2o())da.
9.

(2
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We define L*(£2,R) as the space of all measurable functions u : 2 — R
for which

sup |f(x)| < oo for a null set N.
=t PAWAY

This space 1s equipped with the norm

uli = inf sup |f(2)].
N is a null set TEQ\N

We introduce
Tt

Jullwmee = > |05 ull e
| =0
and the space W™ >(€),R) as the space of all functions u : 2 — R for which
the weak derivatives d%u exist for |a| = 0,...,m and for which ||u|/yym.ec <
0.

Remark 5.2.1. The concept of weak derivatives can be generalized to the
concept of distributional derivatives [RR04, Chapter 5|. A priori, the sets
C™ and C§* are just vector spaces. There is no norm for which these spaces
are complete. However, using inductive limits of semi-norms, Ci°(Q2, R) can
be made to be a complete metric space D({2), called space of test functions,
where convergence u, — u in D({?) means: a) There exists a compact
K C Q such that supp(u,),supp(u) C K, b) lim,~ 0%up(x) = 05u(z)
uniformly in K for all & € N9, However, this convergence is not induced by
a norm.

The elements of the dual space of D(,R) = C§°(Q2,R) are called dis-
tributions, i.e., a distribution 1" is a continuous linear map from D into the
real or complex numbers. This means that u,, — v in D implies T'u,, — T'u,
which is equivalent to the formulation that for all open bounded sets D there
is a constant ' and a number m € N such that

(5.14) () < Cllsllcy forall ¢ € CF(D.R)

For a continuous function u € CE(IRd?]R)E or for u in one of the above other
spaces

o - [, et

defines the so called associated distribution, which is then called regular.
For the distribution associated to d%u we find

Tonu(0) = [ (@2u(z))o(e) de

=(-1)°! [ u(@)(@2o(@)dr = (~1)°'T; (370).
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This property is taken to define the o derivative of an arbitrary distribution
by

(09T)(0) = (—1)T(059).

The distributional derivative of a function u is not necessarily again a func-
tion, as the next example shows. If (99T,) can be represented by a function
g.i.e., 09T, = T,, then g is the o' weak derivative of w. |

Example 5.2.2. For u(zx) = |z| we show that v € H'((—1,1)) but u ¢
H?((—1,1)) by computing the weak derivatives d,u, 3%u. For ¢ € C5°((—1,1))
we have T, (0,¢) = ji]l —x0,0 da + jnl rd,¢ dr = jfl o dr + _[Dl —pdxr =
—T,(¢) with

-1, = <0,
glx) = 0u(z) = { : S0,

Similarly, T,,(02¢) = [*, 8p(x)dz+ [} —0u¢(x) dz = 26(0) = 250(¢p) where
dg 1s called the Dirac ¢ distribution. Thus, Sgu ¢ L? as there is no function

g such that fil g(xz)o(x)dr = ¢(0). |

In order to solve nonlinear PDEs two additional properties have to be
satishied by the function spaces in use. First, the values of the functions on
the boundary have to be well defined. For X = L?(€2) a function v € L*(Q)
is only unique up to a null set in 2 ¢ R?. Since a smooth boundary 9f)
is a null set, boundary conditions in L? are not well defined. Secondly, in
the nonlinearity we have products of functions of X, i.e., with u € X, also
u? should be in X, i.e., X should be an algebra. For u € L? in general
we do not have u® € L?. However, for m sufficiently large (depending on p
and the space dimension d), H™ or more generally WP are algebras, and
point-wise values are defined, or at least the boundary conditions can be
fulfilled in a generalized sense.

We close this subsection with the prool of a very simple version of
Sobolev’s embedding theorem and an example indicating which of the func-
tion spaces are suitable for solving PDEs and which are not.

Lemma 5.2.3. Let —00 < a < b < oo. Then H'((a,b)) c C"V?((a,b))
and

1
2
(5.15) Jull3e < 2lfull2 ( —— [ull + ||afru||m) ,

(5.16) [u(z) — u(y)| < V@ —yll0zullza.

1

o
o
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Proof. Since Fl(( b)) is dense in H'((a,b)) w.r.t. the || - ||g:1-norm, it is
sufficient to prove (5.15) and (5.16) for u € C'((a,b)). We have

0= 1(212%)@

— / — & s)ds + /a - &21.-,(3)53;1.4(3)(:13

£—a

~[lullzz + 2]u

120, U”rs

[

and similarly

bd (s—x \ 1
20y _ 2 < 2 5 +
u(x) /T P (b—mu (5)) ds < r— ul|72 + 2||ul|| 2| Ot 2

Hence, u?(x) < min{ xlﬂ_, E}'_':E}||u| %g + 2||ul| 2 ||O;ul| ;2. For the second esti-
mate we use the Cauchy-Schwarz inequality, namely

() /aﬁu ) ds _/ 10su(s)] ds < /z = gll|0wul 2. O
J

We already stated that C*-spaces are in general not optimal concerning
the regularity of solutions of PDEs. More life is given to this statement by
the following example [Sal08, Example 8.2|. This gives a motivation for
the use of Sobolev spaces, in particular for the use of H"™-spaces for which
Hilbert space methods are available.

Example 5.2.4. For 0 < a < 27 let Q, = {(r,¢) : 0 < r < 1,—a/2 <
# < a/2} be the two-dimensional sector with opening angle a. Consider the
Dirichlet boundary value problem

(5.17) —Au=01in Q,, ulgo = ga(r,¢) on I,

with g.(r, @) = cos(wo/a) for r = 1, g(r, o) = 0 else, where (r, ¢) are polar
coordinates. Identifying R? with C we find that f(z) = 2™ is holomorphic
in €2,, and thus

u(r, @) = Re(f(2)) = r™/* cos(7¢/a)
is harmonic in €, and satisfies the boundary conditions. Thus, it is the
unique solution of (5.17).
Clearly, v € C(€2), and we now consider the regularity of u up to the
boundary and compare it with Sobolev regularity. Let a # m, otherwise
u(x,y) = x. We find

\V4 |2_ ) )2_|_i 5)2_:'7_2 2w/ o—1)
IVu|® = (0ru TE( o)” = —37 ,
and this is in C'1(Q) only for @ < 7. But fﬂ& Vu|?de = "T; fﬂl r2r/e-ldp =
/2 independent of a, and thus v € H'(Q) for all a. Next, [02u| ~
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/=2 for r — 0, thus, u € C%(Q) for a < 7/2, and u € H*(Q) for a < T,
i.e., if the sector is convex. By setting g(r,®) = r/g(¢) with j > 2 and
v = u—g we find g € C®(Q,) and ~Av = —Au+ Ag = Ag =: f in
., and v|gn, = 0. For the last system the Lax-Milgram theorem Eva98,
§6.2.1] guarantees u € H' for general spatial domains and regularity theory

[Eva98, §6.3] guarantees u € H? for convex spatial domains. |

3/4

Figure 5.3. z — (Rez)”"" solves the boundary value problem (5.17) if
o = 4 /3. The derivative is unbounded at the origin.

5.2.2. Fourier series. PDEs with periodic boundary conditions for the
spatial coordinates can be transferred to ODEs in R* with the help of
Fourier series. For notational simplicity we restrict ourselves first to the
torus T = R /(27 7Z)?. Let C°, be the space of functions u : T — R, with

per
a C™ periodic extension u : R — RY satisfying

!

u(wy, x2,...,xq) = ul(ry + 27,22, ...,2q9) = ulw), T2 + 27, ..., Tq)
=...=u(x,22,...,2q + 27).
We define
m YOO
Hier = Clos|. |, 1) (Cper).

The question is if and in what sense a function can be represented by
its Fourier series, or equivalently, in which norms Fourier series converge.
In L? we have a simple answer which follows from the general theory of
orthonormal systems, and which for convenience we summarize here.

Definition 5.2.5. Let H be a Hilbert space with scalar product {-,-) : H X
H — C. A (finite or infinite) system (¢;) in H, j=1,...,N orj € N, is
called orthogonal system if (¢, ¢;) = 0 for i # j. It is called orthonormal
if additionally (¢;,¢;) = 1. It is called a complete orthonormal system
(complete ONS) or Hilbert basis if (u, ;) = 0 for all j implies u = 0 for
ue H.

In Hilbert spaces H the following holds.
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Lemma 5.2.6. a) If u, — uw and v, — v in H, then {(u,,v,) — (u,v).
b) (Pythargoras) For ¢y, ..., ¢, € H with (¢;, ¢;) = 0 for i # j we have

1 + ...+ ol = lo1l]* + ... + |lonl*.

c) If (¢5)jen is an orthonormal system in H, and u; a sequence in C, then

;"i] uj; converges if and only ?fz;zl lui|? converges, i.e., if (uj);en € £2.
d) (Bessel’s inequality) If (¢;) jen is an orthonormal sequence in H, then for
all w € H we have ) ;- | (u, ¢;) 2 < ||ul?.

Proof. a) By Cauchy-Schwarz we have

| (U, Un) — (u,0) | = | (U, v — 0) + (g, — u, v} |

< ””nHlUﬂ - ”H + ||“"ra - u||||tf||,

where sup,,cy ||un|| < oo for convergent series (up )nen.
b) Direct calculation for the finite sums.
¢c) For all m < n we have ||Z?:mujqi=j||g = Z?:m uj|? by b). Thus,
j—1 4j@; is a Cauchy sequence if and only if } .=, lu;|? is a Cauchy se-
quence,

d) For N € N we have

N N N
0 < <’i'-*rr - Z {’L-i,_, ‘;Dj} @i, U — Z (u, (IJ«_;} ‘i’?> — ||T_.£||2 — Z | (u, ';1'5’}} |21

J=1 7=1 j=1
and hence Zf;":] | {(u, @;) |* < |lul|?, which implies convergence of the series
and Bessel’s inequality. ]

Lemma 5.2.7. The following statements are equivalent:
(i) (d;)jen is a complete ONS.
(i) For all w € H we have u =} 2, (u, ¢;) ¢;.
(ii1) For all u,v € H we have Parseval’s identity
0
(5.18) (w,0) =) (u,¢;) (v, ;).

j=1
(iv) For all u € H we have Bessel’s equality

(5.19) lul® =) [ (u, 05)
j=1

Proof. (i)=(ii). For u € H we have convergence of > .7, | (u, ;) 2 by d)
and convergence of Y 27 (u, ¢;) ¢; to some v € H by Lemma 5.2.6 ¢). By
Lemma 5.2.6 a) we have

2

(u—v,0;5) = (u,¢5) — Y (u,dn) (In, &5) = (u, 6;) — (u, 95) =0,

mn—1
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and since (¢;) is complete this implies v = w. (ii)=-(iii) again follows from
Lemma 5.2.6 a), and (iv) follows from (iii) with v = w. Finally, (iv)=-(i)
since (u, ¢;) = 0 for all j and (iv) imply |[u| = 0, hence u = 0. []

Due to the equivalence of (5.18) and (5.19), often both are called Par-
seval’s identity. Clearly, Lemma 5.2.6 and Lemma 5.2.7 also holds if se-
quences (¢;);en are replaced by sequences (¢;) ez, (¢5)jends (@) ez4, with
the respective replacements in the sums. The most important example are
classical Fourier series.

Theorem 5.2.8. a) The functions ¢y, = e with k € Z% are a complete
ONS in L*(T%) w.r.t. the inner pmduct

1
(u,v)j2 = o) /Td u(x)v(z)de.

For u € L*(T%) we have L?-convergence of the Fourier series, i.e., for

e ] T - o 7 ® ]‘ _l. u
Sn(z) = pet with iy = (%%, u)2 = / u(x)e T da
T

we have |[u — Sy|lj2 = 0 as N — oo. This convergence is abbreviated as

u(z) = D peza Uke'™ T

b) For all ¢ € Ty = span{c'®? : |k| < N} we have |[u — Sy||;2 <
|lu — &||;2, i.e., Sy is the best approximation of u in Ty in the quadratic
mean.

c) We have Parseval’s identity

> [l = Eg”“”_r_,?

kezd

d) There exists a C' > 0 such that if u € C™ 1is 2w-periodic in each
direction, then |ug| < C|k|™™.

1, i k=m,
0, else,

the (¢ ) are an ONS. The completeness of this ONS can be shown with the
Weierstrafl approximation theorem, see [Alt16, Satz 7.10].

Proof. a) By direct calculation we find (¢, o) = { ie..

b) follows since Sy is the orthogonal projection of w on Ty.

c) Parseval’s identity can be computed directly for finite sums. Going
to the limits shows the assertion.
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d) Through integration by parts we find

-~ 1he-x 1 —1ik-x
up = {ek JU)p2 = ) /ﬁ u(x)e BT Qe

1 .
(L 1\n 1T —ik-x _
= (1) Gy Aﬂ(am u(z))e * dz.

L

The map u — (u)peze will be abbreviated with F. By ¢), F is an
isometric isomorphism from L? to . Its inverse (g )rcz — u is denoted
by F~!. By d) the smoothness of u is related to the decay of its Fourier
coeflicients.

Formally we have d,u(r) = ) ). iktue'®™  or equivalently F(O,u) =
(ikuy )pez. It follows, that F is in fact an isomorphism between the Sobolev

spaces H ;?;T and the spaces of sequences {5, which have been introduced in

£5.1. Moreover, F I maps f1.m to C7".
Lemma 5.2.9. Let m € Ny. a) There exists a C > 0, such that for all

U € t(EII_,*m

llem < Cllulle, -

|ullcyr < Clul]

b) There exist Cy,Cy > 0, such that for all u € {3,
Crlldlle,,, < [lullam < Colltle,,,.

c¢) There exist C1,Cy > 0, such that for all w € Hp,

Cillullm < |lulle,,,, < Collullzm.

Proof. For notational simplicity we consider d = 1 and u with uy = 0.
Moreover, we first consider F and F~! on the dense subspaces Jper Tespec-
tively the space of finite sequences. The results then follow by continuous

extension, see the subsequent Lemma 5.2.10.

a) We have

~ ik

|ul|cm < C'sup sup Y e < C'sup sup Z Kl @ [t
’ R 0<j<m z€R 0<j<m

i CjHﬁ“fl,m )

kel kel

Continuity in respect to the differentiability of u follows from the uniform
and absolute convergence of the series.
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b) and ¢) The second estimate in b) and the first estimate in ¢) follow
from

Tre e 3
||| 2 = Z |0 u||?s = Zf &’ Z“H‘
ke
= [ [Sautwret| ar <aed Stk < ol
ke =0 kek
The first estimate in b) and the second estimate in ¢) follow from
. 2
||ﬂ||f,2_m — Z |ﬂ;¢|2|k|2m _ Z / E_mru(l:){ﬁiﬂ |k|2m
keZ ez, /T
2
| by IEILS Z / e_ik‘”cﬁmu(m)dm |k|2{fri—1} _
']I'fi'

keZ
2

-y

ke

— | F@ra)2,, e L

/ e Ty () da
=d

d?ﬂ'

27
[]

Lemma 5.2.10. Let X be a metric space, A C X a dense set, and Y a
complete metric space. Then every uniformly continuous function f : A —- 'Y
possesses a unique uniformly continuous extension f: X — Y.

Proof. The condition that the extension must be continuous leads to the
only possible extension ol f, namely

i

flz)="lim  f(a').
'eA,x'—x
It remains to prove the existence of this limit, i.e., to prove that f 1s well
defined. In order to do so, let (z,),en be a sequence with =, € A and
limy, o0 T, = x. Hence, (z,)nen is a Cauchy sequence in X and from the
uniform continuity it follows that the image sequence (f(x,))nen is a Cauchy
sequence in Y. Since Y is complete, we have the existence of

y = lim f(x,)
— 0

in Y. Obviously the limit ¢ is independent of the chosen sequence. It is an
easy exercise to prove the uniform continuity of f. ]

We give a number of remarks and further results about Fourier series
which will be useful later.
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Remark 5.2.11. (Hausdorff-Young) 8The discrete Fourier transform F
is continuous from L to £, with 1/p+1/q = 1 for p < 2. The discrete inverse
Fourier transform F 1 is continuous from £, to L? with 1/p+ 1/q =1 for
g < 2, but not for ¢ > 2, ¢f. [Duo01, Corollary 1.20]. This can be shown
with the so called Riesz-Thorin interpolation between the inequalities from
Theorem 5.2.8 ¢) and Lemma 5.2.9 a).

Remark 5.2.12. Lemma 5.2.9 suggests to define non-integer Sobolev spaces
by Fourier series, i.e., for ## € R let

t -1y . -~
H‘J‘S’E‘i" =JF lyy with ||| o = ||u||f"2,ﬂ'

We will come back to this definition in §6.2.1. |

Remark 5.2.13. (Real Fourier series) Besides the complex Fourier ex-
pansion also real Fourier polynomials and series of the form

oA
u(xr) = %ﬁ + Z lag cos(k - x) + by sin(k - x)],
kemd

with ag. b, € K, are in use, where

aj = 2 f u(x)cos(k - x)dr, k=0,

(2m)9 Ja
by :(Qi)d ﬁd w(z)sin(k - x)dxe, k> 1.
The relations between u and (ag, by) are
1 1 1
g = jao, up = glag —ib),  U—p = lak +iby),

ajp = ﬁk -+ ﬂ_k, b, = (ﬂ;i- — ﬂ_k)i, ke N.

For u(x) € R we have 1 = u_j. In this book we prefer the concise complex

notation. |
Remark 5.2.14. (General periodic boxes) Let Ly,.... Ly > 0, Q =
(0,L;) x +++ x (0, Lg). As in Theorem 5.2.8 we may expand u € L*(12) as
— 2mk 2k
u(x) = upe'™s " with  wy = ( " Lo ﬂ. d),
Ly Lq
kezd
where
. 1
PP ail Ve~ WET Jp — 1) i,
k= T /g; u(x)e de = (Fu)y
Again, F is an isomorphism between H( (€2) and £3 . |
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Remark 5.2.15. Let @ C R? be a bounded domain and let (¢;);jen be
a complete orthonormal system in L?(€), i.e., every u € L?(f2) possesses
a unique representation as convergent series in LE(Q), e, u = Zjem CiPj
with ¢; € C. Then F, defined by (Fu); = ¢;, is an isomorphism between
L?(9Q) and f5. However, in general F is not an isomorphism between H™ ()
and f3,,. The set {sinnz : n € N} is a basis of L?((0,7)), but not a basis
of H'((0,7)). Since H'  C} in H', only functions u with «(0) = u(r) =0
can be approximated. In L? the two points # = 0, 7 are a null set. |

Remark 5.2.16. Point-wise convergence of Fourier series is a rather deli-
cate issue. For instance, the Fourier series of u € L' may diverge almost ev-
erywhere [Kol27|, while for u € L? we have convergence almost everywhere
[Car66]|. No necessary and sufficient conditions are known for the point-wise
convergence of the Fourier series of a function u. However, there are various
sufficient conditions, for instance if u is piecewise C', then S, (z) — u(x) at
points of continuity. More generally,

Sp(x) = %{u(x—}—) + u(x—)),

where u(z+) and u(z—) denote the right and the left limit of u in x. Thus,
Sp(xg) converges to the mean of u at jump points xg. This convergence
comes with notable oscillations (= 19%) to the left and right of xp, which is
known as Gibbs phenomenon, see Figure 5.4. |

-2, 0

é
Figure 5.4. Fourier expansion of u(x)=—1, x € (—m,0), u(x)=1, = €
(0,7) vields u(z) = 25°°°  =—L—sin(2n — 1)z. The figure shows the

partial sums 51, 85, §13 and thus illustrates the Gibbs phenomenon.

Fourier series allow giving simple proofs of classical inequalities when
the functions involved are spatially periodic.

Lemma 5.2.17. (Poincaré’s inequality) For v € H! . (T% R) with

per
de udx = 0 we have

(5.20) /|u|2d:ﬂ£/ Vul?de.
']:'ff 'l['-r.‘:
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Proof. Parseval’s identity gives

— 9 < 9 2de. O
/Iul dw=2r Y |mP<er 3 |kl = [dl‘ﬁ’ul da

kezd\ {0} keZ4\ {0}

Next we have the following version of Sobolev’s embedding theorem in
d space dimensions.

Lemma 5.2.18. For m —d/2 > n there exists a C' > 0, such that
||u||(_fﬂ{']rd} i: C”H”Hm{']:‘d}.

Proof. The assertion follows from Lemma 5.2.9 and Lemma 5.1.27. L]

Analytic properties of the solution operator of a linear evolution equation
can be established with the help of Fourier series.

Example 5.2.19. We consider the solution operator T'(t) defined via the
solution u(z,t) = T(t)up)(x) of the linear heat equation dyu = 92u, with x €
0, 7|, under Dirichlet boundary condition u(0,t) = u(m,t) = 0 to the initial
value u(x,0) = up(x). In order to prove that (7'(¢))¢>¢ is a Cy-semigroup in
L%((0,7)) and in H™((0,7))NHZ((0, 7)) for every m € N we 11'1a.ke an odd 27-
periodic extension of the functions with w(0,¢) = u(mw,t) = 0. The bLIIligI‘{Jup
in the space of 2:?r—pr_ riodic functions is denoted again bj,r (t). We proved
in §5.1.2 that T(t) = FT(t)F ! defined by {T( Va(0))pez = (e F174(0)) ks

is continuous in £y ,,,, i.e., for every u(0) € £y, we have
IT()a(0) —@(0)||p,,. =0 for t—0.

Due to the isomorphism property of F between Hpp. and f2,,, cf. Lemma
5.2.9 b) and c¢), it follows that

I7()u(0) = uOllg, < CLIFT@u0) = @O,
— || T(t)a(0) — @(0)|lg,,, — 0 for t =0,

i.e., T'(1) is a Cy-semigroup in Hy.,.. The restriction of x to 0, | gives
the result. Moreover, from Example 5.1.21 it is known that for r = 0 the
semigroup T'(¢#) can be estimated by

IT()@(0)lle,,,, ,, < Cmax(1,¢77/?)|[@(0)]|e,, -

Using again that JF 1s an 1somorphism between H'"  and ¢s ,, shows
jml'

per
||T( )HD”L!';::.:T [: } ( }”‘EIE TR ClcIrlax(]‘f_?‘fg)”ﬁ(o)ngﬂ*.ln

<Cmax(1,t7"?)||ug]| grm

per ’

with C' = C,CCs. |
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Example 5.2.20. We consider ?u = 0%u with = € (0,27) and periodic
boundary conditions. We rewrite this equation as first order system for
z = (Oyu, Oyu) and obtain

d

. 0 Oy
Ez(:ﬂ, ) = Az(x,l), with A= (3;:: U) )

or in Fourier space

d_ _ | . 0 ik
a@(ﬁu:i} — Az(k?t)? Wlth A o (ik: D) '

The general solution is given by

z(x,t) = Z 1 (k)e*F T2 4 oo (k) -HH2) 3, = et 2( 0)(2),

keZ
() =2 (0 )z

Hence, we have a uniformly bounded Cy-semigroup for z in, e.g., H™ x H™,
which however is not smoothing. |

where

5.2.3. Some nonlinear PDE examples. We start this section with a
version of the local existence and uniqueness theorem, Theorem 5.1.23, in
physical space. In order to use the results from §5.1 we refrain from greatest

generality and restrict ourselves to Sobolev spaces Hf,ﬁ.r in accordance with
Lemma 5.2.9. We consider

(5.21) %u = Au+ N(u), uli—g = up,

with A generating a Cy-semigroup which satisfies

(5.22) leull s, < Core? = |ull .,

for # > r with constants Cy_,, 3, and a € [0,1). Moreover, let N be a
locally Lipschitz-continuous map from H 9 into H.

Similar to Definition 5.1.19 we define

Definition 5.2.21. a) A function u € C([0,1p], Hgm_) which satisfies

t
(5.23) u(t) = eug —I—f e "TAN (u(r))dr
0

is called a mild solution of (5.21).
b) A function u € C([0, ﬂ]],HEET), with Au € C(]0, Tn],HEET), is called a

strong solution of (5.21), if (5.21) holds in Hf}e,',. for each t € [0, Ty].

Theorem 5.2.22. For all C'y > 0 there exists a Ty > 0 such the following

holds. For ug € H? with ||ug| ge < Ci there exists a unique solution u €
C([0,Tp], H?) of (5.21) with w|i—g = up.
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Proof. This a direct consequence of Theorem 5.1.23, Remark 5.1.24, and
Lemma 5.2.9. L]

There are other straightforward generalizations from the finite- to the
infinite-dimensional situation.

Theorem 5.2.23. Consider (5.21), where (5.22) is satisfied for a 5 < 0.
Then the fized point u* = 0 is asymptotically stable.

Proof. The proof goes line for line as the proof of Theorem 2.3.4 a). ]

In order to check the assumptions for system (5.21) for a concrete non-
linear PDE we have to handle products of functions in physical space. The

ngr-spacea are closed under multiplication if # is sufficiently big.

Lemma 5.2.24. For all 0 > d/2 there exists a C' > 0, such that for all
u,v € Hgﬁr we have

luv|[go < Cllullgol[v]| ge-

Proof. This follows from Lemma 5.1.28 by using the isomorphism F :
HY. — lap. O]

We come back to the PDEs introduced in Example 5.1.29. We have
already proved the local existence and uniqueness of solutions of the Fourier
transformed versions. The isomorphism property between f54 and HY

[ er
gives the following result.

Theorem 5.2.25. For the KPP equation, the Allen-Cahn equation, the
NLS equation, the Burgers equation, and the GL equation with 2w -periodic
boundary conditions we have the local existence and uniqueness of solulions

in ng-r if @ > 1/2, i.e., for all C > 0 there exists a Ty > 0 such the follow-

ing holds. For uy € Hgﬂr with ||up||ge < C there exists a unique solution

u e G’([D,TD],HEET) with uli—o = ug, respectively, A € C([U?Tg],ﬂgﬂ) with
Alr—o = Ap.

The # in the last theorem can be made smaller by using the smoothing
properties of the semigroup, cf. §6.2.1. Moreover, the smoothing estimate
(5.11) can be used to show that solutions to the KPP equation, the Allen-
Cahn equation, and the GL equation become arbitrary smooth and even
analytic for £ > 0. This is done for instance in §5.3.3 or §6.2.2.

5.3. The Chafee-Infante problem

After having discussed the local existence and uniqueness theory of PDEs on
an interval we now consider the qualitative behavior of solutions in a specific

example, namely the Chafee-Infante problem [CI75|. The presentation is
based on [Hen81, §5.3].
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The Chafee-Infante problem is to find the attractor of a semi-linear par-
abolic PDE, the Allen-Cahn equation,

(5.24) Ou = O5u + au — u”,

witha € R, u = u(x,t) € R, t > 0, and x € (0, 7), under Dirichlet boundary
conditions u(0,t) = u(m,t) = 0. Our goal is to characterize the attractor
of this system for different values of a. This PDE can be interpreted as an
infinite-dimensional gradient system. Similar to finite-dimensional gradient
systems, see §2.4.5, this fact restricts the elements of the attractor in the
following to fixed points and heteroclinic connections.

5.3.1. Local and global existence of solutions. As phase space we use
H& = H,} (0, 7). Solving the Allen-Cahn equation with 2mw-periodic bound-
ary conditions and restricting to the invariant subspace of odd functions is
the same as solving the Allen-Cahn equation with Dirichlet boundary con-
ditions. Hence, Theorem 5.2.25 applies and we have the local existence and
uniqueness of solutions in H? if § > 1/2.

Theorem 5.3.1. For all C' = 0 there exists a Ty > 0 such that for all
ug € HY with ||ugl| g < C there exists a unique solution v € C([0, Ty], H3)
of the Allen-Cahn equation (5.24) with u|i—g = uyg.

To prove the global existence of solutions it is sufficient to bound the
H'-norm. We prove more, namely the existence of an absorbing set for

(5.24).

Theorem 5.3.2. (Global existence and existence of an absorbing
set) For all o € R there exists a R > 0 such that for all C; = 0 we have
a T > 0 such that the followings holds. If ug € Hi satisfies ||uol|gn < Ch,
then the associated solution satisfies u(t) € B = {u € Hy : |lul|zn < R} for
all t = T.

Proof. Again the solutions are extended to odd 2w-spatially periodic solu-
tions. Then we have

2 2
(5.25) 4 [ u?dr = 2 / —(0pu)® + au® — u*dx
d'ﬁ J0 J0
d 2 1 2 1
(5.26) m [ (Opu)?dx = 2 / —(0%u)? 4 a(dpu)? — 3u?(Dpu)? da.
J0 0

If o < 0 all terms on the right-hand side are negative and we have

lim sup ||u(t)|| ;1 = 0.

f—00

In order to obtain estimates which are also good for small o = () we split the
parameter regime o > 0 in two parts. First let a € [0,1/2|. Adding (5.25)
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and (5.26) yields

d 2 ) ‘
a/ u’? + (5;,;u)‘3r_l:£:
)]

2
= 2 / —(0%u)? + (a — 1)(0pu)? = 3u?(0pu)? + au® — u'dx

| f"x

/ Dput)? /2 + au® — vt dx

=

FA

2m
2/ Opu)? /2 —u?/2 + 1/8 + a?/2dx
0

ﬁ“\

2
f u? + 31L3d:1—|—ﬂ
0

This immediately shows that

lim sup ||u(t) |5, < .
t—oc '

For o« > 1/2 we consider

d 29
i/ 201’ + (Opu)?dx

2
= 2/ —(8%1.1)2 — a(0,u)? — 3u?(0,u)? + 20%u? — 2autdz
0
2m .
< 2/ —a(pu)? 4 202u? — 20u’ dz
0
Eﬂ- F . g r
< *2/ —a(Opu)* — 20 u” + 2a° du.
0

Hence, for E = fﬂgﬂ 20u? + (0,u)?dz we have E' < —2aF + 87a? and thus

8o’

E(t) <e B0 1—e .
(1) < e B(0) + 2o (1 - )
Hence, limsup,_, ., B(t) < 4ma?. Since ||ul/p < ([ 20u? + (8pu)?dz)'/? for
« > 1/2, we are done. ]

5.3.2. Existence of the attractor. The existence proof of attractors in
finite dimensions uses the argument that a bounded sequence contains a
convergent subsequence. In infinite dimensions this is in general no longer
true. Hence, this compactness argument has to be recovered by using the
smoothing properties of the solution operator &; with S;ug = u(-,1).

Lemma 5.3.3. Fort = 0 fized the solution operator S8 maps bounded balls
of Hi into bounded balls of H* N H}.
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Proof. We consider the variation of constant formula and estimate

i
la(®)ll = <IT (ol z= + / 1Tt = )0 (7) || g2 dr
()

!
(5.27) *:_i(?t_w||uu||H1_ —I—/ﬂ C(t—7)"Y%dr 51[1[][1] (T3 < oo,
TE LT

where T'(t) is the semigroup from Example 5.2.19. ]

Since H? N H& 1s compactly embedded in H%, we have compactness of
the operator §; in H}. Theorem 5.3.2 thus shows that the Chafee-Infante
problem (5.24) defines a dissipative dynamical system such that Theorem
2.4.4 applies.

Theorem 5.3.4. For the Chafee-Infante problem (5.24) there exists a non-
empty, compact, time-invariant set A = w(B) C HJ, the global attractor,
for which

dist(u(t, B), A) = sup inf |[u(t,b) —algn — 0 for t— oc,
beB a€A

where B 1s the absorbing set from Theorem 5.3.2.

Proof. For convenience we repeat the main steps from the proof of Theorem
2.4.4. The attractor is defined by

A=1]A4

t=()

with A; = closy1(S¢(B)). Since B is positively invariant, the family (A )0,
satisfies A;, C Ay, for 1 > t3. Hence, A C Ap is bounded. Since &; is a
compact operator for t > 0, the set A; is compact for t > 0. Since (A )=
is a decreasing family of compact non-empty sets, the attractor A = M4,
is non-empty and compact.

We skip the proof of the time invariance and restrict ourselves to the
attractivity which is proved by contradiction. We assume that B is not
attracted by A. Then there exists a § > 0, sequences t,, — oc and u,, € B,
such that dist(Sy, (uy), A) > d > 0 for all n € N. For a small { > 0 the
sequence &, _¢(uy,), (n € N) is bounded. Since &; is a compact operator
there exists a subsequence such that v; = St”r’ (upn,) converges towards a w
for j — oo. Therefore, w € A which contradicts the above assumption that
the sequence is bounded away from A. ]

5.3.3. The choice of regularity does not matter (much). As already
salid, major differences between finite-dimensional systems and infinite-di-
mensional systems are due to the fact that in finite dimensions all norms
are equivalent, whereas in infinite dimensions there are infinitely many
non-equivalent norms and so infinitely many possible non-equivalent phase
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spaces. More or less all definitions in the theory of dynamical systems, such
as continuity of solutions w.r.t. time, stability of solutions, etc. depend on
the chosen norm. Therefore, we expect that the choice of a suitable phase
space in infinitely many dimensions in general plays a crucial role. It is the
purpose of this section to explain that for systems with smoothing proper-
ties this often is not the case. If there is a global bound in one H-space,
then it does not matter which H?-space is chosen as long as these spaces
are connected with a smoothing estimate.

The estimate (5.27) can be generalized to

lu(t)]| o1 <|T(E = 7)ulT)| o+ +] |T(t — s)u’(s)]| goss ds

i
<Ot — 7)Y u(r) | o + f C(t—5)72ds sup [u(s)|%e
T SE[’T,ff]

<C(t—7)"V2Cy(r) +2C(t — 7)1 2Cy(7)?,

where Cp(7) = sup,ci; o ||u(s)| go. Hence

(5.28) Cor1(t) < C(t —7)7V2C(7) + 2C(t — 7)Y2Cy (7).

From Theorem 5.3.2 we know that C(0) < oo and that limsup._, ., C1(7) <
R. In H? we have the local existence and uniqueness of solutions, i.c., for
ug € H? with |jugl|yz < C there is a Ty > 0 and a (5 < oo such that the
solutions exist for all ¢ € [0, T5] and sup;cjo 7,7 [|u(l) || g2 < C'y. Moreover, we
get

Co(Ty + 7) < CTy 2Ci(7) + 20T Ch (1) < .
Combining the last two estimates shows that

sup |[u(t)|| 2 < max(Ca, Ca(Th)) < .
te(0,00)

Moreover, choosing t — 7 = 1 in (5.28) vields

limsup |[u(t)|| 2 < CR + 2CR®.
f—r00
Hence, we have established an absorbing set in H?. With the same procedure
we show the existence of an absorbing set in H®, etc.. As a consequence the
attractor exists in each H? and the choice of phase space is not crucial with
this respect.

5.3.4. Characterization and bifurcation of the attractor. Here we
give a characterization of the attractor for different values of «. In a first
step we write (5.24) as a gradient system, cf. §2.4.5. We have

dhu = O*u+ au — v’ = -9,V (u)
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with potential

V(u) = j: %{ﬁmu(:ﬁ}jg . ;—Iu{:c)g + }iu(ﬂ:)’i dz

and 3 a linear map defined below. In order to justify this formula, first
recall that for a function V : RY — R we have

V(u+ev) =V(u)+eal v+ O?) = V(u) + ¢ (a,v) + O(?) for all v € R,

where (u,v) = u'v is the scalar product between the vectors u and v, i.e.,

the derivative is defined as an element of the dual space of RY. However, it
can be identified with R? through the map

3 : Lin(RY, R) — RY, (a,”) — a.

For a map V : X — R where the function space X is equipped with the
scalar product

we define the map
g Lin(X,R) = X, (a,-) — a.

This is well defined since in Hilbert spaces the dual space Lin(X,R) can be
identified with X by the Riesz representation theorem [Alt16, Satz 4.1].
Using the boundary conditions and integration by parts we find

Viu+ev) —V(u)

lim
e—) £
— lim £~} ]W{l(ax(” + Ey))g — E(u —+ 51.1)2 + l(u + Ew)‘i)
=) 0 2 2 4
]' ¥ 2 &. 2 1 4 e
(5(0eu)? = Su? + Ju')da

m
= — / (D2u + au — u”)vde
0
and so by comparison
B0,V (u) = —(0%u + au — u°).

Therefore, (5.24) is a gradient system in H[%1 and hence the function t —
F(u{t)) decre::{ses along E'D]uti[}ﬂﬁ u = u(t), i.e., %V(u.(i).) < [],.wh_ere equ_a.]-
ity only holds in fixed points. Consequently, no non-trivial periodic solution
can occur. Moreover, V is bounded from below, since

2 2

N o O 5 1 4 /ﬂ o T
P —_— — i v S I - ¥ Sy i } — —_— ]
V() /ﬂ E(GxEL(L)) 211(.1:} +4H(L) dr > T dx 1

Similar to the finite-dimensional situation, ¢f. Theorem 2.4.15, the attractor
consists of the fixed points and their unstable manifolds, cf. [Rob01, The-
orem 10.13]. In case that only finitely many fixed points exist, the attractor
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consists of these fixed points and their heteroclinic connections. This can be
seen directly. In a gradient system every solution must end in a fixed point.
Solutions in the attractor must also start in one of the finitely many fixed
points. This follows from the fact that backwards in time the system in the
attractor is a gradient system, too. The potential is given by —V and it is
bounded on the attractor.

We compute the fixed points, or stationary solutions, of the PDE, which

satisfy
O2u+ au —u’® = 0.

Due to the boundary conditions u(0) = wu(w) = 0 in the (u,u')-plane we
have to find solutions which start from the v = u’-axis, end on this axis,
and need for this part of the orbit the 'time’ z = 7. For all &« > 0 the phase
portrait looks qualitatively the same. The periodic orbits around the origin
have a periodicity which is i) minimal at the origin, namely the periodicity
of the linearization, 27 /y/a, ii) infinity at the heteroclinic orbits, and iii)
which increases strictly monotonic with the distance from the origin. Thus,
non-trivial equilibria of (5.24) can only exist for & > 1 since for @ < 1 the
solutions are too slow to make half of the periodic orbit in a time 7.

Using i)-iii) the complete bifurcation picture can be established in a
rigorous way. The number of solutions with u(0) = u(mw) = 0 changes for
mm/y/a = 7 with m € N, an integer multiple of half the minimal period.
As a consequence, for o € (—o0, 1] we have one equilibrium, the origin; for
« € (1,4] we have 3 equilibria, the origin, and two equilibria called w.q;
for o € (4,9] we have 5 equilibria, ...; and for o € (m?*, (m + 1)?] we have
2m + 1 equilibria, the origin, w4q,..., and uy,,.

Hence, for fixed o there are only finitely many fixed points which are
elements of the attractor. In order to understand the dynamics in the at-
tractor, i.e., to find the heteroclinic connections between the fixed points,
we analyze the linearization at the fixed point u = 0, i.e.,

i = Eﬁu + o,

with u(0,t) = u(m,t) = 0, or equivalently, with u(x,t) = > Un(t) sin(nz),

d
o Dy
aun = (a — n°)uy,.
Therefore, the linear operator
A =0% 4o
with Dirichlet boundary conditions has eigenvectors u(x) = sinmax with

associated eigenvalues A\ = o — m? for m € N. Equivalently the infinite-
dimensional diagonal matrix

(f‘inm)ﬁ.,mEfﬂ — {(ﬂ' - mz)ﬁnm)ﬂ,mE?ﬂ
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has the eigenvectors e, defined by (€, )n = dmn With associated eigenvalues
A= a —m?.

Im I

-

"'f---- — et
VA
II..' /
|

{
!

, /

Figure 5.5. Left: the spectrum of the operator A- = 92 - +a- under

Dirichlet boundary conditions for @ = 1. Right: the bifurcation

diagram. At the parameter values o = n? unstable equilibria bifur-

cate via a pitchfork bifurcation from the trivial branch u(a) = 0.

Hence, for a € (—oc, 1) the origin is asymptotically stable. For ac > 1 the
origin is unstable, with a one-dimensional unstable manifold for o € (1,4],
with a two-dimensional unstable manifold for a € (4,9], and with an m-
dimensional unstable manifold for o € (m?, (m + 1)?].

For e € (1,4) the one-dimensional unstable manifold of the origin ends
in the stable equilibria uy;. For a € (4,9) the equilibria w1y, uis lie on
the two-dimensional unstable manifold of the origin. Since u4s bilurcates
from the unstable origin, these fixed points are also unstable and their one-
dimensional unstable manifold ends in u+q.

The reasons are as follows. Since for fixed o the fixed points u; are
isolated and since the linearization only has real eigenvalues due to the gra-
dient structure, no eigenvalue of the linearization around the equilibria u;
crosses the imaginary axis after the bifurcation when a is increased. There-
fore, the dimension of the unstable manifold of u; is the same as at their
bifurcation point from the trivial branch. The fixed points u4y, bifurcating
at o = 1 are always stable. The fixed points u42 bifurcating at o = 4 have
a one-dimensional unstable manifold which ends in the fixed points u4;.
The fixed points w4y bifurcating at @ = 9 have a two-dimensional unsta-
ble manifold and so heteroclinic connections to the fixed points to u4; and
4o exist. Figure 5.6 sketches the dynamics in the attractor of (5.24). For
a € (n?,(n+ 1)?) we have an attractor of dimension n consisting of finitely
many fixed points and heteroclinic orbits between these fixed points, in par-
ticular, it contains the n-dimensional unstable manifold of the origin. A local
bifurcation analysis via center manifold reduction can be found in §13.2.1.

Further Reading. Our point of view of PDEs over bounded sets as count-
ably many ODEs is similar to [Hal88, Rob01, KP13|, while [Paz83] gives
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Nl =

Figure 5.6. The finite-dimensional attractors consisting of fixed
points and connecting orbits fora <1, 1 <a <4, 4 < a <9, and
9 < a < 16. Only selected heteroclinic orbits have been plotted.
The attractor always contains the n-dimensional unstable manifold
of the origin.

an excellent and concise account of the general semigroup approach, see
also [RRO04, Chapter 11|. Fourier series can be found in most textbooks
on analysis and functional analysis, and in many books on PDE; we recom-
mend [Olv14, Chapter 3] for an introduction with a PDE point of view,
and [Duo01] for a concise but comprehensive treatment. Classical books
on linear functional analysis, covering much wider ground than what is used
here and in the following chapters are [Yos71, RS75a, Kat95|; our fa-
vorites are |[Rud73, Wer00, Alt16]|. A concise introduction to nonlinear
functional analysis is [AA11]. Our presentation of function spaces follows
|Alt16, W1o87|, but the same material can be found in many textbooks, for
instance, from a PDE perspective, in [Str92, RR04, Eva98, Sal08|. Com-
prehensive treatments of distributions and Sobolev spaces, including various
versions of Poincaré inequalities and Sobolev imbeding theorems, are given
in [H6r83, Mazl11], and [Tay96, Chapters 3,4,13]. See also [Geol5]| for
a concise introduction aimed at graduate students, and Section 7.3 of this
book for the case of unbounded domains.

Exercises

5.1. Prove that the space cggp = {u: Z — R : u,, # 0 for finitely many n} equipped
with the f1-norm is not complete.

d:;
1 Uy, = —wﬁum n € N, with u,(t) € R, and w, € K. Write the

5.2, Consider

equation as first order system and find some phase space where the infinitely many
first order ODEs define a Cy-semigroup. Under which additional assumptions on
the w,, is the semigroup uniformly continuous, differentiable, or analytic?

5.3. Work out the details for Example 5.1.15.
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5.4. Let (H,(-,-}) be a Hilbert space and (e,) an orthonormal basis of H. Let
Ap = 0, Ay < Ay4q and lim,, o A, = oo, Finally, let

Vis{ue H: ) A (uen)? < oo},

el

Show that a(u,v) =} - An (u,€,) (v, €y,) defines a scalar product in V' such that
V" i1s a Hilbert space, and V' C H compact.

5.5. Let (H,(:,-)) be a Hilbert space with an orthonormal basis (e, ),en. Let
An =0, A, < Ay and limy, oo A, = o0, For t = 0 let T(f) : H — H be delined
by T(t)u =3, .ye ' (u,e,)e,. Show that (T'(t)) is a Cy-semigroup, and that
limp o HT()u — u) =: Au exists iff Y A2 (u, e,)° < 0.

Finally, for v = > An (U, en) e, show that T'(t)u —u = fif T(s)vds.

el

5.6. Prove local existence and uniqueness of solutions for du,, = —n*u, +u’, with

n € Z. in spaces £, 9. Do we have global existence and uniqueness of solutions?
5.7. Consider the discrete NLS equation

. . . . . . 2

10y = e(Uni1 — 2Up + Up—1) + |Un| Uy,

with u,(t) e Candne Z for 0 <e < 1.

a) Show the local existence and uniqueness of solutions in £5. Note that the linear
part is not diagonal, but bounded. Show that the system conserves the f3-norm.
Conclude the global existence and uniqueness of solutions in £5 from this fact.

b) For £ = 0 find non-trivial solutions Uy of the form wug(t) = roe“! with rg € R
and u,, = 0 for all other n € Z. Use the implicit function theorem for instance in
f to prove that for £ > 0 there are solutions U, of the form u, (t) = r,,e'“! nearby
Uy. What additional information is gained if £ g instead of {, is used?

5.8. Show that any f € C'(R?, R?) is locally Lipschitz continuous.

5.9. a) Let I C R be a compact interval and a € (0,1). Show that C"*(I) is a
Banach space.

b) Let I = [0,1] and 0 < 3 < a < 1. Show that C"*(I) ¢ C%?(I) as a proper
subset,

5.10. Let 2 = (0,1). Find sequences (uy), ty, : 2 — R such that:

(a) () bounded in H'(2), but (u,) does not converge in L*(2).

(b) u, — 0in L*(Q) but u,(xz) 4 0 for all x € Q.

(¢) ||tn||r2 = 1 for all n € N and u,, — 0 weakly in L?(€2).

Remark. Since H'(Q) C L?(Q) compact, in (a) we always have u,, — v in L*(Q)
for a subsequence u,,, .

5.11. Let Q) = Bi‘i{ﬂ}. Show that u(x) = In|lIn|z|| € H'(Q)\ L>(Q).
5.12. Let d € N and Q = B1(0) in R?. For which o do we have (a) |x|* € HY(£);
(b) (sin |z|)* € HY(Q); (¢) (In|z])* € H'(Q) ?

1/2

5.13. For H = L*(0,1) define F' : H = R by F(u) = [,’" u(z)dz. Do we have
F € H'? If so, find a representation (-, v),;. of F' with v € H.
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5.14. For the following PDEs with x € (0,27) and periodic boundary conditions
investigate whether the solution operator defines a Cpy-semigroup in L;ﬁm. ((0,2m), )
with smoothing properties
a) Ou = O, b) dyu = —diu, ¢) Opu = u.
5.15. Consider the complex GL equation
S = (1 +1i0)d?u + Ru — (1+i8) |ul” u

with 27-periodic boundary conditions, u(x,t) € C, and . 3 € R. In case |3| < 1/3
prove the global existence of solutions in ! for all R € R.

5.16. Consider dyu = d*u+u” for t > 0, z € (0,7) and u(x,t) € R with boundary
condition u(0,¢) = u(w,t) = 0 and initial condition u(z,0) = ¢(z), ¢f. [Hen81,
Page 49]. Prove that there are solutions which converge in finite time towards oc.
Hint: Derive a differential inequality for s(t) = [ sin(x)u(z,t)dz. With Holder’s

inequality we obtain s(t) < 2%/3( [ sin(z)u®(x,t)dz)!/3 and so s > —s + s3/4.

5.17. Write dyu = —d;u + sin(u), with u(z,t) € R, z € R, and ¢ > 0, subject to
periodic boundary conditions u(x,t) = u(x + 27, t) as a gradient system.

5.18. Consider the Cahn-Hilliard equation d;u = 0%(—~v0*u—u+u?), with u(xz,t) €

R, v = 0, and 27-periodic boundary conditions.

a) Prove that %G’ = 0, where C(t) = -ﬂzn wl(mr, t)dr.

b) Let F[u}i = J‘Uh i[rug - 1)+ 3 |9,ul” dz and show that &—]tF =~ Vuw|® dz
with w = u” —u — "*;'3i 1L,

¢) Find the possible w-limit sets.






Chapter 6

The Navier-Stokes
equations

6.1. Introduction

In this chapter we give an introduction to the Euler and Navier-Stokes equa-
tions, which over unbounded domains will also play a role in subsequent
chapters. The global existence and uniqueness of solutions of the three-
dimensional (3D) Navier-Stokes equations is one of the seven so called 'one
million dollar’ or millennium problems in mathematics presented by the Clay
Mathematics Institute in the year 2000. There are a number of reasons for
this choice. On the one hand, the solution of this problem would allow us to
understand and simulate the motion of fluids more rigorously. On the other
hand, the 3D Navier-Stokes equations are interesting PDEs which resisted
so far all attempts to prove the global existence and uniqueness of solutions.

Their history goes back a long way. The equations describing the motion
of non-viscous fluids are called Euler equations and have been derived by
Leonhard Euler (1707-1783). The Navier-Stokes equations generalize the
Euler equations and include the case of viscous fluids. They have been
derived independently by a number of people, including Claude-Louis Navier
(1785-1839), George Stokes (1819-1903), Simeon Poisson (1781-1840) and
Jean Claude Saint-Venant (1797-1886).

First we recall the derivation of the Navier-Stokes equations, following
[Fow97, §6]. Then we focus on the analysis of the Navier-Stokes equa-
tions in Q = T¢ = R4/(27Z)9, i.e., Q = [0,27)? with periodic boundary
conditions. After the presentation of some local existence and uniqueness
results we formulate the global existence question. The local existence and

179
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uniqueness of solutions in some phase space X is obtained by a fixed point
argument in C([0, Ty, X) for a Ty > 0, using the variation of constant for-
mula. A good choice of the phase space X turns out to be essential in this
construction. The background of the millennium problem is the fact that in
infinite-dimensional spaces there are infinitely many non-equivalent norms.
For the 3D Navier-Stokes equations so far in no phase space simultaneously
the global existence of solutions and their uniqueness can be shown.

6.1.1. Derivation of the Navier-Stokes equations. The Navier-Stokes
equations describe the velocity and the pressure field of an incompressible
fluid. By Newton’s law (force=mass xacceleration) the N molecules of the
fluid satisfy the system of ODEs

mi; = Fij(xy,...,2N)

for 7 = 1,...,N. The motion of the fluid is completely determined by the
evolution of this system. However, the system is pretty useless due to the
very large number N. Therefore, the fluid is modeled as a continuum. In
doing so we have to guarantee that no molecules are lost, i.c., that mass is
conserved.

The velocity field of the continuuin at a position z € RY at a time ¢
is denoted by u(x,t) € R? for d = 2,3. With p = p(z,t) € R we denote
similarly the density of the fluid. The Navier-Stokes equations consist of two
equations, a scalar one for the conservation of mass and a second equation
with d components for the conservation of the momentum. In general, by the
internal friction of the fluid heat will be produced which leads to a coupling
of the Navier-Stokes equations with a heat equation. However, here we will
neglect this aspect.

Conservation of mass. We consider a fixed test volume V' with surface
S. The total mass in V' can only change by the flow through the boundary

S, 1e.,

d [ d
- pcle/Eﬁpde—[pu-ndSz—/ o dS
dt /V Jv Js 5; Y

. d

z—f div(pu)dV = —/ Z&aﬂj{m.ﬁj)dﬁ
1% Ve
j=1

where we used the Gauss integral theorem and where n(z) = (nq,...,nq)(x)
is the outer unit normal in the point x at the boundary S. Since this relation
holds for all test volumes V' the integrands must be equal, i.e.,

(6.1) Oep + div(pu) = 0.
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Conservation of momentum. Similarly, the momentum of a test volume
V' can only change by the flow through the boundary and by forces, for
instance friction forces, on the surface of the test volume. For these forces
f we assume the existence of a matrix o = (0y;); j=1....4, the so called stress
tensor, which relates the direction of the outer normal n with the direction
and magnitude of the resulting force f, i.e.,

fi = E T
j=1.....d

For examples see below. Hence, we obtain for the change of the momentum

d i
d
E/- puidV = —f' E :(ﬂui]“jﬂdeJr/ E :”z'j”jdg-

Application of the Gauss integral theorem and the above arguments yield
O(pu;) + div(pusu) = div(o;. ).
Using conservation of mass gives
O (pui) = pOyu; + uiOip = pdyu; — u; Z O, (puj),
j=1,...d
thus, in vector notation,

(6.2) ployu; + (u - Viul =V - o

or, in coordinates,

—

) d d
p | g + E (Uj - 33;3-)1;3; = E 8:::; Tij-
J=1 i J=1

Constitutive laws. In order to obtain a closed set of equations from (6.1)
und (6.2) we need to know how the stress tensor o depends on the velocity
u and the density p. Such a relation ¢ = o(u,p) is called a constitutive
law and depends on the Huid under consideration, i.e., the function differs
strongly for instance between water and honey. It is possible that o(t) is
not only a function of (u, p)(t). but depends on the whole history of (u, p)
cf. [Ren00].

i) For a non-viscous fluid, i.e., for a fluid without internal friction, the
surface forces f are only due to pressure. Hence, the forces f are parallel to
the outer normals n and their magnitude does not depend on the direction,
1.¢.,

L]
El

il

d
(6.3) fi = Z O = — Z?}Eﬁjﬂj = —pnj,
j=1

=1
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which vields the constitutive law
oij = —POij,

where d;; = 1 for i = j and §;; = 0 else. Since

d d
Z a‘“# Tij = — Z EJ.BJ (p'f'-ij) = —0dyp
7=l i=1
we obtain for non-viscous fluids
1
(6.4) dyu + (u-V)u = —=Vp.

P

The system consisting of (6.1) and (6.4) is still not closed. We have to relate
p with the velocity u and density p. A typical choice would be p = ¢p” with
some constants ¢ > 0 and v > 1. In case of incompressible fluids, i.e.,
p = const., we obtain Euler’s equations

S+ (u-Viu = —%vp,

6.5
(6:5) V-u = 0.

ii) For a viscous fluid the constitutive law is given by
oij = —poij + Tij,
where 7;; will model the internal friction. In order to find a model for 7;; as
simple as possible we consider a stationary constant density shear flow with
velocity field (ui(x2),0), see Figure 6.1. The friction forces act on the top
surface and bottom surface, and they are proportional to the difference of
these velocities. Hence, for an infinitesimal small test volume we find that

the surface force f is proportional to the so called strain d,,u;. Since the
friction forces are perpendicular to the top surlace we find

Ti2 = 0z, U,

where o > 0 is called the dynamic viscosity. Due to the isotropy of the fluid
o must be symmetric. This finally leads to

d
ﬂ.j = 21[455'1_? —+ )hz E.kk&ij
k=1
where .
Eij = 5(53;‘;- i + @m_;uj).

The constants p for the shear and A for the compressions are called the
Lameé-constants.

Remark 6.1.1. There is no reason why in our modeling ¢ should only
depend linearly on the first derivatives of u. An answer to the millennium
problem can lead to some corrections at this point of the modeling. |
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19 -

o

Figure 6.1. Shear flow: the internal friction is proportional to d;,u;.

The Navier-Stokes equations. For air, compressibility is an important
issue. However, for fluids such as water, p can be considered to be a constant,
i.e., &p =0. As in (6.5) the conservation of mass then simplifies to

d
Z@;Ejuj =V -u = divu = 0.
Jj=1

From Zgzl Epl = Zﬁ:l Oy, = 0 we obtain 7;; = 2ué;;. Moreover, we find

il d d i |
Z 833 T'.Ej — Z E}Ij (ijui - a‘rﬁﬂj) — Z aiui -+ QT":(Z ai‘juj) — Zﬂijuig
j=1 =1 ] j=1

j=1 =1
such that

1
Ou+ (u-V)u = —E"E’p + vAu,
where v = 11/ p is called the kinematic viscosity. The Navier-Stokes equations
are then given by

1

O+ (u-V)u=—-Vp+ rdu,

(6.6) t ( ) P p _
Veou=0.

In order to handle these equations as a dynamical system boundary
conditions have to be added. At rigid boundaries, a viscous fluid satisfies u =
0. At free surfaces, boundary conditions involve for instance the prescription
of stresses. In this section we consider the Navier-Stokes equations with
periodic boundary conditions. These have no physical meaning, but allow
us to focus on the equations itself.

In order to eliminate the physical units from the Navier-Stokes equations,
let U be a typical velocity and [ be a typical length of the flow. We set

%

w=Uu*, z=Ilz* p=pU%*, t=It"/U,
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and obtain after dropping the * the Navier-Stokes equations in dimensionless
form

Jyu + (u - Viu = —Vp+ %&u, V-u=0,

where R = Ul/v is called the Reynolds number. The larger R, the more

complex the flow. Until further notice we assume w.l.o.g. for our purposes
that R = 1.

6.1.2. The vorticity, and some explicit solutions. The vorticity w of
the 3D velocity field u is defined by

aﬁ:z g — aﬁ;‘;a] ()
w=Vxu=|dpu — 0y us3
8;3:1 u‘ﬂ T 8;3:2“4

while for 2D flows the vorticity is the scalar w = 0, us — d,,u;. Applying
the curl-operator V x to the Navier-Stokes equations gives in R? that

(6.7) Ow = vAw — (u - V)w + (w - V)u.

Specializing (6.7) to two-dimensional flows shows w | Vu, and so in R? we
have

(6.8) Ow =rvAw — (u- V)w.

The pressure gradient has vanished from (6.7) and (6.8). On the other hand,
the velocity u still appears and has to be reconstructed from w by solving

the PDEs
w=V Xu and V-u=10.

If 2 = R? the solution is given by the Biot-Savart law [FLS64, I1-14-10]
from magnetostatics, cf. Exercise 6.3.

There are major differences between the 2D case and the 3D case. Beside
the diffusion and transport of vorticity which appear in 2D and 3D, in 3D
there is also the production term (w-V )u for vorticity. Hence, it is likely that
the differences in the global existence and uniqueness question in 2D and 3D
are not only an artificial functional analytic problem. In fact, experiments
and simulations, cf. the discussion in [GWO06a], show that in 3D smaller
and smaller vortices are created, whereas in 2D the smaller vortices vanish
and are eaten up by the larger ones.

In R? or T we have that w = 0 is a solution of the vorticity equation.
The fact that vorticity is preserved by the motion of the fluid together with
the incompressibility of the fluid allows us to construct a number of non-
trivial solutions for the Navier-Stokes equations. The existence of a potential
d: RY - R with u = V& follows from w = V x u = 0. The potential ®
satisfies AP = 0 due to the incompressibility of the fluid. Such flows are
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called potential flows. However, in general the boundaries of the physical
domain will create vorticity.

Remark 6.1.2. The conditions
(6.9) V xu =0, and V-u=0

can be interpreted in two space dimensions, i.e. « = (u;, uz), as the Cauchy-
Riemann differential equations of a complex valued function z — w(z) de-
fined through w(xzy +ire) = ui(xy, x2) —iug(x1, r2). From complex analysis
it is well known that the complex differentiability of w, together with (6.9),
implies the analyticity of w, respectively wu. |

Here are a number of examples for potential flows. Further interesting
and more complicated exact solutions of the Navier-Stokes equations can for

instance be found in [MBO02].

Example 6.1.3. We already encountered the explicit constant shear flow
solution (2D)

u(x,t) = (m %Eg)) = (C:SE) : plx,t) = po,

with pp some constant. This is an example of a parallel or laminar flow
with non-vanishing vorticity. Further examples are Couette and Poiseuille
flow. The latter describes the flow in an infinitely long pipe {2 = R x X,
where ¥ C RY is a bounded cross-section with rigid boundary conditions

Ulgycpae = 0. As an explicit example we again consider the 2D case and set
¥ =(—1,1). Then

u(x, t) = (ﬂl%ﬁ}) , with  wu(x2) =c(as —1), ceR,

is an exact solution, see Figure 6.2a), with the pressure given by p(x,t) =
[
Po — g1 J

An important property of all parallel flows is that the nonlinear term
(1 - V)u of the Navier-Stokes equations drops out. As a consequence, in
R parallel flows can always be superimposed. This also works in general
domains if the boundary conditions permit it.

Example 6.1.4. In 2D so called irrotational strain flows are given by

2
—I T2 2
ulr,t) =~ : r,t)= — —(x7] + x5),
(,1) r(mg), p(@,t) = po — 5 (21 + 3),
see Figure 6.2b), while vortices are given by
—z) 2

2 2
p— J T
1_1), p=po+ 5 (@] +23),

u(x, t) = wo (
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see Figure 6.2¢). A 3D flow generalizing the 2D strain flow is the irrotational
stationary jet

—Y1E] i
ule,t) = — 122 . p(z,t) = po - E(’}’%ﬂ?% + 7525 + (71 + 72)°a3).
(71 + 7v2)xs
a) b) c)
10 AKZ'UZ X719
11 =
{ | - L \\
_'!\.____m Jlln' Ao ) ;f’_,_,_ \\
_H} B J \\a__ lff / | f,,f--\\ 1".\“.
\ - - [ B
. — — — I
::,-"I KU H‘\\ III,’/{- XU LR ',LH \‘\______’_,.fj I;'I /,-'I X1 .U
o l'l|| ¥ I|'I \\\“‘x______ __P_r"’:l';.
’ L —

Figure 6.2. Three planar exact solutions: Poiseuille flow, strain flow,
a vortex.

J

To get a feeling for the behavior of general solutions of the Navier-Stokes
equation we recommend to do some numerical experiments. For this we refer
to [Uec09] and the matlab scripts provided and explained therein, including
some brief discussion of turbulence.

6.2. The equations on a torus

6.2.1. Local existence and uniqueness. We remind the reader of basic
problems with existence and uniqueness of solutions of ODEs and PDEs. In
Example 2.2.4 we saw that the scalar equation 4 = m with the initial
condition u(0) = 0 has infinitely many different solutions. Two examples
arc u(t) = 0 and u(t) = t*/4. In Example 2.2.5 we saw that the unique
solution u(t) = tan(t) of & = (1 + u*) with the initial condition u(0) = 0
becomes unbounded for ¢ = 7 /2.

We study the local existence and uniqueness of solutions of the Navier-
Stokes equations

(6.10) o+ (u-Viu=—Vp+ Au, V-ou=0.

We follow the formulation of the millennium problem [FefO6| and consider
the Navier-Stokes equations in T, i.e., in 0, Q?T}d with periodic boundary
conditions. The phase space is chosen in such a way that its elements sat-
isfy the boundary conditions. The Navier-Stokes equations have the special
difficulty that the second equation, V - u = 0, is without a time derivative,
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and that the variable p occurs without time derivative at all. This problem
is solved by prescribing the equation V-« = 0 as additional condition in the
definition of the phase space. The term —Vp in the first equation will be
interpreted as projection P onto the divergence free vector fields such that
the Navier-Stokes equations can be written as

Hhu = PAu — P(u - V)u.

For periodic boundary conditions we will have PA = AP such that we
finally have to consider dyu = Au— P(u-V)u in the space of divergence free
vector fields {u : u = Pu}.

The Navier-Stokes equations are semi-linear parabolic differential equa-
tions such that for the construction of local solutions in time we use again
the variation of constant formula

t

(6.11) u(t) = eDu(0) — / oA (P(u - V)u)(s) ds

Jo
and the scheme introduced in §5.1.4. The semigroup e'® generated by the
lincar part is smoothing, i.c., ug € L? implies that t"™/20™u(t) is bounded
in L*(T9) for every t > 0 and m € N. Semi-linear means here that the
nonlinearity only contains terms with less derivatives than in the linear part,
i.e., for the Navier-Stokes equations first derivatives in (u - V)u compared
with the second order derivatives in Awu. More precisely, we will prove that
e!® maps H™ into H™'! with a singularity £ 1/2 and that P(u - V)u is a
bilinear map from H™ ! x ™t — H™. Then all assumptions following
(5.21) are satisfied and the local existence and uniqueness Theorem 5.2.22
will apply. Hence, the major step is to give a precise definition of P and to
investigate its analytic properties.

The projection on the divergence free vector fields. We define the
projection P via the solution v = Pf of the system of PDEs
(6.12) v+Vp=f V-.-v=0,

where f : RY — R? should be thought as a placeholder for the nonlinear
terms (u - V)u. For notational simplicity we carry out the analysis only in
case ¢ € R? with 27-periodic boundary conditions. In order to solve (6.12)
we make an expansion in Fourler series

vi() = Y Tpe™, plx) =) me™r fil@) =Y fiae™

keZ? kei? keZ?
with v; , -E-k* pr € C for j = 1,2. Plugging this into (6.12) vields

(6.13) Ty +ikipp = fig, Uog +ikepPr = for, k11 g + ikoUs g = 0.
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In case |k| # 0 we find the solution

O . By —kike =ik \ [ i
’b:%’k — m ALY ‘I';% —ikso f?,lr
Pk 1T —ik1  —ik2 1 0

For the subspace ky = ko = 0 there are two possibilities.
Case i). We prescribe the periodicity of the pressure p. Then we have

=

that U;9 = fjo in (6.13) and that py is arbitrary which is no problem since
only Vp occurs in the Navier-Stokes equations. This choice can lead to a
non-vanishing mean flow.

Case ii). We require that the mean flows [, v;(x1,22) dz vanish for
j=1,2,1e., 19 =120 =0. In order to do so we consider a pressure

2
plx, t) = Z oz + pla,t),
j=1

where p(x,t) is 2m-periodic w.r.t. the z;. Then 0, p(x,t) = a; + 0., p(x,1)
and so Uj9+a; = [jo. Thus, to a fjo we always find an «; such that v;9 = 0.

Example 6.2.1. To illustrate the difference between Case i) and Case ii),
we consider the vector field

F(@1, 29) = ¢~ 2@ =T ~2az—)? ( U

In Figure 6.3 we show the different effects of choosing i) or ii). |

2 + tanh(zo — ?r))

Figure 6.3. Illustration of the difference between cases i) and ii), con-
cerning the houndary conditions for the pressure in the definition of the
projection ©v = Pf for f from Remark 6.2.1, via a plot of the pressure
function. In the left panel we require a periodic pressure, giving a mean
flow in Pf, while in the right panel we require zero mean flow, giving a
linear growth of the pressure p.
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Choosing between i) and ii) is a question of modeling. i) has the disad-
vantage that if a constant mean force is added to the Navier-Stokes equations
then this choice leads to unbounded grﬂwth of (laminar) mean flows. There-
fore, in the fulluwing we opt for ii), i.e., ;0 = 0 for j = 1,2 and define the

projection P as direct sum of the projections Py, i.e., Uy = (Pf}k = Pkf;c
where

N U1k 1 k3 —kiko ) i
6.14 n = 0 and 0 = . ; g
(6.14) an ( Bk ) e ( ks k2 T

for k £ (. In physical space we define P by P = F-LIPF.

Lemma 6.2.2. The projection PP is a bounded linear map in £y, and n
by . t.e., for all m € R there exists a C' > 0 such that

||Pf||£ll:rn i: GHf”El;rn ﬂn"d ||Pf||£‘3,'m i: G”f”'gl LT

Hence, the projection P is also a bounded linear map in HJ,.,
m € R there exists a C' > 0 such that

1P fllm < Cllfllm.

i.e., for all

Proof. We find

1P Flley = | (PrFrnezzller e < sup 1Pl [ (Fedezellenm < ClFlleym-
.

The proof for ¢5,, works exactly the same. Using that Fourier transform is

an isomorphism between {3 ,, and H s cf. Lemma 5.2.9, vields

1Pfllen < C1lIPFlles,. < C1CIflles,. < CLCCol|f|Fm- O

Remark 6.2.3. a) Lemma 6.2.2 is valid in arbitrary dimensions d > 2.

b) In Fourier space we have 7, € V,. := {7, € C% : k-7 = 0}, due to
V - v = 0. The pressure gradient Vp defines in each C?% a vector ip,k, with
pi. € €, which is orthogonal to Vj.. This property can be generalized to
general domains @ ¢ R, cf. §6.3. ]

The phase space and the fixed point argument. In the following we
will solve the Fourier transformed Navier-Stokes equations in two classes of
phase spaces, namely

(i ={ae (b)) u=Puay, 37 ={u€ (la,,)": 4 = Pu},
and the Navier-Stokes equations in physical space in the class of phase spaces
divym _ ymoad L, D,
H {u e (Hp)" : u= Pu}.

per

In case of periodic boundary conditions we have PA = AP. Hence. for u
with © = Pu the solution operator of the linearized Navier-Stokes equations
is given coordinate-wise by the solution operator e/® of the linear diffusion
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equation diu = Au. In one space dimension this operator has been discussed
a number of times, cf. Example 5.1.21 and Example 5.2.19. The statements
made above about this operator transfer line to line from R! to R®.

Theorem 6.2.4. The solution operator (e _““FE');L za of the linearized Navier-
Stokes equations &ty = —|k|*uy. in Fourier space defines a Cy-semigroup
in fd“ and fd“ for all m € R. The associated solution operator e'® =

F (E_|k|2f)kegd}: of the linearized Navier-Stokes equations in physical space

div.m

defines a Cy-semigroup in Hper™ . Moreover, for all m € R and r = 0 there
exists a C' > 0, such that

{Cﬂlﬂx( TIE) ﬁ Fd“'?]

1,7

| (E_w'if)kEEd’H”fdw

1.m+7v

=

(¥ pezatill g <Cmax(L,t™"/%)|[@l]geo

||L"' ’ELHH;E:_: mtr <C max(1, t—-r;”i) u pdivom-

Since we already analyzed P in §6.2.1 it remains to bound the nonlinear
term (u-V)u). It is easy to see that it is smooth from Hgﬁ ™ to H;“Er if m is
sufliciently large. Hence, with the previous estimates the local existence and
uniqueness of solutions easily follows in every How™ if m is sufficiently large.
However, since we are also interested in the global existence and uniqueness
of solutions, and since it is more ecasy to obtain a priori estimates on the
solutions in H gé’,if’m'-s,paces for small m, we would like to have m as small as
possible. Hence, we spend a little bit more time at this point to optimize

the estimates.

We use the variation of constant formula (6.11) to prove local existence
and uniqueness of solutions. The key ingredients are the smoothing proper-
ties of the semigroup e/® summarized in Theorem 6.2.4 and the Lipschitz-
continuity of the nonlinear terms P(u-V)u). Since a singularity {119 with
6 > 0, is integrable, our approach also works if the nonlinearity P((u -V )u)
is Lipschitz-continuous from HoX™ into HYY™2%° By using the incom-

pressibility Ele Oz uj = 0 the E“‘ component of (u - V)u can be written
as

d d d il
Zuja:tjul — Z Uja:rjuﬂ + Z U.i_’azz:juj = Z a-LJ (ujug)}
j=1 i=1 j=1 j=1

or equivalently in vector notation as
(6.15) (u-Vu=V-(uul).
Using this representation we have to establish

IV wv (| m—2vs < Cllullzm |[v]] g,
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or equivalently

(6.16) [t | pms55 < Cllull g

T_J“H-irr

forad =0andall m =>m* for am® e RE. To ind the minimal m™* we start
with the following lemma.

Lemma 6.2.5. For allm e R, r = 0, and § > 0 there exists a C' > 0 such
that

[@%0ley . < C ([leg ., 17,

gris T ||ﬁ||fa%_r+ﬁ Blle, ....)-

Proof. We define g(k) = (1 + |k])™, 61(k) = (1 + |k[)™", and G2(k) =
(1+ [k|)~", for which we have the inequality
0(k) <(1+[kD)™ < C((L+[k = )™ (L) (1) ™ (14 [k = 1))
<C(o1(k = £)o2(€) + 02(k — £)01(£)).
Using this and Lemma 5.1.26 yields
[ g, , =[o(u*D)|e, = 2 (wor) * (Vo2) e, + 2| (wo2) * (V1) ||e
<2|[uo1lle, [[vo2|le; + 2|[uwz]e |

=20 ([@lley .., [lles -, + 2Mler

%1“&3

{;||E2,ﬁi+?')
EQCC (”ﬂnﬁﬁ,ﬁa—i' ||E|l€2,%—r+ﬁ T ||E||EE,%—T+6 ||ﬁ||€2'-m'+f')

for a 0 > 0 according to Sobolev’s embedding, cf. Lemma 5.1.27. [

For the validity of (6.16) we have to choose r =1 — ¢ for a § > 0 such
that m* = d/2—1 and use that Fourier transform is an isomorphism between
ly . and HT

per:

Remark 6.2.6. (The critical Sobolev number m* for ¢, ,,,) For all m >
0 there exists a constant C' such that (1+|k+1))™ < C((1+|k|)™+(1+1])™)
for all & and I. Thus, we have ||u* vl[,, . < Cllulle ,,||v]|¢ ,, which yields
m > m* = 0. | | ]

Therefore, we obtain the following local existence and uniqueness result.

Theorem 6.2.7. a) Let tig € {4'Y form > m* = d/2—1. Then there exists

2,m
aly = Tﬂ{”ﬁnufgm ) > 0 and unique mild solution © € C([0,Ty], £5'%,) of the
Fourier transformed Navier-Stokes equations (6.11) with u|l(—g = uy. The

same 15 true if Ef?’-{i:jl s replaced by E‘f‘;n and m = 0.

b) Let ug € HEY™ for m > m* = d/2 — 1. Then there exists a Ty =
To(||uol| jaivm) > O and unique mild solution u € C([0, Ty, Hper™) of the
per
Navier-Stokes equations (6.11) with u|(—g = up.
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6.2.2. Analyticity of solutions. As pointed out in §5.3.3 the solutions of
semi-linear equations where the semigroup is smoothing are infinitely often
differentiable for every £ > 0. The scheme which has been explained in §5.3.3
can also be applied to the Navier-Stokes equations if m > m*. However, the
step size for increasing the differentiability has to be decreased from 1 to
d /2. Actually, the solution becomes analytic in a strip along the real axis in
the complex plane if m > m™. In order to prove this we define

Definition 6.2.8. For 3 =0 let

=~ , rpd N =N = 3k
g={u:Z° - C: ||H||ff-1~f'lﬂ < oo} and ||L-n||,!:s~ﬁf = Z g e 1H,
keZd

Lemma 6.2.9. Ifu € {5 then u= F~ '@ is analytic in a strip

Sg ={z=(21,...,2q) € C*: ‘]’]’{-‘:L}Id“ll'lﬁﬂ < 5}
J=dseuas

in C* and SUp.es, |u(z)| <

Proof. The estimate

(6.17)  sup |u(z)| < Z Ty | sup [e'*%]) < Z (|| < ||u||fw < 00
zeSg P 2ESg ke Zd

shows that the function u(z) = > kezd U, C”"z is the uniform limit of the an-
alytic functions z — sy(z) = Z|k|f::N et
Sg and so the function w is analytic in Sg. [

in their domain of convergence

For every ¢ > 0 and 8 > 0 the linear Navier-Stokes semigroup T(t)
defined by (T'(t)u), = e |I“|2fn;:; maps £1 into {7 4 due to

= '2 o
IT(tylles, < > le™# | < sup e WM S (G| < (8, 8)] 1],
keZd keZd keZd

where supyza |e” eS| < C(B,1) < oo, since e K teBIEl 5 0 for |k| —
oo if t > 0. The constant ' = C(3,t) satisfies C'(3,t) — oo for t —
0 with a non-integrable singularity which makes this estimate useless for
nonlinear problems. However, this singularity can be avoided if we choose

3 proportional to /.

Lemma 6.2.10. There exists a constant C' < oo such that the semigroup
( ) defined by (T( Ju)p =e ~Ik*t3, satisfies for all t > 0 that

IIT(t)'ullffﬂ < Cllulle, -

Proof. The assertion follows since
.12 el

keZd schd

can be bounded independently of £. L]
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This estimate can be used to prove the analyticity of the solutions of
Navier-5Stokes equations w.r.t. x in S ; C Cfor ¢t > 0. According to Lemma
6.2.9 this assertion follows if u(t) € £} . for t > 0.

Lemma 6.2.11. For every M > 0 there exists a Ty > 0 such that the map

v t I . Fra
F@@)(k,t) = ek, 0) + [ R =) BkYike(@ a7 (k, 7) dr
J 0

15 a contraction in

X={U:Zx[0,Ty] = C: ||t —Un

x < M},

where ||uflx = supejo 1y ||H(t)||f‘1*ﬁ and where Ty, (k,t) = e ta(k, 0).

Proof. It is easy to see, cf. Exercise 6.4, that ||ﬁ’*’@||€fﬁ < ||ﬁ||f¢v ”’EIHEHJ

which implies
(6.18) luxvjx < |lullxflv]x

Using this estimate and v/t — 5 > v/t — /s shows that

|F(@) = Gggnl| 2 < sup Y| / —K(t=7) P(k)ik (@ + a7 ) (k, 7) dr|e Vil
?‘Eﬁﬂ} FGEE
< ‘.:.‘I_lp Z/ |E—k9{t—rjp (k)ik (i * )(kjﬂev’f_lklc—ﬁlklﬂﬁlkudT

< sup /Z|e_k2“ ™) P(k)ikeV T (@ a7 (k, 7)eVTH | dr
0 kez

t
<C' sup [sup|e_k2“_ﬂike”‘[’_T|‘!ﬂ||d’r sup ZK“*”I)(‘L )Jml
te[0,7p] JO kEZ s€(0,T0] ez

<CT,”?|@)% < .

Thus, we proved that F' maps the space X into itself if Ty > 0 is sufficiently
small. The proof of the contraction property works the same way. [

Corollary 6.2.12. For all C' > 0 there exists a Ty > 0 such that the solu-
tions u of the Navier-Stokes equations are analytic w.r.t. x in S 45 C C for
all t € [0, To] if [[u(0)l[e, = C.

Remark 6.2.13. It is easy to sce that Theorem 5.1.23 can be generalized to
E“’ -spaces and the Fourier transformed Navier-Stokes equations such that
there is local existence and uniqueness in E'] 3> too. |

Remark 6.2.14. In general it cannot be expected that in nonlinear prob-
lems the strip of analyticity is arbitrarily wide. An explicit, but typi-
cal, example is the z +» tanh(z) equilibrium of the Allen-Cahn equation
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O = 0%u+ u —u? in the subsequent §7.2. The function tanh has singulari-
ties in the complex plane, due to tanh(iy) = tan(y), for z = iw /2 + ikw with
ke 7, ]

6.2.3. Global existence in 2D. In order to prove the global existence and
uniqueness of solutions of the Navier-Stokes equations in a phase space X
we need a local existence and uniqueness result in X and a priori bounds for
the solutions in X. Then as explained already a number of times the local
existence and uniqueness result can be applied again and again to construct
a solution for all £ = (.

Bounds for the L?-norm. The L?-norm of the solutions u of the Navier-
Stokes equations can be bound in every qpamﬂ dimension. By using integra-
tion by parts and the incompressibility Z  Jju; = 0 we obtain

T /szfujuj dm—ﬁf}Zuﬁm dx

d

il d
— [I‘rd Z Zuj(awﬁﬂwuj - ﬂjp - Z ufé‘mﬁuj) dx
' =1

=1 f=1

= [, = @u15)(0s,5) da.

Poincaré’s inequality, c¢f. Lemma 5.2.17, implies

Lemma 6.2.15. For all d = 2 we have

1 d .
S lullfs < ~lul?s, andso [u(®)lzz < e u(0)]|zz -

Bounds for the H'-norm. In R? with periodic boundary conditions also
the H'-norm can be bound. By using integration by parts and the incom-
pressibility Zjﬁle dju; = 0, in R? we find after some explicit calculation, cf.
Exercise 6.5, that

(6.19) /T EZZ z Oz, 1) O, (U Oy, 1) = 0.

=1 =1 m=1

Therefore, we find as above
2 2

2 df[[[-gzz J‘JHE’ xjﬂf? / ZZZ C}rjanﬂg 33:]{'%#”5;)

j=1 i=1 j=1 k=1 i=1
Again with Poincaré’s inequality, cf. Lemma 5.2.17, we find

2 2
dt /WZZ Op;ug) (O ug) dz = — / ZZ(SJ:J-“E]'(@mj'HE]dx.

i=1i=1 i=1f=1

Combining this estimate with the L?-estimate vields
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Lemma 6.2.16. For d = 2 (and only for d = 2 and periodic boundary
conditions) we have

5 2wl < —llu@)lzn and so Jlu@®)]lg < e [[u(0)]|a-

Combining this a priori estimate with the previous local existence and
uniqueness result in R? yields

Theorem 6.2.17. Lel ug € Hgﬁl('ﬂ’z) Then there exists a unique mild
solution u € C(|0, 00), Hg;’?’l(']l'g}) of the Navier-Stokes equations (6.11) with
Uli—g = ug. Moreover, for t > 0 the solution is an analytic function.

The same is true for every Haw™(T2) with m > m* = 0. For m €

(m*, 1) the result follows from local existence and uniqueness of solutions in

div,
such Hper™ (R?) and due to ||*u(t}||Jr]_,f;l,i-g,mﬂrgj| < ||u[if)||1,131-::?};.1{,ﬂ,Ejl for such m.
For m > 1 we have
(6+20) ||HUT||Hm < CHH-HH?H”'U”HH.!.

and the local existence and uniqueness in Haw™(T2). Arguing as in §5.3.3
yields an a priori-bound for ||*u(lf]||Haza.!:f,-,m[,]I,E}| in terms of ||u(t — Th}HHdit',l{ng
) I per . ‘per
for all £ > Ty. Since ||u(t — i’h}”hﬂs.-a,at.-,u{,ﬂ.-a_;.jl is globally bounded and decays to
per

+ _ J— .
zero, the local existence and uniqueness result in Hpe," (T?) can be applied

again and again to construct a solution for all £ = 0. Therefore, we have the
following theorem about the asymptotic stability of the zero solution.

Theorem 6.2.18. Let ug € HYr™(T2) with m > m* = 0. Then there

exists a unique mild solution u € C([0, 0c), Hgi}"m('l['z}} of the Navier-Stokes
equations (6.11) with u|li—g = ug. Moreover, for t > 0 the solution is an
analytic function and satisfies

Hm [fu(t) || aiv.m 0

t— o0 per (1T2)

with some exponential rate.

6.2.4. The millennium problem. Figure 6.4 displays the Sobolev num-
bers for the local existence and uniqueness and the a priori estimates.

d=2 { I d=3 —

U 0 12
Figure 6.4. A priori estimates in L” for d = 3 and H' for d = 2. Local
existence and uniqueness holds in H™ for m > d/2 — 1. For d = 2

there is no gap between the exponents m for which we have a priori
estimates and the ones for which we have local existence and uniqueness
of solutions. For d = 3 a gap remains, and global existence of smooth
solutions cannot be concluded.
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In R? we have no a priori estimate for the spaces where we have local
existence and uniqueness. Hence, global existence of smooth solutions is
unclear. This question is exactly the content of the millennium problem

formulated in [Fef06]:

Millennium problem of the Clay-foundation. Prove (or disprove) the
global existence and uniqueness of solutions of the Navier-Stokes equations
in three space dimensions. For instance, show 1y = oo in Theorem 6.2.7,
i.e., close the gap between the a priort estimates and the local exvistence- and
uniqueness theorem, respectively.

Partial results are already known, from which we list only the two abso-
lute basic ones.

e Jean Leray [Ler34]| proved the global existence of so called weak so-
lutions, cf. §7.4.2, of the Navier-Stokes equations. These solutions
are very rough and they are not unique.

e For small initial conditions due to the linear stability of the ori-
gin one easily obtains an a priori estimate and thus it follows
limyg o0 || ()| aiv,m (T3) = 0 with some exponential rate for every

per

m >m* =1/2,

6.2.5. Some qualitative theory. The 2D Navier-Stokes equations with-
out forcing are a bit boring since ||u(t)|| g1 — 0 for t — oo, cf. Lemma 6.2.16.
Thus, we show the existence of a global attractor for the two-dimensional
Navier-Stokes equations with forcing, i.e.,

(6.21) ou=Au—Vp—(u-Vu+f, V-u=0,

with 27-periodic boundary conditions and external (time-independent) force
f € L? with fy = 0. As above we find

1 d ¥ J ]. J ]_
5wl < =l + ull 2 fllze < =5l + 515

22
2 dt L
f

i‘g + %”f”%g, u:l-]]d =0

12 < %Hu

lu®llar < e luollg + [1f1z2(1 = ™).

using ||ul| 2

Hence, the set
B={ueH" :|ulgm <2|f|lg}

is absorbing, i.e., attracts balls of finite size in finite times. Moreover, it is
(positively) invariant under the flow of (6.21), i.e., ug € B implies u(t, ug) €
B for all t = 0.
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Since the embedding H' < L? is compact (cf. Theorem 5.1.33), as in

Theorem 5.3.4 we thus obtain the existence of the global attractor (in L?),
given by

A = ﬂ Ay, with A, = 5(B).

Theorem 6.2.19. The 2D Navier-Stokes equations (6.21) have a non-
empty, compact, time-invariant set A C L?, the global attractor, with

distz2(S¢(B), A) = sup inf |la—"b|r2 = 0 ast — occ.
beS, (B) AEA

Remark 6.2.20. With a little more work it can be shown that A is a H.

Per
attractor for (6.21), i.e., A is compact in H! and attracts in H', i.e.,

dist 1 (S¢(B), A) = sup inf |[a — bl — 0 as t — oc.
beS:(B) 2EA

To show this, use a priori estimates to obtain an absorbing set in Hgﬂr. |

6.3. Other boundary conditions and more general domains

In this section we consider the Navier-Stokes equations with Dirichlet bound-
ary conditions u|sn = 0 in an open domain Q € R? with smooth boundary.
In order to prove the local existence and uniqueness of solutions we general-
ize our previous approach and recall the basics of analytic semigroup theory;,
cf. [Hen81|. We recall that the resolvent set of a (bounded or unbounded)
linear operator A : D(A) C X — X is defined as the set of all A € C for
which (A — A) has a bounded inverse (A — A4)~! : X — X, the resolvent.

Definition 6.3.1. A closed and densely defined operator A in a Banach
space X is called sectorial if there erists an a € R, a ¢ € (0,3) and an
M =1, such that the sector

Sup={A:6<|argA—a)| <m A#a}

is a part of the resolvent set of A, and such that for all A € S, 4 we have the
estimate

M
A—al

A= A) Hxox <

The negative of a sectorial operator generates an analytic semigroup.

Definition 6.3.2. A Cy-semigroup T'(t) of bounded linear operators is called
analytic if t v T'(t)u is analytic for 0 <t < oo and all u € X.

The following theorem gives an explicit construction of the semigroup
generated by the negative of a sectorial operator.
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Theorem 6.3.3. Let A be a sectorial operator. Then —A generates an
analytic semigroup with the re;e*reeentetien

1
—tA L At
e 2 ; { ) e 3

where I' is a curve in the resolvent set p(—A) with arg A — =0 for |A| — oo
and a 0 € (5,m). The semigroup can be extended analytically into the sector
{t #0: |argt| < e} for ae > 0. If ReX > a for X in the spectrum o(A)

then .
et < Ce und |Ae | < Te_”'t

fort >0 and a constant C'. Moreover,

d _ia —tA

—e = —Ae ",
dt

Remark 6.3.4. a) For t > 0 the integral

1

A+ A) LeMan
2i F( tA4) e

is well defined since Re A — —oc for |A| = oo and ||[(A+A) Y| xox < Il al”
Since the resolvent is holomorphic on the resolvent set, due to Cauchy’s
theorem of complex analysis the value of the integral is independent of the
special choice of T.

b) The estimate || de™ || x L x < % timplies that e~** maps the space

X into the domain of definition D(A). Since A%e~™4 = (Ae_‘d‘i)'”’ we even

have
c _,:\"_C —at
Xox S (t ﬂ) < et

such that e ' : X — D(A") for ¢t > 0, and the semigroup is smoothing. |

||A.r1 _LAHX—}X < ||AE_A“

Remark 6.3.5. a) The concept of sectorial operators is very robust under
perturbations. Let A be a sectorial operator with [[A(A—A4)"!|| < C for all A
in a chosen sector. Moreover, let B be a linear operator with D(B) D D(A)
satisfying

|Ba|| < el|Az|| + K[|

with £, K some constants. If eC' < 1, then also A+ B is a sectorial operator.
For a self-adjoint A it is sufficient that £ < 1. Hence, it is sufficient to check
the assumptions for the principal part ol a given operator. Such estimates
can often be found in the existing literature.

b) The most essential remark is that, due to Parseval’s identity, in a
Hilbert space every self-adjoint operator which is bounded from below is a
sectorial operator. |
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In order to apply the previous ideas to the Navier-Stokes equations we
first have to get rid of the pressure term and of the equation V - u = 0.
Therefore, let v € CH(Q,RY) with V-u = 0 and u - n|go = 0. Then for
€ C1{Q,R) we have _fﬂu -Vodr = 0. On the other hand a vector field
u which is orthogonal to {V¢ : ¢ € C'(Q,R)} satisfies V- u = 0 and
u-nlgn = 0.

We define Lf} to be the closure of {V¢ : ¢ € C'(Q,R)} and Liu to be
the closure of {u € C*(Q,R?) : V-u =0, wu-n|sgg=0}. Then L2 and L3,
are orthogonal subspaces of L with L? = L% & L3, . We introduce P to be
the orthogonal projection on the subspace Liv.

As before we write the Navier Stokes equations as dyu = —Au + N(u)
with Au = —PA under Dirichlet boundary conditions and N(u) = —P((u -
V)u). It is easy to see that A is a self adjoint and positive definite operator
which immediately implies that A is a sectorial operator, too. Hence, — A is
the generator of an analytic semigroup, cf. Remark 6.3.5 b).

Again u is called mild solution if u satisfies the variation of constant
formula

t
u(t) = e Mg + / e~ =IAN (u(r))dr.
Jo
In order to control the nonlinear terms we need so called X“-spaces. We
consider a sectorial operator A with Reo(A) > 6 > 0. For a given sectorial
operator A this can always be achieved by considering A = A + 31 for a
suitable chosen 3 > 0.

Definition 6.3.6. For a > 0 define

! /rﬂﬁ(u— A)~ta,
I

A% = —
21

where I' is a curve asymptotically coming from e

f

oo and asymptotically
going to Yoo with T —0 < 0 < 7 running between the origin and o(A).
The branch of the function A — A™% is chosen in such a way that the slit in
the complex plane where A — A™% is not analytic coincides with the negative
real azis, see |(GamO1| for an introduction to complex analysis.

Since |[(M — A)7Y| < E—| we have the convergence of the integral for
a > 0. There exists a C > 0, such that [|A™%] < C for 0 < a < 1.
Moreover, we have A~*“A~7 = A~(@+8) if o 3 € (0,1].

Since Reo(A) > 6 > 0 we have the injectivity of A™". Since A™" =
AT A for n > a we have the injectivity of A™®. Therefore, A™% :
X — R(A™?) is bijective and we have a (non bounded) inverse. Other
representation formulas for A* can be found for instance in [Hen81, §1.4]
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Definition 6.3.7. We set A = (A=)~ for a > 0. The domain of defi-
nition is given by D(A%) = R(A™®). We introduce X = D(A%) equipped
with the norm

lul[xe = [|A%ul|x.

For a € (0,1) we have D(A) C D(A%) since R(A™') € R(A™%), and so
D(A%) is dense in X. Due to the construction of the operators we have that

et xo < Mot~ %|u| x.

In order to proceed with the local existence uniqueness of solutions as above
we need the Lipschitz-continuity of the nonlinear terms N(u) from X to
X. The following lemma reduces this proot to the proof of the Lipschitz-
continuity from W#*4 to LP, cf. [Hen81, Theorem 1.6.1].

Lemma 6.3.8. Let Q C RY be an open set with smooth boundary, let 1 <
p < 00, and let A be a sectorial operator in X = LP(Q) with D(A) = X! C
WmP(Q) for a m > 1. Then

X*cwke  or X% cCOV(Q)
forae 0,1 ifk—d/fg<ma—d/p,q=por0<v<ma-—d/p.

In order to prove that D(A) = X' ¢ W22, for f € L? one has to find
solutions u € W#2 of the elliptic problem

—Au+Vp=F, V.u=>0

in {2 with Dirichlet boundary conditions for u. The existence of such so-
lutions is implied by elliptic regularity theory [ADN59, ADNG64|. Since
D(A) ¢ W22 it follows for d = 3 by Lemma 6.3.8 that for a € (1/2,1)
that X € W9 provided 1/q > (5 — 4a)/6 and that for a € (3/4,1) that
X* C L. Therefore

IN(u)llx = [IN(u)l[r2 < lull=l|Vullzz < CllufXa

for « € (3/4,1). For d = 2 we find o € (1/2,1). Hence, we have the
Lipschitz-continuity of the polynomial N(u) from X® to X for d = 3 if
a€ (3/4,1)and ford =2 if a € (1/2,1).

Theorem 6.3.9. Let a € (3/4,1) ifd =3 or a € (1/2,1) if d = 2. For
ug € X there exists a Ty > 0 such that the Navier-Stokes equations possess
a unique mild solution u € C([0,Tp], X*) with u|i—g = ug.

In the proof of the global existence of solutions u € C([0, Ty], H;,;f”) of
the Navier-Stokes equations in d = 2 space dimensions in §6.2.3 we used
(6.19) which only holds in R? and periodic boundary conditions. In this
section we prove the global existence without using (6.19). The method gives
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weaker estimates but it is more general and periodic boundary conditions
are not needed; nevertheless we keep them for simplicity.

With the Gagliardo-Nirenberg inequality LP-norms can be estimated by
L9-Norms and gradients, for p > ¢. Such inequalities are called interpolation
estimates since a norm in the middle (L?) is interpolated with the help of
a weaker norm (L9) and a stronger norm (gradient). Here we give a simple
version. See, e.g., [Hen81, Page 37] for a general version, and Exercise 6.6
for the prool ol an even weaker version.

Lemma 6.3.10. (A simple Gagliardo-Nirenberg inequality) For d =
1,2,3.4 we have

l—dj4 dfd
[ull acray < Cllul aay Il ey

With the help of Lemma 6.3.10 we can proceed as follows. The L*-
estimate in domains with general Lipschitz-continuous boundary and Dirich-
let boundary conditions works exactly the same as before. For the H'-norm
we estimate again as belore

1d

6.22 i
(6.22) 2dt Jra

Vu|*dz < — [; |Aul?dx + g(u)
']:"E'

with g(u) = / (Aw) - ((u-V)u) dm‘ . For periodic boundary conditions and
Td

d = 2 we have g(u) = 0. For general boundary conditions and/or d = 3 the
best estimate known 1is

1/2
g(u) < |[Awlp2f|(v- V)u| g2 < ||Aul|2 (/W |?H|B|H|2dif“)
< |Au||p2 w4 || V| g4

where we used the Cauchy-Schwarz inequality. The Gagliardo-Nirenberg es-
timate and the Poincaré-inequality [lul|gm < C 37, _,, |07 ul[ 12, see §5.2.2,
give

= |

—d d —d d
g(u) <|Aullzz (Cllull 2" lullyy ) (CIVuliz"1Vul3))

14d/4 1—dd/4
<C||Aull Y ul 27Vl 2

In order to balance the factor | Aul|7, on the right-hand side against — || Au/|7,
in (6.22) we use Young’s inequality

P
(6.23) ab < % + - for a,b > 0 and p,q > 1 with 1/p+1/q = 1.
Case d = 2: We choose £ = (4/3)%/* and obtain
C /2 3/2

9(u) < —llull 2 [Vl 2 ellAull
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4
2 1
< [|Au)2: + Cllul2: | Vull?;
using (6.23) with ¢ = 4/3 and p = 4. Hence, we obtain

1/C 1 gelss ‘
< 1 (SM2Ivalie) + s,

d .
EH?HH%; < a(t)||Vul|72, where a(t)=2C 1|72

From

* Lz, = —Ivulzs
cf. §6.2.3, follows ||u(t)]| ;2 = e ||up||;2, and then

L
/ﬁ IVa(r)|[ 20 dr = [Juol|22 — [|u(®)]2s.

Note, that this estimate does not imply a uniform bound for h(t) = ||Vu(t)|| 2,
but its square-integrability. As a consequence,

t

UE/ a(t) < C sup ||u(r /||?u|| 2dT < 00
0 TE(0,t)

uniformly for all ¢ > 0 and so

IVu(t)]22 < oo “Damugug|12, < M| Vuol2,

for a M = 0 independent of t = 0. Therefore, the local solution can be
extended to a global solution, 1.e., we obtain the global existence in 2D.

Case d = 3: Similar to the 2D case we use the Gagliardo-Nirenberg estimate
and Young’s inequality with ¢ = 8/7 and p = 8 and obtain

] (Auw) - ((u- V)u)de
Td

g(u) = < | Aull 2l | V]

7/4 1/4
<Cll Al IV ull gl < € (IVull 2 ull 14+ 1Aul3

If we proceed as above it follows

d ,
muvuuig < a(t)||Vul32, where a(t) = 2C||ul|3:|Vul/$..

The equation for the dissipation only guarantees that the function h(f) =
[Vu(t)|| 2 is in L?((0,Ty)), but not in L°((0,Ty)), and therefore we cannot
proceed as above. For a further discussion we refer to [Wie99, Con01].

Remark 6.3.11. Since so far it cannot be proved that for d = 3 unique
global solutions exist, it appears to be nonsense to discuss their long time
dynamics. Nevertheless, if one assumes the existence of global strong so-
lutions, then the concept of attractor is again quite useful. In particular,
there are a number of estimates for the dimension of attractors (which is
finite) for the Navier-Stokes equations in two and three space dimensions,
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cf. [Tem97|. However, a finite-dimensional attractor by no means implies
that the dynamics is “simple”. In fact there is a lot of theory on turbulent
flows and also on so called fully developed turbulence which is mainly based
on methods from statistical physics, c¢f. [FRMTO01]. |

Further Reading. Classical books about local existence and uniqueness
of the solutions of the Navier-Stokes equations are [vW85, Tem01]. More
background on the derivation and applications of the Navier-Stokes equa-
tions and related equations can be found in [Fow97]. Concise treatments
of these equations as a dynamical system, embedded in the general exis-
tence theory of semilinear parabolic equations can be found for instance in
[Hen81, DG95, Tem97, Rob01]; the latter three are also recommended
for the so called Galerkin method as an alternative to semigroup methods for
proving local existence in the Navier-Stokes equations and general parabolic
systems.

An excellent textbook, going way beyond the brief summary given here,
is [MBO02]. An essential reference for steady problems in exterior domains,
including the necessary function spaces and inequalities, is [Galll|. The
dynamics and stability of vortices is treated in  MB02, GW05, GWO06Db|.
See [WW15, Chapter 1] for a very accessible account on metastable states
and the finite dimensionality of the global attractor for the 2D Navier-Stokes
equations. An enlightening essay about the Navier-Stokes Milleninm prob-
lem is [Tao09], emphazising the scale invariance, see Exercise 6.7. Finally,
[Lem16]| gives an impressive overview about the state of the art of the math-
ematical analysis of the Navier-Stokes equations, and an excellent review of
the Millennium problems, with focus on the Navier-Stokes equations.

Exercises

6.1. (a) Show that u : R — R* with V x u =0 and V - u = 0 is equivalent to the
Cauchy-Riemann differential equations for w(z) = uy(x,y) — ius(z,y), z = = + iy.
(b) Sketch the flow belonging to w(z) = z? and calculate the associated pressure.

6.2. (d’Alembert Paradox) Let a > 0, U € B3, and ¢(z) = (% + 1) (U, x)

for z € Q = R*\ B,(0). Sketch u = V¢, show that divu = 0, and calculate the

drag [ = _IE..TED‘.I dndsS.

6.3. For given w = w(x), x € T2, find in Fourier space an explicit solution u of
Vxu=w and V- -u=~0.

6.4. Show that |[u«vlles < |fulles  [[v]les .

6.5. Show the enstrophy identity (6.19).
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6.6. Prove the following weak form of the Gagliardo-Nirenberg inequality for (2m)-
periodic functions. For d = 1,2, 3 and 6 > 0 we have

1—d/4—8 I S
Jull acray < Cllullz oy ull5 o

< C||t||re for 1/p+1/g = 1 and g € [1, 2] and the Hélder inequality
Z lapbrcr| < (Z |a.k|f"l}”1"” (Z |hk|p:r:]1fp:(z |m:|p3)1,f’pa
keZ ked kci ke
with 1;";{}] + ljfpg + ll,/pg = 1.
6.7. Let (u,p) : RY x [0,7) — R? x R be a solution of the d-dimensional Navier-
Stokes equations over RY. For | > 0 set w!(x,t) = [“*u(lPx,17t) and p!'(x.t) =
[%2p(1Px,17t). Find oy, 3.7, and & such that (u',p’) is again a solution of the

Navier-Stokes equation. Discuss how the energy and energy dissipation behave
under this scaling.

Hint: Use




Chapter 7

Some dissipative PDE
models

This is the first chapter of Part 11l of this book. Here and in the remainder
ol this book we consider PDEs on unbounded domains. In order to avoid
dealing with far away boundaries, whose influence on the solutions in the
interior of the domain is small at least for a long time, we idealize the
large domain to an unbounded domain. For instance, instead of x from
some large interval (—L,L) we consider + € R. From a didactic point
of view the consideration of unbounded domains has certain advantages.
Since we do not have to deal with boundary conditions which are often a
source of functional analytic difficulties, this idealization allows to explain
genuine PDE phenomena such as transport, diffusion and dispersion. Hence,
it allows us to keep the functional analytic tools at a minimum. Unbounded
domains are easy in this respect.

On the other hand., compared to PDEs over bounded domains there are
new fundamental and challenging open questions, mainly due to the fact that
PDEs on unbounded domains define dynamical systems with uncountably
many modes (degrees of freedom). In contrast to the situation of countably
many modes considered in Chapters 5 and 6, a separation of the uncountably
many modes into single modes is a highly singular action from a functional
analytic point of view, and therefore in general of little use. The recovery
of compactness by smoothing properties is no longer true, and therefore
finite-dimensional attractors in general cannot be expected.

To illustrate our point ol view, the lollowing example shows that also
for PDEs defined on a very large domain in space the interpretation as
countably many ODEs is no longer a big help.
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Example. Consider the linear wave equation d2u = d?u for t € R, x €
(—=L,L), L > 0 very large, u(x,t) € R, with Dirichlet boundary conditions
u(—L,t) = u(L,t) = 0. We consider two special classes of solutions, first
the oscillations of the cigenfunctions,

u(x,t) = sin(nwt/(2L)) sin(nw(x — L)/(2L)), neN,
and secondly the traveling wave solutions
u(z,t) = flz —1t) + gz +1)

with f and g arbitrary smooth functions with compact support

supp(f) = {z: f(z) #0} C[-1,1]  and  supp(g) C [-1,1].

As long as |t| < L — 1 this is a solution of the PDE, i.e., for a very large
time interval traveling wave solutions play a role. An expansion of these
solutions in eigenfunctions is of no use. |

In this Chapter 7 we start with some scalar model problems. These are
the Kolmogorov-Petrovsky-Piskounov (KPP) or Fisher equation in §7.1, the
Allen-Cahn equation in §7.2, and the Burgers equation in §7.4. Moreover,
there is the method oriented §7.3 about Fourier transform. We keep the
exposition rather brief and aim for a basic understanding of the various
models. We are interested in the local existence and uniqueness of solutions
and in the existence and stability of special solutions, which are important
for the underlying physical processes which are described by the models.
To construct these special solutions we often use the ODE methods from
Part 1. In order to make this part more self-contained we recall a number of
definitions and constructions which are only small adaptions of respective
concepts from Part [. In Chapter 8 we consider with the NLS, KdV, and the
GL equation the three canonical modulation equations whose dynamics we
will recover in more complicated PDEs in Part IV of this book. Part I1I of
this book is closed with Chapter 9 about reaction-diffusion systems.

For each of the equations considered in this Part there already exists
much literature on various levels, see the “further reading” at the end of
cach chapter.

7.1. The KPP equation

The Kolmogorov-Petrovsky-Piskounov (KPP) equation [KPP37] or Fisher
equation [Fis37]

(7.1) Ou = O%u + u — 2,
witht > 0, x € R, and u = u(x,?) € R, occurs as a model for various sys-

tems in nature, for instance for chemical reactions or population dynamics.
The equation consists of two parts, namely the diffusion term 9%u and the
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nonlinear reaction term u—u?. Therefore, it brings together PDE with ODE
dynamics.

Inserting w(x,t) = v(t) into (7.1) gives the one-dimensional ODE
(7.2) D= v—v°.

The 1D phase portrait shows that the fixed point v = ( is unstable and
that the fixed point v = 1 is asymptotically stable. The term +wv in the
KPP equation describes exponential growth for small v and the term e
represents saturation. For instance, a population of animals or a chemical
reaction initially increases with some exponential rate until the growth is
saturated by the available food or the missing reactant. If v(0) > 0, then
limy oo v(t) = 1.

Before we combine the ODE dynamics coming from the reaction term
u—u” with the dynamics coming from the diffusion term 97u we discuss the
modeling and the properties of linear diffusion in the next two subsections.

7.1.1. The modeling of diffusion. Diffusion occurs in various situations.
We explain three such situations, namely Brownian motion, a discrete ran-
dom walk. and Fourier’'s law.

Brownian motion and diffusion. The term Brownian motion is named
after Robert Brown who in 1827 described the irregular motion of pollen
particles suspended in water. In [Ein05] Einstein studied Brownian motion
the following way. Consider a long, thin tube filled with clear water, into
which we inject at time £ = 0 a unit amount of ink, at the location z = 0.
Let u(x,t) denote the density of ink at position x € R and time ¢ > 0.
Suppose that the probability that an ink particle moves from x to x +y in a
time 7 is translational invariant, i.e., does not depend on 2. This probability
is denoted by p(y, 7). Then

u(:??._, b+ T) :/ H(T — Y, f)p(yvq_) dy
4

1 .
= [ (ut) = @ute, )y + 5 @Rt 007 + .. ) ply. )y
JE

Now p(—y,7) = p(y,7) by symmetry such that [ yp(y,7)dy = 0. Next
assume that the variance is linear in 7, i.e.,

(7.3) / yzp(yﬁ T)dy = 2D
E
for a D = (. Then

%(H(Ea t+7) —u(x,t)) = Dogu(x,t) + h.o.t.
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Under the assumption that all higher moments of p decay faster than 7 for
T — 0, in the limit 7 — 0 we obtain the linear diffusion equation

(7.4) Oyu = DOzu.

Einstein derived the relation 2D = RT /(N av) where R is the gas constant,
1" the temperature, N4 the Avogadro number, and v a friction coefficient.

A discrete random walk. We consider a two-dimensional rectangular
lattice, comprising the sites {{(mdx,ndt) :m =0,£1,£2,...;n=0,1,2,...}.
A particle starting in # = 0 at a time t = 0 decides at each time ndt to
move an amount dx to the left or to move an amount dx to the right, both
possibilities with probability 1/2. Denote by p(m,n) the probability that
the particle is at the position mdx at the time ndt. Then p(0,0) = 1 and
p(m,0) = 0 for m # 0. Also, p(m,n + 1) = 3(p(m — 1,n) + p(m + 1,n))
hence

L 1
B

1
p(m,n+1) —p(m,n) = E(p(m —1,n)—2p(m,n) +p(m+1,n)).
Now assume that (§2)2/(6t) = 2D which corresponds to (7.3) above. Then
1 D
57 P(m,n+1) —p(m,n)) = (57)2 (p(m —1,n) = 2p(m,n) + p(m + 1,n)),

and sending § — 0 again yields the linear diffusion equation (7.4).

Fourier’s law. Let u: R? — R be the temperature inside a material body
and let V € R? be a test volume with surface S. Then

d
E/udV:—fyndS:—/ div jdV ,
Vv

S V
where j = j(x,t) € R’ is the heat flow. Since this is true for all test volumes
V' we find
ﬂf,u-i- leJ = 0.
It is reasonable to assume that the heat flow from warm to cold is propor-

tional to the negative temperature gradient, i.e., j = —DVu. This so called
Fourier’s law again yields the heat equation

dru = D div Vu = DAuw.

7.1.2. Diffusion on the real line. Throughout this subsection we con-
sider the linear diffusion equation with diffusion coefficient D =1, i.e.,

(7.5) dyu = O7u,

which always can be achieved by a rescaling of time or space. We already
observed the dissipative character of this equation in previous sections where
we found the solutions u(z, t) = e ¥t sin(kx) which decay to zero for |k| > 0
with some exponential rate.
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For ¢t > 0 the general formula for the solutions of the linear diffusion
equation (7.5) is given by
_l=—u)” y}g
.0)dy.
The derivation of this formula is given subacqucntly, but also by a different

method in §7.3. The existence of this integral is gnaranteed for £ > 0 if for
instance sup,cp [u(y,0)| < oc.

(7.6) u(x,t)

From (7.6) we immediately obtain the estimate

sup |u(x,t)]| u(x,0)]d,

TR - v’4r

i.e., solutions to spatially localized initial cundltmna decay uniformly towards
zero with a rate 2. Since mass is conserved, i.e.,

o0 i
/ u(m,t)dmzf u(x,0)dx

for all t = 0, this is how diffusion is expected to work. The conservation of
mass follows for instance with the use of the solution formula from

o0 o0 20 1 |:-.J'.- Hl
/ u(x,t)dr :/ (/ ; tF d:r) u(y,0)dy
—00 —00 —00 T

— [ 1-u(y,0)dy.

of =30

The decay happens in a universal manner. The initial condition

u(.y'! n) — éﬂ{y)‘.l

with dg the "o-distribution in z = 07, c¢f. Example 5.2.2, leads to the self-
similar solution

1 2
7.7 ulr.t) = ¢ 4,
(7.7) (@.0) = 7

The solution only exists for £ > 0. This is a general rule. For an arbitrary
initial condition the diffusion equation cannot be solved backwards in time.
Since this solution is the starting point of the construction of the general
solution formula it is also called fundamental solution. In order to derive

aT

(7.7) we make the ansatz u(z,t) = v (nf) and find v” = —3&v" which is

£2

solved by v' = ce” 7 with a constant ¢ € R. Since with u(x,t) = v (1)

V't

also dyu = ﬁv’ (%) is a solution of (7.5) we find (7.7).

In lowest order self-similar behavior is also observed for general spatially
localized initial conditions, namely,

18wt =0 (L) 100/ with u(g) - e €N
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Figure 71 Self-similar decay of the special solution wu(z,t) =

ﬁ,l_ﬂ i for t € {1,2,5,10}.

and with a constant A* € R depending on the initial conditions. This is
explained in detail in §14.

Diffusion is smoothing. We obtain the estimate

— [r.r.—-a]z
—(I—fy)ﬂ_ - u(y,0) dy‘

sup |dpu(x,t)| =sup

1
1
relk relR 'y "-11'

£
=sup (! (::-:: — /s, U) ds
rek \/— "'u’
1 C
<— se”% ds sup |u(x, 0 sup |u(x,0)].
\/1-5 \/’I_l' 0 T€R | ( ) L zeR ( |
with a constant C’ independent ef t and of u(-,0), where we made the trans-
formation s = (z — y)/(2v1), ds = — dy/(2vt). This can easily be

generalized.

Theorem 7.1.1. Let u = u(-,t) be a solution of the linear diffusion equa-
tion. Then for all n € N there exists a C' > 0 such that for all t =0

|05u(-, t)llco < CE"[uf-, 0)]|co-

Finally for every ty > 0 and xp € R the function (x,#) — wu(x,t) can be
expanded in a convergent power series around (xg,tp), i.e., u is an analytic
function and can be extended into the complex plane. See §6.2.2.

In order to handle the linear diffusion equation dyu = 9*u with dynam-
ical systems methods we have to choose a suitable phase space. We already
know that in infinite dimensions the choice of phase space and associated
norm is fundamental. A first choice is X = (Lb wni I(R?RL the space ol uni-
formly bounded and uniformly continuous functions u : R — R, equipped
with the norm

Juat)

CBuniy ~ SUD ulz, )]
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Lemma 7.1.2. The curve t — u(t,ug) is continuous in X if ug € X.

Proof. Since u(t+ s,ug) = u(t, u(s,up)) it is sufficient to prove the continu-
ity of the orbit ¢ — wu(t) for t \, 0 in the space X. With H(z) = ﬁe_f”
we estimate

||H'(tvuﬂ} o uﬂ”{’}g — sup |U,(J_','t) o H(:L’., D)|
rel

sl [ (77 (000 = st 0y

— sup /_iﬂ(z) (u{m —\Vt2,0) — ‘u(f.-:,[])) dz‘

reR

£511p/ |...|dz+su_1p/ |...|dz = s1 + s0.
reR J|z|<R z€R J|z|>R

For a given £ > 0 we have to find a £y > 0 such that for all t € (0,ty) we
have s1 + 59 < £. We can estimate

59 < 2/ H(z)dz sup|u(z,0)| < =/2
2|>R z€R

by choosing an R > 0 sufficiently large due to the definition of H. Next, we
estimate

S ii/ H(z)dz sup |u(z+ V1z.0) —u(z,0)|
o r€R |z|<R

= sup |u(z + Vtz,0) — u(z,0)].
reR,|z|<R
Since x — u(x,0) is uniformly continuous for all £ > 0 there exists a d > 0
such that for all y € R with |y| < § we have |u(xz 4+ y,0) — u(xz,0)| < &/2.
Choosing tg > 0 so small that tpR < ¢ we are done. ]

The deeper reason why X = CE would not be a good choice is explained
in the following remark, but for a slightly simpler PDE.

Remark 7.1.3. If we consider the translation semigroup 7'(t) : u(-) —
u(+ 4+ t) which is the solution operator of the transport equation diu = 0, u
in the space X = CS{H, R), we have that T'(¢) is not a Cy-semigroup, cf.
Definition 5.1.9, since for u(z) = sin(z?) which is an element of Cbﬂ, but
not of Chﬂ,unif we always have [[u(-) — u(- +t)[|co = 2, if £ > 0. The same
is true for the linear diffusion equation. The deeper reason for the non-
continuity of both semigroups in CE is the fact that the domain ol definition
C’}, respectively C’f, is not dense in G‘E, cf. the theorem of Hille-Yosida, cf.
[Paz83, Section 1.3, Theorem 3.1|. In order to have a Cy-semigroup we

have to restrict to X = C’Emi f(H, R), which excludes the counter-example
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u(x) = sin(z?), where the faster and faster oscillations for |z| — oo destroy
the uniform continuity w.r.t. = and ¢. |

Remark 7.1.4. With (x,t) — u(x,t) a solution of (7.5) also (x,t) — u(x +
y,t) is a solution of (7.5), i.e., every solution shifted by ¥ is a solution,
too. More abstractly, the solution operator and the translation operator
commute. With ¢ — w(x.t) a solution, obviously every derivative ¢ —
dlu(x,t) and every integral is a solution, too.

0

10 -8 -6 -4 -2 0 2 4 6 8 10

1 _ a2

Figure 7.2. The solutions u(x,t) = —e 1, e and its first integral

for t = 1.

Moreover, every linear combination and every convergent series of solu-
tions, or every convergent integral over a set of solutions are again solutions.
These properties are used in the following paragraph. ]

Our starting point to derive the solution formula (7.6) is the explicit
solution (7.7). With this solution also

1 _=—w)? > ey (z—u)?
u(r,t) = —e” n and u(x,t) = U}e_ 1w dy

Vi —o V1

are solutions of (7.5). From the limit £ — 0 and Lemma 7.1.2 we find that
_ u(y,0)
cly) = 7

™
of fundamental solutions, i.e., of diffusion processes starting in every point

x € R with a d-distribution as initial condition.

. The solution formula can be interpreted as linear combination

7.1.3. The reaction-diffusion equation. The KPP equation is obtained
by adding the diffusion term to the ODE (7.2). Thus, the KPP equation
describes for instance a chemical reaction or the evolution of a disease in
a large, here in an infinitely extended, domain, where the concentration
u = u(x,t) spreads into space by diffusion.

In order to handle the KPP equation as an abstract dynamical system
we choose the same phase space as for the linear diffusion equation, namely
X = Cﬂumf{R, R). Solutions u = u(t) € X satisfy the KPP equation only
in a weak sense.
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