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Historical Remarks



1. Stochastic Differential Equations

In 1940’s, K.1t6 introduced the now well-known 1t equation in
RY:

dx(t) = b(x(t),t)dt+o(x(t),t)dws,

x(0) = Xxo,

where w; is a n-dimensional Brownian motion,
b:RYx[0,T] - RY and ¢ : RY x [0, T] — R¥*™ This equation
is equivalent to the following integral equation:

(1)

X(t) = 5+/ ds+/ o(x(s),s)dws, 0<t<T. (2)



2. Statistical Theory of Turbulence

From 1940 to 1960’s, theory of turbulence was a very active
research area in fluid dynamics.

A mathematical model was first proposed in 1952 by E. Hopf as
a stochastic initial-value problem for the the following
Navier-Stokes equation with ¢ = 0:
d 1 -
EU(X’ H+(u-Viu=— EVp+ vAu+oW(x,t),
V.u=0, xeD, t>0, )
ulgpp=0, u(x,0)=g9g(x,),

where W(x,t) is a R-Wiener random field in R®. He derived the
so-called Hopf equation for the characteristic function :

o(t,A) =E{exp{i(ut,A)}. For o # 0, the generalized Hopf
equation takes the following form:



i (%) 52q> (1,2)
*(t:2) / / dxd
ot /k 1 I Xk Xx)6Ak(y) y

j(x) 9 8<D(t/l)dx

ka1 axk I 035(x) ()

3
_.12/.,;:1 /D/fovk(XvY)lj(XW(Y) adxdy®(t, 1),

(D(O,A,) = q)o(ﬁ,)

Existence and unigueness results proved by C. Foias (1974),
M.Visik and V.I. Komech (1981)...



3.Turbulence Related Problems
Turbulent Diffusion

u _

ot

ou

%L?D:Oa U(X,O):UO(X),
where v(t, x, ) is the turbulent velocity.

Stochastic Wave Propagation

&—CZAquzs:v(txw) +q(x,t)
atz k:1 k ) ) a q ) )
au d

where v(t, x, ) is the turbulent velocity.



Stochastic PDEs of I1t6 Type

In particular, let v(t,x, 0) = gt W(t, x), where W(t, x) is a
Wiener random field in R® Then the turbulent diffusion equation
yields It6’s evolution equations or the stochastic evolution
Equation:

du du,d
adu
%DD = 07 U(X,O) = UO(X)a

or

u(x,t) = up(x) +/0t{vAu(x,s) +49(x,s)}ds

3

t du(x,s)
_1;1/0( Ixe YWk (ds, x)




Stochastic Evolution Equations in Hilbert Spaces

In 1972-3, A. Bensussan and R.Temam treated the
Navier-Stokes equations with additive noise as a stochastic
evolution equation in Hilbert space (¥ C .2 C ¥*) in the form:

"Zt’f = Au+ B(up) + (1, @), U = n(w).

where A: ¥ — ¥* B: ¥ — ¥* and f(t,0) = W(t,x).
( Example):
u d
3= kAu+g(u)+ EW(X, 1),

ulpp=0, u(x,0)=n(x,®), xeD, te(0,T),
where A= kA, B(u)=g(u) ,
¥ = HY(D),# = L?(D),¥* = H (D).



Multiplicative Noise and It6’s Formula

du; = Augdt + B(up)dt + X (up)dWs,  up = n(w).

Under some conditions, such as B(u) is monotone,
E. Pardoux (1975) proved the existence and uniqueness of a
strong solution:

ue LP(Qx(0,T),7)NLP(Q, C([0, T], ).

More importantly, he proved the Ité’s formula:
t t
(ur, £) = B(Uo,0) +/ 90 (Us, ) ds+/o (Aus, &' (us, 5)) ds
0

+ [ (Bus) @/ (us s))5 + [ (@'(us,5), W)

1 t * 1
+§/0 TR (us)®" (Us, $) (us)]ds.



Mild Solutions

In 1980’s, G. Da Prato introduced the semi-group approach:

du; = Augdt + B(up)dt + S(u)dWs, Uy = n(o),

where A generates a strongly continuous semigroup
{G;=e", t >0} on 7. Rewrite the above equation as the
stochastic integral equation:

t t
Ur = Gy + /0 Gr_s B(us)ds + /0 Gr_s X (us)aWs.

Its solution u € LP(Q2, C([0, T]), ) is a mild solution.

Contributions to the modern theory of Stochastic PDEs:

e Organizer of Trento International Conference Series (1985 —
2000) on Stochastic PDEs and their Applications.

e Book (1995, Da Prato and Zabczyk): Stochastic Equations in
Infinite Dimensions.



Mathematical Questions



Stochastic Heat Equation

du
ot

U’,)D:O, U(X,O):h(X).
Let {¢x, Ak} be the O-N set of eigen-pairs of (kA — ) with
0x|sp = 0. Assume that W(x,t) = Z ok Ok (x)wf with

= (kA—a)u+W(x,t), xeD,te(0,T),

Yir_4 02 < oo, where {wf} are iid Brownlan motions in one
dimension. We can obtain a formal solution:

x.t)= Y ukox(x)
k=1

t
where uf = hke*lk‘Jrok/ e MI=Sawk k=12, ...
0



The formal solution is given by
( )—0(X,t)+V(X,t)
o0 o0 t
= Z hee ™ o(x)+ Y ok <Pk(X)/ e Mg,
k=1 k=1 0

It can be shown that this formal solution
ueL2(Qx(0,T),H} (D)) is a strong solution.

Moreover it is an Ornstein-Uhlenbeck process in H} (D) with
mean Eu(x, t) = 0(x,t) and the covariant function

Cov. {u(x t),u(y,s)}
Z 21,({6_““ o e MDY (x)0u(y):



Existence of Solutions



Existence of Mild Solutions

au; = [AUt + Ft(Ut)]dt—l— Zt(Ut)th, t e (0, T),

(7)
Up = heusr.
Then the integral equation for a mild solution takes the form:

t t
Ut == Gth‘i‘[; Gt_st(Us)ds+/() Gt—SZS(uS)dWS (8)
= Ft(u).
For p > 2, let % be a Banach space of .%;-adapted, continuous
processes in .7 with norm: ||ul|p.7 = {E sup ||uf|P}'/P.
0<t<T

Under suitable conditions, show thatthe map I : Z — Zis a
contraction. The existence of a unique solution u € 4 follows
from the Banach Fixed Point Theorem.



Existence of Strong Solutions
For example, consider the linear SPDE:

du d
55 vAu+b(x)u+ ous: W(x,t),
u|¢9D:Oa U(X,O): h(x)v

where b(x) is bounded and continuous on D; v, c are positive
constants and W(.,t) is a Wiener random field in 7. Let

¥ = Hl(D),# = L?(D) and ¥* = H~'(D). Rewrite the above
as an It6 equation:

adus = Aus+ourdWy, Ug=he 7,

where A= (vA+b): ¥ — 7" and W; is a R-Wiener process in
0 EWr =0, E{W:i(x)Ws(y)}(tAS)r(x,y)and

(Rh)(x) = /D r(x,y)h(y)dy, for heH.



Proof of Existence Theorem

(1). Galerkin Approximation: Let {¢,} a complete ONS for
€ with ¢ € Z(A).

Let P, : 7 — Span{¢q,¢o,---,0n} = S, defined by
Pnh = er(':1 (h, ¢n)¢n, fOI’ h S %

Let A, = PpAand W) = P,W;. Consider the n-dimensional It6
equation:

auf = Apufdt+oufdW(,  ug = h, e A2,

which has a unique solution
u" € L2(Q2x (0,T), )N L2(Q, C([0, T], L2(57))).



(2). Bounded Solutions: From Ité’s formula, B-G-D inequality
and others, it can be shown that

)
E sup |[uf|2+E / |uP|2dt < My < .
o<t<T 0

Hence there exists a subsequence {uf} such that
UK~ uel?2(Qx(0,T),7)NL3(Q,L.((0,T),#)).

(3). Strong Solution For ¢ € 7, consider the equation

t -t
(9) = (hn,9) + [ (AntZ,0)05+ [ (9.0uZaWY),

As n — oo,it will converge termwise to the variational equation
a.s.:

(v 0) = (n9) + [ (Aus, 0105+ [ (9. 05y



Properties of Solutions



Asymptotic Analysis of Solutions

dus = Augdt+ F(ur)dt + X (up)dWs, up=he s

 Boundedness of Solutions: The solution u}! is bounded
(non explosive) if, forany T > 0,

lim P{ sup ||u|| > R} =0.
R—e “o<t<T
« Stability of Null Solution: u/ is a.s. asymptotically stable
if 36 > 0 such that, for ||h|| < &, P{limsup||uf| =0} = 1.
e Existence of Invariant Measure ﬁﬁw
Let u(B) = P(ul' € Bluf = h) for B C . Show that

lim
t—

_o(Wu(dv) = [ o(v)u(av)
n »

forany & € Cp(57).



For € > 0, consider

duf = Aufdt+F(uf)dt+exX(uf)dW;, t>0,
us = h,

e Small perturbation theory,
e Method of averaging (Multiple scales),

e Large deviations theory: Let P¢ be the solution measure on
X = C([0,T] x.2). Show there is a rate function J on X such
that, as € — 0,

e2log{P%(B)} ~ —inf,cgJ(v), veX.



Beyond Existence THeorems:
Quantification of Solutions



Numerical Solutions

Zakai’s equation in nonlinear filtering: the conditional probability
density function u(x, t, ) satisfies

axj[ajk Z ax [9k(x)u]

+ V(x,t)u, X € Rd, t>0,

where V(x,t) = Z hi(x)w;(t) and w;(t)'s are i.i.d Brownian

motions.



Statistics of Solutions

au d
57" vAu+f(x,u)+ 5 W(t, x),
ulopp =0, u(o,x)= h(x),
where f(x,u) is bounded and smooth, such as b(x) u.
How to determine the statistic E{||u/"||?} = /% v|Pul(dv) ?

e Method of Differential Equation :
Rewrite in the equation in 1t6’s form

du; = Augdt + F(Ut)dt-i-th, ug = h,
Let W : . — R be smooth. Determine E{W(u/")} =7



Define ®(t,v) =E{V(u{)|up = v},v e H.
Then ¢ satisfies the Kolmogorov equation:

d 1 5
jt¢(t7 V) - EW[RDV(D(ta V)]

+(Av,D,o(t,v)) + (F(v),D,o(t,v)),
®(0,v) = V(v), aeveJs.

If the solution ®(t, v) can be found, then the statistic
E{W(u;)} = d(t,h).



Determination of Solution Measures

In the care of a simple stochastic heat equation, by direct
computations, it is possible to determine that the solution is an
O-U process in H}(D) with known mean and covariance. This
is a vary special case. Consider

au d

T vAU+b(x)u+ 3 W(x,1t),

ulpp=0, u(x,0)=h(x),
where b(x) is bounded and continuous. Define the
characteristic functional ®(t,1) = E {exp{i(us,A)}, A € .
Then ¢ satisfies the Hopf’s equation:

o(t,1) = ¢(o,z)+/ot {3 THRD3®(s.2)
V(AL D;0(5,1)) + (b4, Dy b(s, 1))} d.



Thank you



