
Introduction to Stochastic Partial Differential Equations

Pao-Liu Chow

Wayne State University
Michigan, USA

plchow@math.wayne.edu



Historical Remarks



1. Stochastic Differential Equations

In 1940’s, K.Itô introduced the now well-known Itô equation in
Rd :

dx(t) = b(x(t), t)dt +σ(x(t), t)dwt ,

x(0) = x0,
(1)

where wt is a n-dimensional Brownian motion,
b : Rd × [0,T ]→ Rd , and σ : Rd × [0,T ]→ Rd×m This equation
is equivalent to the following integral equation:

x(t) = ξ +
∫ t

0
b(x(s),s)ds+

∫ t

0
σ(x(s),s)d ws, 0 ≤ t ≤ T . (2)



2. Statistical Theory of Turbulence

From 1940 to 1960’s, theory of turbulence was a very active
research area in fluid dynamics.

A mathematical model was first proposed in 1952 by E. Hopf as
a stochastic initial-value problem for the the following
Navier-Stokes equation with σ = 0:

∂
∂ t

u(x , t)+(u ·∇)u =− 1
ρ
▽p+ν△u+σẆ (x , t),

∇ ·u = 0, x ∈ D, t > 0,

u|∂D = 0, u(x ,0) = g(x ,ω),

(3)

where W (x , t) is a R-Wiener random field in R3. He derived the
so-called Hopf equation for the characteristic function :
Φ(t ,λ ) = E{exp{i(ut ,λ )}. For σ ̸= 0, the generalized Hopf
equation takes the following form:



∂
∂ t

Φ(t ,λ ) =
3

∑
j ,k=1

∫
D

∫
D

∂λj(x)
∂xk

δ 2Φ(t ,λ )
δλj(x)δλk (y)

dxdy

−ν
3

∑
j ,k=1

∂λj(x)
∂xk

∂
∂xk

δΦ(t ,λ )
δλj(x)

dx

−1
2

3

∑
j ,k=1

∫
D

∫
D

rj ,k (x ,y)λj(x)λk (y)dxdyΦ(t ,λ ),

Φ(0,λ ) = Φ0(λ ).

(4)

Existence and uniqueness results proved by C. Foias (1974),
M.Visik and V.I. Komech (1981)...



3.Turbulence Related Problems

Turbulent Diffusion

∂u
∂ t

= ν∆u−
3

∑
k=1

vk (t ,x ,ω)
∂u
∂xk

+q(x , t),

∂u
∂n

|∂D = 0, u(x ,0) = u0(x),
(5)

where v(t ,x ,ω) is the turbulent velocity.

Stochastic Wave Propagation

∂ 2u
∂ t2 = c2∆u+

3

∑
k=1

vk (t ,x ,ω)
∂u
∂xk

+q(x , t),

∂u
∂n

|∂D = 0, u(x ,0) = u0(x),
∂
∂ t

u(x ,0) = u1(x),
(6)

where v(t ,x ,ω) is the turbulent velocity.



Stochastic PDEs of Itô Type

In particular, let v(t ,x ,ω) = ∂
∂ t W (t ,x), where W (t ,x) is a

Wiener random field in R3 Then the turbulent diffusion equation
yields Itô’s evolution equations or the stochastic evolution
Equation:

∂u
∂ t

= ν∆u+q(x , t)−
3

∑
k=1

(
∂u
∂xk

)
∂
∂ t

Wk (t ,x),

∂u
∂n

|∂D = 0, u(x ,0) = u0(x),

or

u(x , t) = u0(x)+
∫ t

0
{ν∆u(x ,s)+q(x ,s)}ds

−
3

∑
k=1

∫ t

0
(
∂u(x ,s)

∂xk
)Wk (ds,x)



Stochastic Evolution Equations in Hilbert Spaces

In 1972-3, A. Bensussan and R.Temam treated the
Navier-Stokes equations with additive noise as a stochastic
evolution equation in Hilbert space (V ⊂ H ⊂ V ∗) in the form:

dut

dt
= Aut +B(ut)+ f (t ,ω), u0 = η(ω).

where A : V → V ∗,B : V → V ∗, and f (t ,ω) = Ẇ (t ,x).

( Example):

∂u
∂ t

= κ∆u+g(u)+
∂
∂ t

W (x , t),

u|∂D = 0, u(x ,0) = η(x ,ω), x ∈ D, t ∈ (0,T ),

where A = κ∆,B(u) = g(u) ,
V = H1

0 (D),H = L2(D),V ∗ = H−1(D).



Multiplicative Noise and Itô’s Formula

dut = Autdt +B(ut)dt +Σ(ut)dWt , u0 = η(ω).

Under some conditions, such as B(u) is monotone,
E. Pardoux (1975) proved the existence and uniqueness of a
strong solution:

u ∈ Lp(Ω× (0,T ),V )∩Lp(Ω,C([0,T ],H )).

More importantly, he proved the Itô’s formula:

Φ(ut , t) = Φ(u0,0)+
∫ t

0
∂sΦ(us,s)ds+

∫ t

0
⟨Aus,Φ

′(us,s)⟩ds

+
∫ t

0
(B(us),Φ

′(us,s))ds+
∫ t

0
(Φ′(us,s),dWs)

+
1
2

∫ t

0
Tr [RΣ∗(us)Φ

′′(us,s)Σ(us)]ds.



Mild Solutions

In 1980’s, G. Da Prato introduced the semi-group approach:

dut = Autdt +B(ut)dt +Σ(ut)dWt , u0 = η(ω),

where A generates a strongly continuous semigroup
{Gt = etA, t ≥ 0} on H . Rewrite the above equation as the
stochastic integral equation:

ut = Gt u0 +
∫ t

0
Gt−s B(us)ds+

∫ t

0
Gt−s Σ(us)dWs.

Its solution u ∈ Lp(Ω,C([0,T ]),H ) is a mild solution.

Contributions to the modern theory of Stochastic PDEs:
• Organizer of Trento International Conference Series (1985 –
2000) on Stochastic PDEs and their Applications.
• Book (1995, Da Prato and Zabczyk): Stochastic Equations in
Infinite Dimensions.



Mathematical Questions



Stochastic Heat Equation

∂u
∂ t

= (κ∆−α)u+Ẇ (x , t), x ∈ D, t ∈ (0,T ),

u|∂D = 0, u(x ,0) = h(x).

Let {ϕk ,λk} be the O-N set of eigen-pairs of (κ∆−α) with

ϕk |∂D = 0. Assume that W (x , t) =
∞

∑
k=1

σk ϕk (x)wk
t with

∑∞
k=1 σ2

k < ∞, where {wk
t } are iid Brownian motions in one

dimension. We can obtain a formal solution:

u(x , t) =
∞

∑
k=1

uk
t ϕk (x),

where uk
t = hke−λk t +σk

∫ t

0
e−λk (t−s)dwk

s , k = 1,2, .....



The formal solution is given by

u(x , t) = û(x , t)+v(x , t)

=
∞

∑
k=1

hke−λk tϕk (x)+
∞

∑
k=1

σk ϕk (x)
∫ t

0
e−λk (t−s)dwk

s ,

It can be shown that this formal solution
u ∈ L2(Ω× (0,T ),H1

0 (D)) is a strong solution.

Moreover it is an Ornstein-Uhlenbeck process in H1
0 (D) with

mean Eu(x , t) = û(x , t) and the covariant function

Cov .{u(x , t),u(y ,s)}

=
∞

∑
k=1

σ2
k

2λk
{e−λk |t−s|−e−λk (t+s)}ϕk (x)ϕk (y).



Existence of Solutions



Existence of Mild Solutions

dut = [Aut +Ft(ut)]dt +Σt(ut)dWt , t ∈ (0,T ),

u0 = h ∈ H .
(7)

Then the integral equation for a mild solution takes the form:

ut = Gth+
∫ t

0
Gt−sFs(us)ds+

∫ t

0
Gt−sΣs(us)dWs

.
= Γt(u).

(8)

For p ≥ 2, let B be a Banach space of Ft -adapted, continuous
processes in H with norm: ∥u∥p,T = {E sup

0≤t≤T
∥ut∥p }1/p.

Under suitable conditions, show that the map Γ : B → B is a
contraction. The existence of a unique solution u ∈ B follows
from the Banach Fixed Point Theorem.



Existence of Strong Solutions

For example, consider the linear SPDE:

∂u
∂ t

= ν△u+b(x)u+σu
∂
∂ t

W (x , t),

u|∂D = 0, u(x ,0) = h(x),

where b(x) is bounded and continuous on D; ν ,σ are positive
constants and W (., t) is a Wiener random field in H . Let
V = H1

0 (D),H = L2(D) and V ∗ = H−1(D). Rewrite the above
as an Itô equation:

dut = Aut +σutdWt , u0 = h ∈ H ,

where A = (ν△+b) : V → V ∗ and Wt is a R-Wiener process in
H : EWt = 0, E{Wt(x)Ws(y)}(t ∧s)r(x ,y) and

(Rh)(x) =
∫

D
r(x ,y)h(y)dy , for h ∈H.



Proof of Existence Theorem

(1). Galerkin Approximation: Let {ϕn} a complete ONS for
H with ϕn ∈ D(A).

Let Pn : H → Span{ϕ1,ϕ2, · · · ,ϕn}= Hn defined by
Pnh = ∑n

k=1(h,ϕn)ϕn, for h ∈ H .

Let An = PnA and W n
t = PnWt . Consider the n-dimensional Itô

equation:

dun
t = Anun

t dt +σun
t dW n

t , un
0 = hn ∈ H ,

which has a unique solution
un ∈ L2(Ω× (0,T ),V )∩L2(Ω,C([0,T ],L2(H ))).



(2). Bounded Solutions: From Itô’s formula, B-G-D inequality
and others, it can be shown that

E sup
0≤t≤T

∥un
t ∥2 +E

∫ T

0
∥un

t ∥2
1dt ≤ MT < ∞.

Hence there exists a subsequence {uk
t } such that

uk  u ∈ L2(Ω× (0,T ),V )∩L2(Ω,L∞((0,T ),H )).

(3). Strong Solution For φ ∈ V , consider the equation

(un
t ,φ) = (hn,φ)+

∫ t

0
(Anun

s ,φ)ds+
∫ t

0
(φ,σun

s dW n
s ),

As n → ∞,it will converge termwise to the variational equation
a.s. :

(ut ,φ) = (h,φ)+
∫ t

0
(Aus,φ)ds+

∫ t

0
(φ,σusdWs).



Properties of Solutions



Asymptotic Analysis of Solutions

dut = Autdt +F (ut)dt +Σ(ut)dWt , u0 = h ∈ H

• Boundedness of Solutions: The solution uh
t is bounded

(non explosive) if, for any T > 0,

lim
R→∞

P{ sup
0≤t≤T

∥uh
t ∥> R}= 0.

• Stability of Null Solution: uh
t is a.s. asymptotically stable

if ∃δ > 0 such that, for ∥h∥< δ , P{limsup
t→∞

∥uh
t ∥= 0}= 1.

• Existence of Invariant Measure µ :

Let µt(B) = P(uh
t ∈ B|uh

0 = h) for B ⊂ H . Show that

lim
t→∞

∫
H

Φ(v)µt(dv) =
∫

H
Φ(v)µ(dv),

for any Φ ∈ Cb(H ).



For ε > 0, consider

duε
t = Auε

t dt +F (uε
t )dt + εΣ(uε

t )dWt , t > 0,
uε

0 = h,

• Small perturbation theory,

• Method of averaging (Multiple scales),

• Large deviations theory: Let Pε be the solution measure on
X = C([0,T ]×H ). Show there is a rate function J on X such
that, as ε → 0,

ε2log{Pε(B)} ∼ −infv∈B J(v), v ∈ X .

............



Beyond Existence THeorems:
Quantification of Solutions



Numerical Solutions

Zakai’s equation in nonlinear filtering: the conditional probability
density function u(x , t ,ω) satisfies

∂u
∂ t

=
1
2

d

∑
j ,k=1

∂
∂xj

[ajk (x)
∂u
∂xk

]+
d

∑
k=1

∂
∂xk

[gk (x)u]

+ V̇ (x , t)u, x ∈ Rd , t > 0,

u(x ,0) = u0(x),

(9)

where V (x , t) =
d

∑
k=1

hj(x)wj(t) and wj(t)′s are i.i.d Brownian

motions.



Statistics of Solutions

∂u
∂ t

= ν△u+ f (x ,u)+
∂
∂ t

W (t ,x),

u|∂D = 0, u(o,x) = h(x),

where f (x ,u) is bounded and smooth, such as b(x)u.

How to determine the statistic E{∥uh
t ∥2}=

∫
H

∥v∥2µh
t (dv) ?

• Method of Differential Equation :

Rewrite in the equation in Itô’s form

dut = Autdt +F (ut)dt +dWt , u0 = h,

Let Ψ : H → R be smooth. Determine E{Ψ(uh
t )}=?



Define Φ(t ,v) = E{Ψ(uv
t )|u0 = v},v ∈ H.

Then Φ satisfies the Kolmogorov equation:

∂
∂ t

Φ(t ,v) =
1
2

Tr [R D2
vΦ(t ,v)]

+⟨Av ,DvΦ(t ,v)⟩+(F (v),DvΦ(t ,v)),

Φ(0,v) = Ψ(v), a.e. v ∈ H .

If the solution Φ(t ,v) can be found, then the statistic
E{Ψ(ut)}=Φ(t ,h).



Determination of Solution Measures

In the care of a simple stochastic heat equation, by direct
computations, it is possible to determine that the solution is an
O-U process in H1

0 (D) with known mean and covariance. This
is a vary special case. Consider

∂u
∂ t

= ν△u+b(x)u+
∂
∂ t

W (x , t),

u|∂D = 0, u(x ,0) = h(x),

where b(x) is bounded and continuous. Define the
characteristic functional Φ(t ,λ ) = E{exp{i(ut ,λ )}, λ ∈ H .
Then Φ satisfies the Hopf’s equation:

Φ(t ,λ ) = Φ(0,λ )+
∫ t

0

{1
2

Tr [R D2
λΦ(s,λ )]

+ν⟨∆λ ,DλΦ(s,λ )⟩+(b λ ,DλΦ(s,λ ))
}

ds.



Thank you


