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Entropy

Let M be a closed Riemannian manifold, f a C r (r ≥ 1)
diffeomorphism on M and µ an f -invariant measure.

Topological entropy:

htop(f ) := lim
ε→0

lim sup
n→∞

1

n
log s(n, ε),

where s(n, ε) is the cardinality of the maximal (n, ε) separated
sets.

Measure-theoretic entropy:

hµ(f ) : = sup
α: finite partition

hµ(f , α)

= sup
η: countable measurable partition with finite entropy

hµ(f , η)
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Variational principle

For finite partition α,

hµ(f , α) := lim
n→∞

−1

n

∑
A∈

∨n−1
i=0 f −iα

µ(A) logµ(A).

For a countable measurable partition η,

hµ(f , η) := Hµ(η |
∞∨
i=1

f −iη),

where, for any measurable α and η,

Hµ(α|η) =

∫
M
− logµηx(α(x))dµ(x).

Variational principle:

htop(f ) = sup
µ∈M(f )

hµ(f ).
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Lyapunov exponents and MET (Liao, Oseledec, 1960s)

Let f ∈ Diff1(M) and µ be an f -invariant measure. There exists an
invariant set Γ with µ(Γ) = 1 and numbers Lyapunov exponents)

λ1(x) > · · · > λr(x)(x)

such that

TxM =

r(x)⊕
i=1

Ei (x) with Df (x)Ei (x) = Ei (f (x)), x ∈ Γ;

and

lim
n−→±∞

1

n
log ‖Df n(x)v‖ = λi (x), v ∈ Ei (x) \ {0}.

In particular, if µ is ergodic, then λi (x) and di (x) := dimEi (x) are
constants.
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The relation between entropy and Lyapunov exponents

Ruelle, 1978: When f is C 1,

hµ(f ) ≤
∫ ∑

λi (x)>0

λi (x)di (x)dµ.

Pesin, 1977: f is C 2 and µ� Leb =⇒ entropy formula holds,

i.e., hµ(f ) =

∫ ∑
λi (x)>0

λi (x)di (x)dµ.

Mañé, 1981: f is C 1+α and µ� Leb =⇒ entropy formula holds.

Ledrappier and Strelcyn, 1982:

f is C 1+α and µ is SRB =⇒ entropy formula holds.

Ledrappier and Young, Ann. Math., 1985: f is C 2 (or C 1+α),

Entropy formula holds ⇐⇒ µ is an SRB measure.
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Ledrappier-Young Formula

Assume µ is ergodic.

For µ-a.e. x ∈ Γ, let λ1 > λ2 > · · ·λũ > 0 ≥ λũ+1 > · · ·λr be
the distinct Lyapunov exponents. Let W i (x) be the ith
unstable manifold at x ∈ Γ, 1 ≤ i ≤ ũ.

Let hi denote the entropy along the W i -foliation:

hi = lim
ε→0

lim sup
n→∞

−1

n
logµξix (B i

n(x , ε)).

Let δi denote the dimension of conditional measure on W i :

δi = lim
ε→0

logµξix (B i (x , ε))

log ε
.
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Theorem (Ledrappier-Young 1985, Ann. Math)

1 h1 = λ1δ1;

2 hi − hi−1 = λi (δi − δi−1) for any 1 ≤ i ≤ ũ (setting δ0 = 0);

3 hũ = hµ(f ).

In particular, hµ(f ) =
∑ũ

j=1 λiγi , where γi = δi − δi−1.
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A question

Question

Can one define entropies, including topological entropy and
measure-theoretic entropy, only along the unstable manifolds, and
obtain a variational principle relating them?
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Partially hyperbolic diffeomorphisms

f is said to be partially hyperbolic if there exist an f -invariant
splitting

TM = E s ⊕ E c ⊕ E u

and numbers 0 ≤ λs < 1 < λu such that

(1) Df |E s is contracting, i.e., ‖Dfv s‖ ≤ λs‖v s‖;
(2) Df |E u is expanding, i.e., ‖Dfvu‖ ≥ λu‖vu‖;
(3) Df |E c is intermediate, i.e., ‖Tx fv s‖ < ‖Tx fv c‖ < ‖Tx fvu‖ .

Classical examples:

(1) Time-1 map of Anosov flow and frame flows.

(2) Direct product: Anosov×Rθ : M × S1 −→ M × S1.

and their perturbations.
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Increasing partitions subordinate to unstable foliations

Basic assumptions: Let f be a partially hyperbolic diffeomorphism
and µ an ergodic invariant measure.

Sinai, Pesin, Ledrappier and Young, 1980s: There exists an
increasing partition ξ subordinate to Wu, i.e.,

(1) f −1ξ ≥ ξ;

(2) For µ-a.e. x , ∃rx > 0 such that ξ(x) contains an open ball of
radius rx in W u

loc(x).

Denote

Qu = {ξ | ξ is an increasing partition subordinate to Wu}.

An important fact: For a general C 2 diffeomorphism f and any
increasing partition ξ which is subordinate to Wu, we have

hµ(f , ξ) = Hµ(f −1ξ|ξ).
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Construction of increasing partitions

We recall a construction of ξ ∈ Qu due to Ledrappier-Strelcyn.

1 Take x ∈ M such that µ(S(x , r)) > 0 for any r > 0, where
S(x , r) =

⋃
y∈W (x ,r) W u(y , r). Then define a partition ξ̂x

such that ξ̂x(y) = W u(ȳ , r) if y ∈ S(x , r), where ȳ ∈W (x , r)
and y ∈W u(ȳ , r), and ξ̂x(y) = M \ S(x , r) otherwise. Next
take ξ = ξx := ∨j≥0f j ξ̂x . It has been proven that for almost
every small r > 0, ξ is subordinate to unstable manifolds W u.
Thus ξ ∈ Qu.

2 The elements of ξ ∈ Qu can have arbitrarily small diameter,
and then the object like H(ξ|η) might not be finite. We
overcome the difficulty by approximating ξ by a sequence
{ξk} := ∨j≤k f j ξ̂x .
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More general partitions

Let

P = {α | α is finite partition with diam(α) < ε0}.

For each α ∈ P, let

η = {η(x) := α(x) ∩W u
loc(x) | x ∈ M}

and
Pu = {η | η is obtained as above}.

It is clear that if η ∈ Pu is obtained by α with µ(∂α) = 0,
then it is a measurable partition which is subordinate to
unstable manifolds. However, it is usually not increasing.
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Definition of hu
µ(f )

For α ∈ P, η ∈ Pu, let

hµ(f , α|η) = lim sup
n→∞

1

n
Hµ(αn−1

0 |η)

and
hµ(f |η) = sup

α∈P
hµ(f , α|η).

The unstable metric entropy of f is defined as

hu
µ(f ) = sup

η∈Pu
hµ(f |η).

Weisheng Wu Unstable entropy for PHDs



Entropy for diffeomorphisms
Unstable entropy for PHDs

Partially hyperbolic diffeomorphisms
Unstable metric entropy
Unstable topological entropy
Unstable topological pressure

Properties of hu
µ(f )

Theorem A (Hu, Hua and Wu, Adv. Math. 2017)

For any α ∈ P, η ∈ Pu and ξ ∈ Qu,
hµ(f , α|η) = hµ(f , ξ) := Hµ(ξ|f ξ). Hence
hu
µ(f ) = hµ(f |η) = hµ(f , ξ).

Corollary

hu
µ(f ) ≤ hµ(f ), and “=” holds if f is C 1+α, and there is no

positive Lyapunov exponent in E c at µ-a.e. x ∈ M.

Corollary

hu
µ(f ) = hµ(f , α|η) = limn→∞

1
nHµ(αn−1

0 |η) for any α ∈ P and
η ∈ Pu.

Weisheng Wu Unstable entropy for PHDs



Entropy for diffeomorphisms
Unstable entropy for PHDs

Partially hyperbolic diffeomorphisms
Unstable metric entropy
Unstable topological entropy
Unstable topological pressure

On the proof of Theorem A

Note that

hµ(f , α|η) = lim sup
n→∞

1

n
Hµ(αn−1

0 |f η)

and

hµ(f , ξ) = lim sup
n→∞

1

n
Hµ(ξn−1

0 |f ξ).

The “size” of η is uniform, but the “size” of ξ is nonuniform.

Therefore, to compare these two quantities with each other
needs intricate techniques.
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Properties of unstable entropy

Theorem (Shannon-McMillan-Breiman Theorem)

If µ is ergodic, then
limn→∞

1
n Iµ(αn−1

0 |η)(x) = hµ(f , α|η) µ-a.e.x ∈ M.

Theorem

µ 7→ hu
µ(f ) from Mf (M) to R+ ∪ {0} is affine and

upper-semicontinuous.

Jiagang Yang recently obtained a more general result, i.e., the
upper semi-continuity of the unstable metric entropy with respect
to both the invariant measures µ and the dynamical systems f , by
constructing an increasing partition ξ.
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Definition of hu
top(f ) (Hu, Hua and Wu)

The unstable topological entropy of f on M is defined by

hu
top(f ) = lim

δ→0
sup
x∈M

hu
top(f ,W u(x , δ)),

where

hu
top(f ,W u(x , δ)) = lim

ε→0
lim sup
n→∞

1

n
log su(ε, n, x , δ)

in which su(ε, n, x , δ) is the maximal cardinality of the (n, ε)
du-separated set of W u(x , δ).
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Unstable topological entropy

A related notion is unstable volume growth introduced by
Hua-Saghin-Xia 2008: χu(f ) = supx∈M χu(x , δ) where
χu(x , δ) = lim supn→∞

1
n log(Vol(f n(W u(x , δ))).

Theorem (Hu-Hua-Wu 2017)

hu
top(f ) = χu(f ).

Theorem (Hua-Saghin-Xia 2008, ETDS)

hµ(f ) ≤ χu(f ) +
∑

λci >0 λ
c
i mi .

The theorem is an immediate corollary of Ledrappier-Young
Formula and our Variational Principle when f is C 1+α.
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Variational principle for unstable entropies

Let
Mf (M) = {µ | µ is f -invariant}

and
Me

f (M) = {ν | ν is f -ergodic}.

Theorem B (Hu, Hua and Wu, 2017)

Let f : M → M be a C 1-partially hyperbolic diffeomorphism. Then

hu
top(f ) = sup{hu

µ(f ) : µ ∈Mf (M)}.

Moreover,
hu
top(f ) = sup{hu

ν(f ) : ν ∈Me
f (M)}.
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On proof of Theorem B

To prove VP, especially the inequality

hu
top(f ) ≤ sup{hu

µ(f ) : µ ∈Mf (M)},

we adapt the classical method of Misiurewicz to our case.

Take a local leaf W u(x , δ) so that the entropy on it
approximates the unstable entropy. Then take an (n, ε)
u-separated set En of W u(x , δ) and a measure νn
equidistributed on it. Then take an accumulation point of
µn :=

∑n−1
i=1 f i

∗νn.

A key point: To ensure log #En = Hνn(αn−1
0 |η), we require

W u(x , δ) to be contained in a single element of η, i.e., η(x).
This is guaranteed if η ∈ Pu.
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Unstable topological pressure

Denote by S(n, ε) the set of (n, ε) u-separated set of W u(x , δ).
For ϕ ∈ C (M,R), let

Pu(f , ϕ, ε, n,W u(x , δ)) = sup
{∑

y∈E

exp
(
(Snϕ)(y)

)
: E ∈ S(n, ε)

}
and

Pu(f , ϕ,W u(x , δ)) = lim
ε→0

lim sup
n→∞

1

n
log Pu(f , ϕ, ε, n,W u(x , δ)).

Definition

The unstable topological pressure of f w.r.t the potential ϕ is defined by

Pu(f , ϕ) := lim
δ→0

sup
x∈M

Pu(f , ϕ,W u(x , δ)).
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Variational principle

Theorem C (Hu, Wu and Zhu, 2018)

Let f : M → M be a C 1 partially hyperbolic diffeomorphism. Then
for any ϕ ∈ C (M,R),

Pu(f , ϕ) = sup
{

hu
µ(f ) +

∫
M
ϕdµ : µ ∈Mf (M)

}
.

Moreover,

Pu(f , ϕ) = sup
{

hu
µ(f ) +

∫
M
ϕdµ : µ ∈Me

f (M)
}
.
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u-equilibrium and Gibbs u-states

Let ϕ ∈ C (M,R). µ ∈Mf (M) is called a u-equilibrium state
for ϕ if

Pu(f , ϕ) = hu
µ(f ) +

∫
ϕdµ.

A Gibbs u-state is an invariant measure that has absolutely
continuous conditional measures on unstable manifolds.

Theorem D (Hu, Wu and Zhu, 2018)

Let f be C 1+α and µ ∈Mf (M). Then µ is a Gibbs u-state of f if
and only if µ is a u-equilibrium state of ϕu = − log |detDf |Eu(x)|

Weisheng Wu Unstable entropy for PHDs



Entropy for diffeomorphisms
Unstable entropy for PHDs

Partially hyperbolic diffeomorphisms
Unstable metric entropy
Unstable topological entropy
Unstable topological pressure

Theorem D is essentially a consequence of

Lemma

If f is C 1+α and µ ∈Mf (M), then

hu
µ(f ) ≤

∫
M
−ϕudµ.

The equality holds if and only if µ is a Gibbs u-state of f .

Corollary

If f is C 1+α, then Pu(f , ϕu) = 0.

Corollary

A Gibbs u-state always exists for any PHD.
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Thank You!
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