Unstable entropies and pressure of partially hyperbolic diffeomorphisms

Weisheng Wu

China Agricultural University

Aug 26, 2019 Huazhong University of Science and Technology, Wuhan

Entropies, Variational principle and MET The relation between entropy and Lyapunov exponents A question

Entropy

- Let M be a closed Riemannian manifold, f a $C^r(r \ge 1)$ diffeomorphism on M and μ an f-invariant measure.
- Topological entropy:

$$h_{top}(f) := \lim_{\epsilon \to 0} \limsup_{n \to \infty} \frac{1}{n} \log s(n, \epsilon),$$

where $s(n, \epsilon)$ is the cardinality of the maximal (n, ϵ) separated sets.

• Measure-theoretic entropy:

$$h_{\mu}(f) := \sup_{\alpha: \text{ finite partition}} h_{\mu}(f, \alpha)$$

$$= \sup_{\eta: \text{ countable measurable partition with finite entropy}} h_{\mu}(f, \eta)$$

$$= \sup_{\eta: \text{ countable measurable partition with finite entropy}} h_{\mu}(f, \eta)$$
Weisheng Wu Unstable entropy for PHDs

Entropies, Variational principle and MET The relation between entropy and Lyapunov exponents A question

Variational principle

• For finite partition α ,

$$h_{\mu}(f, \alpha) := \lim_{n \to \infty} -\frac{1}{n} \sum_{A \in \bigvee_{i=0}^{n-1} f^{-i} \alpha} \mu(A) \log \mu(A).$$

• For a countable measurable partition η ,

$$h_\mu(f,\eta) := H_\mu(\eta \mid igvee_{i=1}^\infty f^{-i}\eta),$$

where, for any measurable α and η ,

$$H_{\mu}(lpha|\eta) = \int_{M} -\log \mu_{x}^{\eta}(lpha(x))d\mu(x).$$

• Variational principle:

$$h_{ ext{top}}(f) = \sup_{\mu \in \mathcal{M}(f)} h_{\mu}(f).$$

Entropies, Variational principle and MET The relation between entropy and Lyapunov exponents A question

- 4 回 ト 4 ヨト 4 ヨト

Lyapunov exponents and MET (Liao, Oseledec, 1960s)

Let $f \in \text{Diff}^1(M)$ and μ be an *f*-invariant measure. There exists an invariant set Γ with $\mu(\Gamma) = 1$ and numbers Lyapunov exponents)

$$\lambda_1(x) > \cdots > \lambda_{r(x)}(x)$$

such that

$$T_x M = \bigoplus_{i=1}^{r(x)} E_i(x)$$
 with $Df(x)E_i(x) = E_i(f(x)), x \in \Gamma;$

and

$$\lim_{n \longrightarrow \pm \infty} \frac{1}{n} \log \|Df^n(x)v\| = \lambda_i(x), \ v \in E_i(x) \setminus \{0\}.$$

In particular, if μ is ergodic, then $\lambda_i(x)$ and $d_i(x) := \dim E_i(x)$ are constants.

Entropies, Variational principle and MET The relation between entropy and Lyapunov exponents A question

A B M A B M

The relation between entropy and Lyapunov exponents

• Ruelle, 1978: When f is C^1 , $h_\mu(f) \leq \int \sum_{\lambda_i(x)>0} \lambda_i(x) d_i(x) d\mu.$

- Pesin, 1977: f is C^2 and $\mu \ll \text{Leb} \implies$ entropy formula holds, i.e., $h_{\mu}(f) = \int \sum_{\lambda_i(x)>0} \lambda_i(x) d_i(x) d\mu.$
- Mañé, 1981: f is $C^{1+\alpha}$ and $\mu \ll \text{Leb} \implies$ entropy formula holds.
- Ledrappier and Strelcyn, 1982: f is $C^{1+\alpha}$ and μ is SRB \implies entropy formula holds.
- Ledrappier and Young, Ann. Math., 1985: f is C^2 (or $C^{1+\alpha}$),

Entropy formula holds $\iff \mu$ is an SRB measure.

Entropies, Variational principle and MET The relation between entropy and Lyapunov exponents A question

Ledrappier-Young Formula

Assume μ is ergodic.

- For μ-a.e. x ∈ Γ, let λ₁ > λ₂ > · · · λ_ũ > 0 ≥ λ_{ũ+1} > · · · λ_r be the distinct Lyapunov exponents. Let Wⁱ(x) be the *i*th unstable manifold at x ∈ Γ, 1 ≤ i ≤ ũ.
- Let h^i denote the entropy along the W^i -foliation:

$$h_i = \lim_{\epsilon \to 0} \limsup_{n \to \infty} -\frac{1}{n} \log \mu_x^{\xi_i}(B_n^i(x, \epsilon)).$$

• Let δ_i denote the dimension of conditional measure on W^i :

$$\delta_i = \lim_{\epsilon \to 0} \frac{\log \mu_X^{\xi_i}(B^i(x,\epsilon))}{\log \epsilon}$$

(日)

э

∃ >

Theorem (Ledrappier-Young 1985, Ann. Math)

Entropies, Variational principle and MET The relation between entropy and Lyapunov exponents A question

A question

Question

Can one define entropies, including topological entropy and measure-theoretic entropy, only along the unstable manifolds, and obtain a variational principle relating them?

Partially hyperbolic diffeomorphisms Unstable metric entropy Unstable topological entropy Unstable topological pressure

Partially hyperbolic diffeomorphisms

• *f* is said to be partially hyperbolic if there exist an *f*-invariant splitting

$$TM = E^s \oplus E^c \oplus E^u$$

and numbers $0 \leq \lambda^{\mathfrak{s}} < 1 < \lambda^{u}$ such that

- (1) $Df|_{E^s}$ is contracting, i.e., $\|Dfv^s\| \leq \lambda^s \|v^s\|$;
- (2) $Df|_{E^u}$ is expanding, i.e., $||Dfv^u|| \ge \lambda^u ||v^u||$;
- (3) $Df|_{E^c}$ is intermediate, i.e., $||T_x fv^s|| < ||T_x fv^c|| < ||T_x fv^u||$.

• Classical examples:

- (1) Time-1 map of Anosov flow and frame flows.
- (2) Direct product: Anosov $\times R_{\theta} : M \times \mathbb{S}^1 \longrightarrow M \times \mathbb{S}^1$.

and their perturbations.

(日) (同) (三) (三)

Increasing partitions subordinate to unstable foliations

- Basic assumptions: Let f be a partially hyperbolic diffeomorphism and μ an ergodic invariant measure.
- Sinai, Pesin, Ledrappier and Young, 1980s: There exists an increasing partition ξ subordinate to W^u, i.e.,

(1)
$$f^{-1}\xi \ge \xi$$
;
(2) For μ -a.e. x , $\exists r_x > 0$ such that $\xi(x)$ contains an open ball of radius r_x in $W^u_{loc}(x)$.

Denote

 $Q^{u} = \{\xi \mid \xi \text{ is an increasing partition subordinate to } W^{u}\}.$

 An important fact: For a general C² diffeomorphism f and any increasing partition ξ which is subordinate to W^u, we have

$$h_{\mu}(f,\xi) = H_{\mu}(f^{-1}\xi|\xi).$$

(日)

Construction of increasing partitions

We recall a construction of $\xi \in Q^u$ due to Ledrappier-Strelcyn.

- Take $x \in M$ such that $\mu(S(x, r)) > 0$ for any r > 0, where $S(x, r) = \bigcup_{y \in W(x, r)} W^u(y, r)$. Then define a partition $\hat{\xi}_x$ such that $\hat{\xi}_x(y) = W^u(\bar{y}, r)$ if $y \in S(x, r)$, where $\bar{y} \in W(x, r)$ and $y \in W^u(\bar{y}, r)$, and $\hat{\xi}_x(y) = M \setminus S(x, r)$ otherwise. Next take $\xi = \xi_x := \bigvee_{j \ge 0} f^j \hat{\xi}_x$. It has been proven that for almost every small r > 0, ξ is subordinate to unstable manifolds W^u . Thus $\xi \in Q^u$.
- The elements of ξ ∈ Q^u can have arbitrarily small diameter, and then the object like H(ξ|η) might not be finite. We overcome the difficulty by approximating ξ by a sequence {ξ_k} := ∨_{j≤k} f^jξ_x.

Partially hyperbolic diffeomorphisms Unstable metric entropy Unstable topological entropy Unstable topological pressure

More general partitions

Let

$$\mathcal{P} = \{ \alpha \mid \alpha \text{ is finite partition with diam}(\alpha) < \varepsilon_0 \}.$$

• For each
$$\alpha \in \mathcal{P}$$
, let

$$\eta = \{\eta(x) := \alpha(x) \cap W^u_{\mathsf{loc}}(x) \mid x \in M\}$$

and

$$\mathcal{P}^{\boldsymbol{\mu}} = \{\eta \mid \eta \text{ is obtained as above}\}.$$

 It is clear that if η ∈ P^u is obtained by α with μ(∂α) = 0, then it is a measurable partition which is subordinate to unstable manifolds. However, it is usually not increasing.

<ロト < 同ト < 三ト

Partially hyperbolic diffeomorphisms Unstable metric entropy Unstable topological entropy Unstable topological pressure

Definition of $h^u_\mu(f)$

• For
$$\alpha \in \mathcal{P}, \eta \in \mathcal{P}^u$$
, let

$$h_{\mu}(f, \alpha | \eta) = \limsup_{n \to \infty} \frac{1}{n} H_{\mu}(\alpha_0^{n-1} | \eta)$$

and

$$h_{\mu}(f|\eta) = \sup_{\alpha \in \mathcal{P}} h_{\mu}(f, \alpha|\eta).$$

• The unstable metric entropy of f is defined as

$$h^u_\mu(f) = \sup_{\eta\in\mathcal{P}^u} h_\mu(f|\eta).$$

(日) (同) (三) (三)

Partially hyperbolic diffeomorphisms Unstable metric entropy Unstable topological entropy Unstable topological pressure

Properties of $h^u_{\mu}(f)$

Theorem A (Hu, Hua and Wu, Adv. Math. 2017)

For any $\alpha \in \mathcal{P}, \eta \in \mathcal{P}^{u}$ and $\xi \in \mathcal{Q}^{u}$, $h_{\mu}(f, \alpha|\eta) = h_{\mu}(f, \xi) := H_{\mu}(\xi|f\xi)$. Hence $h_{\mu}^{u}(f) = h_{\mu}(f|\eta) = h_{\mu}(f, \xi)$.

Corollary

 $h^{u}_{\mu}(f) \leq h_{\mu}(f)$, and "=" holds if f is $C^{1+\alpha}$, and there is no positive Lyapunov exponent in E^{c} at μ -a.e. $x \in M$.

Corollary

$$h^{u}_{\mu}(f) = h_{\mu}(f, \alpha | \eta) = \lim_{n \to \infty} \frac{1}{n} H_{\mu}(\alpha_{0}^{n-1} | \eta)$$
 for any $\alpha \in \mathcal{P}$ and $\eta \in \mathcal{P}^{u}$.

- 4 同 2 4 日 2 4 日 2

Partially hyperbolic diffeomorphisms Unstable metric entropy Unstable topological entropy Unstable topological pressure

On the proof of Theorem A

Note that

$$h_{\mu}(f, \alpha|\eta) = \limsup_{n \to \infty} \frac{1}{n} H_{\mu}(\alpha_0^{n-1}|f\eta)$$

and

$$h_{\mu}(f,\xi) = \limsup_{n\to\infty} \frac{1}{n} H_{\mu}(\xi_0^{n-1}|f\xi).$$

- The "size" of η is uniform, but the "size" of ξ is nonuniform.
- Therefore, to compare these two quantities with each other needs intricate techniques.

- ∢ 🗇 ▶

Partially hyperbolic diffeomorphisms Unstable metric entropy Unstable topological entropy Unstable topological pressure

Properties of unstable entropy

Theorem (Shannon-McMillan-Breiman Theorem)

If μ is ergodic, then $\lim_{n\to\infty}\frac{1}{n}I_{\mu}(\alpha_0^{n-1}|\eta)(x) = h_{\mu}(f,\alpha|\eta) \qquad \mu\text{-a.e.} x \in M.$

Theorem

 $\mu \mapsto h^u_{\mu}(f)$ from $\mathcal{M}_f(M)$ to $\mathbb{R}^+ \cup \{0\}$ is affine and upper-semicontinuous.

Jiagang Yang recently obtained a more general result, i.e., the upper semi-continuity of the unstable metric entropy with respect to both the invariant measures μ and the dynamical systems f, by constructing an increasing partition ξ .

(日) (同) (三) (三)

Partially hyperbolic diffeomorphisms Unstable metric entropy **Unstable topological entropy** Unstable topological pressure

Definition of $h_{top}^{u}(f)$ (Hu, Hua and Wu)

The unstable topological entropy of f on M is defined by

$$h_{\operatorname{top}}^{u}(f) = \lim_{\delta \to 0} \sup_{x \in M} h_{\operatorname{top}}^{u}(f, \overline{W^{u}(x, \delta)}),$$

where

$$h_{top}^{u}(f, \overline{W^{u}(x, \delta)}) = \lim_{\epsilon \to 0} \limsup_{n \to \infty} \frac{1}{n} \log s^{u}(\epsilon, n, x, \delta)$$

in which $s^{u}(\epsilon, n, x, \delta)$ is the maximal cardinality of the (n, ϵ) d^{u} -separated set of $\overline{W^{u}(x, \delta)}$.

Partially hyperbolic diffeomorphisms Unstable metric entropy **Unstable topological entropy** Unstable topological pressure

Unstable topological entropy

A related notion is unstable volume growth introduced by Hua-Saghin-Xia 2008: $\chi_u(f) = \sup_{x \in M} \chi_u(x, \delta)$ where $\chi_u(x, \delta) = \limsup_{n \to \infty} \frac{1}{n} \log(\operatorname{Vol}(f^n(W^u(x, \delta)))).$

Theorem (Hu-Hua-Wu 2017)

 $h_{top}^u(f) = \chi_u(f).$

Theorem (Hua-Saghin-Xia 2008, ETDS)

 $h_{\mu}(f) \leq \chi^{u}(f) + \sum_{\lambda_{i}^{c} > 0} \lambda_{i}^{c} m_{i}.$

The theorem is an immediate corollary of Ledrappier-Young Formula and our Variational Principle when f is $C^{1+\alpha}$.

< ロ > < 同 > < 三 > < 三 > 、

Partially hyperbolic diffeomorphisms Unstable metric entropy **Unstable topological entropy** Unstable topological pressure

Variational principle for unstable entropies

Let

$$\mathcal{M}_f(M) = \{\mu \mid \mu \text{ is } f \text{-invariant}\}$$

and

$$\mathcal{M}_{f}^{e}(M) = \{ \nu \mid \nu \text{ is } f \text{-ergodic} \}.$$

Theorem B (Hu, Hua and Wu, 2017)

Let $f: M \to M$ be a C¹-partially hyperbolic diffeomorphism. Then

$$h_{top}^u(f) = \sup\{h_\mu^u(f) : \mu \in \mathcal{M}_f(M)\}.$$

Moreover,

$$h_{top}^u(f) = \sup\{h_{\nu}^u(f) : \nu \in \mathcal{M}_f^e(M)\}.$$

< 日 > < 同 > < 三 > < 三 >

On proof of Theorem B

• To prove VP, especially the inequality

 $h^u_{ ext{top}}(f) \leq \sup\{h^u_\mu(f): \mu \in \mathcal{M}_f(M)\},$

we adapt the classical method of Misiurewicz to our case.

- Take a local leaf $\overline{W^u(x, \delta)}$ so that the entropy on it approximates the unstable entropy. Then take an (n, ϵ) u-separated set E_n of $\overline{W^u(x, \delta)}$ and a measure ν_n equidistributed on it. Then take an accumulation point of $\mu_n := \sum_{i=1}^{n-1} f_*^i \nu_n$.
- A key point: To ensure $\log \# E_n = H_{\nu_n}(\alpha_0^{n-1}|\eta)$, we require $\overline{W^u(x,\delta)}$ to be contained in a single element of η , i.e., $\eta(x)$. This is guaranteed if $\eta \in \mathcal{P}^u$.

イロト イボト イヨト イヨト

Partially hyperbolic diffeomorphisms Unstable metric entropy Unstable topological entropy **Unstable topological pressure**

Unstable topological pressure

Denote by $S(n,\varepsilon)$ the set of (n,ϵ) u-separated set of $\overline{W^u(x,\delta)}$. For $\varphi \in C(M,\mathbb{R})$, let

$$P^{u}(f, \varphi, \epsilon, n, \overline{W^{u}(x, \delta)}) = \sup \left\{ \sum_{y \in E} \exp \left((S_{n} \varphi)(y) \right) : E \in \mathcal{S}(n, \varepsilon) \right\}$$

and

$$P^{u}(f,\varphi,\overline{W^{u}(x,\delta)}) = \lim_{\epsilon \to 0} \limsup_{n \to \infty} \frac{1}{n} \log P^{u}(f,\varphi,\epsilon,n,\overline{W^{u}(x,\delta)}).$$

Definition

The unstable topological pressure of f w.r.t the potential φ is defined by

$$P^{u}(f,\varphi) := \lim_{\delta \to 0} \sup_{x \in M} P^{u}(f,\varphi,\overline{W^{u}(x,\delta)}).$$

Partially hyperbolic diffeomorphism Unstable metric entropy Unstable topological entropy Unstable topological pressure

Variational principle

Theorem C (Hu, Wu and Zhu, 2018)

Let $f : M \to M$ be a C^1 partially hyperbolic diffeomorphism. Then for any $\varphi \in C(M, \mathbb{R})$,

$$\mathcal{P}^{u}(f, arphi) = \sup\left\{h^{u}_{\mu}(f) + \int_{M} arphi d\mu : \mu \in \mathcal{M}_{f}(M)
ight\}$$

Moreover,

$$\mathcal{P}^{u}(f, \varphi) = \sup \Big\{ h^{u}_{\mu}(f) + \int_{M} \varphi d\mu : \mu \in \mathcal{M}^{e}_{f}(M) \Big\}.$$

(日)

Partially hyperbolic diffeomorphisms Unstable metric entropy Unstable topological entropy Unstable topological pressure

u-equilibrium and Gibbs u-states

- Let φ ∈ C(M, ℝ). μ ∈ M_f(M) is called a u-equilibrium state for φ if
 P^u(f, φ) = h^u_μ(f) + ∫ φdμ.
- A Gibbs u-state is an invariant measure that has absolutely continuous conditional measures on unstable manifolds.

Theorem D (Hu, Wu and Zhu, 2018)

Let f be $C^{1+\alpha}$ and $\mu \in \mathcal{M}_f(M)$. Then μ is a Gibbs u-state of f if and only if μ is a u-equilibrium state of $\varphi^u = -\log |\det Df|_{E^u(x)}|$

Entropy for diffeomorphisms Unstable entropy for PHDs Unstable topological entropy Unstable topological pressure

Theorem D is essentially a consequence of

Lemma

If f is $C^{1+\alpha}$ and $\mu \in \mathcal{M}_f(M)$, then

$$h^u_\mu(f) \leq \int_M -\varphi^u d\mu.$$

The equality holds if and only if μ is a Gibbs u-state of f.

Corollary

If f is
$$C^{1+\alpha}$$
, then $P^u(f, \varphi^u) = 0$.

Corollary

A Gibbs u-state always exists for any PHD.

Image: A matched block of the second seco

	Partially hyperbolic diffeomorphisms
Entropy for diffeomorphisms	Unstable metric entropy
Unstable entropy for PHDs	Unstable topological entropy
	Unstable topological pressure

Thank You!

æ