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Abstract

In this talk, we will present some deep understanding for

eigenvalues of Sturm-Liouville problems. One is the strong

continuity of eigenvalues in potentials, i.e., the continuity

of eigenvalues in potentials when the weak topologies are

considered for potentials. Another is to use the variational

method and the limiting approach to obtain optimal lower

and upper bounds for eigenvalues by using the norms of

potentials. Some interesting systems of

degree-two-of-freedom which are resulted from the

optimal eigenvalue gaps will be introduced as an open

problem.
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I. Eigenvalues of Sturm-Liouville Problems

We are mainly concerned with the most classical

eigenvalue problem. Given a potential q ∈ Lp := Lp[0, 1],

1 ≤ p ≤ ∞, consider

y′′ + (λ+ q(x))y = 0, x ∈ [0, 1]. (1)

With the Dirichlet boundary condition

y(0) = y(1) = 0, (D)

eigenvalues of (1) are denoted by

λD1 (q) < λD2 (q) < · · · < λDn (q) < · · ·
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Similarly, with the Neumann boundary condition

y′(0) = y′(1) = 0, (N)

eigenvalues of (1) are

λN0 (q) < λN1 (q) < · · · < λNn (q) < · · ·

• General Sturm-Liouville problems with integrable

potentials/weights and with general separated boundary

conditions or periodic/anti-periodic boundary conditions

can also be considered in a similar way.
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As for the dependence of eigenvalues on potentials, a

classical known result is as follows.

Theorem 1. Let 1 ≤ p ≤ ∞ and n be fixed. As nonlinear

functionals,

q ∈ (Lp, ‖ · ‖p)→ λD/Nn (q) ∈ R

are continuously Frechét differentiable. Here ‖ · ‖p =

‖ · ‖Lp[0,1] is the usual Lp norm. Moreover, the Frechét

derivatives are

∂qλ
D/N
n (q) = −|ED/N

n (·; q)|2 ∈ (Lp, ‖ · ‖p)∗. (2)

(As the kernels of bounded linear functionals of (Lp, ‖·‖p).)
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Here E
D/N
n (x; q) are the corresponding eigenfunctions sat-

isfying the normalization condition

‖ED/N
n (·; q)‖2 = 1.

Remarks • When the periodic/anti-periodic boundary

value problems are considered, eigenvalues are only

continuous nonlinear functionals of potentials. Usually

speaking, these eigenvalue functionals are not

differentiable at parabolic potentials.

• Formula (2) is very useful in the Inverse Scattering

Method.
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Note that Lp are ∞-dim Banach spaces. An alternative

choice for the topologies is the so-called weak topologies.

Definition 2. Let p ∈ [1,∞]. The weak topology wp in

the Lebesgue space Lp is that qk → q iff∫ 1

0

qku→
∫ 1

0

qu ∀u ∈ Lp∗. (p∗ := p/p− 1)

Example 3. (High frequencies) The Riemann-Lebesgue

lemma shows that

as k →∞, ϕk(x) := sin kπx→ 0 in (Lp, wp).
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Example 4. (Strong bumps) For

ψk(x) :=

{
k/ log(k + 1) for x ∈ [0, 1/k)

0 for x ∈ [1/k, 1],

one has ψk → 0 in (L1, ‖ · ‖1) as k →∞.

Example 5. (High frequencies + Strong bumps) Let c1

and c2 be non-zero constants. Then

c1ϕk + c2ψk → 0

in and only in the space (L1, w1).
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Since 2008, we have revealed that eigenvalues have a very

strong continuous dependence on potentials/weights. See

Zhang, Sci. China Ser. A, 2008

Meng & Zhang, Acta Math. Sinica Engl. Ser., 2010

Yan & Zhang, Trans. Amer. Math. Soc., 2011.

Theorem 6. Given p and n, as nonlinear functionals,

q ∈ (Lp, wp)→ λD/Nn (q) ∈ R

are continuous.

Eigenvalues are strong continuous in potentials!
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Very few results on strong continuity. A few remarks are

as follows.

• In Pöschel & Trubowitz (Inverse Spectral Theory,

Academic Press, NY, 1987), it has been proved that

Dirichlet eigenvalues λDn (q) are strong continuous in

q ∈ (Lp, wp), where 2 ≤ p ≤ ∞.

• Theorem 6 shows that perturbations of High frequencies

and Strong bumps are not important to compute the

specified eigenvalues.
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• Theoretical explanation of Theorem 6:

Micro-quantities q
F7→ (nonlinear) Fourier transformations q̂

M7→ Macro-quantities λn(q)

F is strong continuous and M is continuous

=⇒M◦F is strong continuous
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Proofs: 1. Solutions of initial value problems of linear

systems of ODE are strong continuous in coefficients.

2. Arguments of planar linear ODE are strong continuous.

3. Eigenvalues are obtained by solving equations for

arguments. It is important to use the lefting of families of

circle homeomorphisms.
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The proofs are non-trivial. One way is based on the

characterization of relatively compact subsets in weak

topologies.

Lemma 7. A subset W ⊂ L1 is relatively compact in

(L1, w1) iff

• (uniform boundedness) supu∈W ‖u‖1 <∞,

• (equi-absolute continuity) for any ε > 0, there exists

δ > 0 such that∣∣∣∣∫
B

u

∣∣∣∣ < ε ∀u ∈W, ∀B ⊂ [0, 1] with meas(B) < δ.
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For 1D linear ODE

y′ = q(x)y, x ∈ [0, 1],

the solutions of initial value problems are

y(x; q) = y0 exp

(∫ x

0

q

)
.

When y0 and x are fixed, it follows from the definition of

weak topologies that

qk → q in (L1, w1) =⇒ y(x; qk)→ y(x; q).
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By using Lemma 7, one can obtain the following strong

continuity:

qk → q in (L1, w1) =⇒ y(·; qk)→ y(·; q) in (C0[0, 1], ‖·‖C0).

• Such a strong continuity can be obtained for solutions

of initial value problems of linear systems of ODE.

• Dynamics quantities like rotation numbers and

Lyapunov exponents (of Hill’s equations) are also strong

continuous in potentials.

• Further strong continuity results will be mentioned later.
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II. Optimal Estimates of Eigenvalues of
Sturm-Liouville Problems

Let q ∈ Lp, 1 ≤ p ≤ ∞. The problem is how to estimate

λn(q) = λ
D/N
n (q) using the Lp norm ‖q‖p of the potential

q.

• Trivial result: p =∞. If ‖q‖∞ = r, one has

(nπ)2 − r ≤ λn(q) ≤ (nπ)2 + r,

which are optimal for potentials q ∈ L∞.
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• Case p ∈ [1,∞): Suppose that we have known only

‖q‖p = r. In order to obtain the optimal lower and upper

bounds of λn(q), we are lead to the following basic

extremal problems

Ln,p(r):= inf
q∈Bp[r]

λn(q) ≡ inf
q∈Sp[r]

λn(q), (3)

Mn,p(r):= sup
q∈Bp[r]

λn(q) ≡ sup
q∈Sp[r]

λn(q). (4)

Here

Bp[r] = {q ∈ Lp : ‖q‖p ≤ r} , Sp[r] = ∂Bp[r].

Of particular interest is the case p = 1.
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Roughly speaking, by considering q(x) as densities,

problems (3) and (4) are predicting the ranges of

oscillation frequencies when the Lp norms of q(x) are

known.

Problems (3) and (4) are well imposed. Once these have

been solved, we will have the following optimal bounds for

eigenvalues

Ln,p(‖q‖p) ≤ λN/Dn (q) ≤Mn,p(‖q‖p) ∀q ∈ Lp.
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However, several difficulties for problems (3) and (4)

include

• ∞-dim optimization problems, with the eigenvalue

functionals λn(q) being defined in an implicit way.

• For case p = 1, topologically, balls B1[r] have no

compactness, even in (L1, w1), and, geometrically, spheres

S1[r] = ∂B1[r] are not smooth in (L1, ‖ · ‖1).
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Our approaches: Case p ∈ (1,∞) and case p = 1.

• Case p ∈ (1,∞): Solved by the variational method.

Topologically, Bp[r] is compact and sequentially compact

in the weak topology (Lp, wp). Geometrically,

Sp[r] = ∂Bp[r] is a continuously differentiable manifold in

(Lp, ‖ · ‖p).

The strong continuity of eigenvalues in potentials =⇒

Ln,p(r) := minq∈Bp[r] λn(q) = λn(qn,r,p),

Mn,p(r) := maxq∈Bp[r] λn(q) = λn(q̂n,r,p),
(5)

are attained by some potentials qn,r,p, q̂n,r,p ∈ Sp[r].
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Using the Lagrange multiplier method, the minimizing/

maximizing potentials (on Sp[r]) of λn(·), or more

general, the critical potentials, denoted by qp = qp,n,r, are

determined by

E2
p = cp|qp|p−2qp,

E ′′p + (µp + qp)Ep = 0.

Here cp 6= 0 is the Lagrange multiplier, Ep is the

corresponding normalized eigen-function (and therefore

satisfies the boundary condition), and µp = λn(qp) ∈ R is

the value we want to characterize.
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Tricky reduction: Choose the ‘coordinates’ for critical

potentials qp as

yp := |cp|−1/2Ep,

a special eigen-function. Then y = yp satisfies the

following critical equation

y′′ + µpy ± |y|2p
∗−2y = 0, (6)

with the choice + for min, − for max. Moreover, the

potential qp is given by

qp = +|yp|p
∗−2yp (min), qp = −|yp|p

∗−2yp (max).

(7)
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Remark The PDE counterpart of Eq. (6) is the

Stationary nonlinear Schrödinger equation

−∆u+ µu± u3 = 0 (p = 2),

or, more generally,

−∆u+ (µ+ q0(x))u± u3 = 0 (p = 2),

with the ball centered at q0.

By analyzing the phase portraits of critical equations (6),

the minimizing/ maximizing potentials qp(x) and the

extremal values µp can be constructed using singular

integrals.
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• Case p = 1: The limiting approach p ↓ 1.

Hölder inequality =⇒ The smaller the exponent p is, the

bigger the ball Bp[r] is.

As p ↓ 1, Bp[r] can approximate B1[r] from the interior in

the L1 topology ‖ · ‖Lp. Therefore

Ln,1(r) = lim
p↓1

Ln,p(r), Mn,1(r) = lim
p↓1

Mn,p(r). (8)
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The extremal values are as follows. Denote

Ln(r) := Ln,1(r) and Mn(r) := Mn,1(r).

Theorem 8. (Zhang, JDE, 2009) Let Ẑ0 : (−∞, 0] →
[0,∞) be

Ẑ0(x) =
√
−x tanh

√
−x for x ∈ (−∞, 0].

Then

LN
0 (r) = Ẑ−1

0 (r), MN
0 (r) = r.
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Theorem 9. (Wei-Meng-Zhang, JDE, 2009) Let Z1 :

(−∞, π2] → [0,∞) be

Z1(x) =


2
√
−x coth(

√
−x/2) for x ∈ (−∞, 0),

4 for x = 0,

2
√
x cot(

√
x/2) for x ∈ (0, π2],

and Y1 : [0,∞)→ [π2,∞) be

Y1(x) =
1

4

(
π +

√
π2 + 4x

)2

.

Then, for n ∈ N,

LN/D
n (r) = n2Z−1

1 (r/n2), MN/D
n (r) = n2Y1(r/n

2).
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Remark The approach is different from that in the works

of Krein, Karaa, Lou-Yanagida, ......
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III. Eigenvalues for Measure Differential Equations

By considering the first Dirichlet eigenvalues λD1 (q), for

p ∈ (1,∞), let qp = qp,r ∈ Sp[r] and q̂p = q̂p,r ∈ Sp[r] be

the minimizing and maximizing potentials

L1,p(r) = λD1 (qp), M1,p(r) = λD1 (q̂p).

Lemma 10. As p ↓ 1, one has

q̂p,r → Qr in (L1, ‖ · ‖1),



30

where Qr ∈ L1 is a bang-bang potential

Qr(x) =

{
−M1(r) x ∈ [0, τr] ∪ [1− τr, 1],

0 x ∈ [τr, 1− τr].

On the other hand, as measures,

Qp,r(x) :=

∫
[0,x]

qp,r(s)ds→ rδ1/2(x) in (M0[0, 1], w∗),

where δ1/2 is the Dirac measure located at 1/2 and w∗ is

the weak∗ topology in the space M0[0, 1] of measures.
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Proposition 11. By the continuity of eigenvalues λ1(q)

in q ∈ (L1, ‖ · ‖1), one has

M1(r) = λD1 (Qr),

and Qr is the maximizing potential for λD1 (q) on S1[r].

On the other hand, the minimum L1(r) cannot be

attained by any potential on S1[r]. To explain the

minimizers, we need to expand the eigenvalue theory of

Sturm-Liouville problems to Measure Differential

Equations (MDE). See, e.g., Meng & Zhang, J. Diff. Eq.,

2013.
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Given a real measure µ ∈M0[0, 1], consider the

second-order linear MDE

dy• + λydx+ ydµ(x) = 0, x ∈ [0, 1]. (9)

With the Dirichlet boundary condition

y(0) = y(1) = 0, (D)

or the Neumann boundary condition

y•(0) = y•(1) = 0, (N)
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problem (9) defines eigenvalues

λD1 (µ) < λD2 (µ) < · · · < λDn (µ) < · · ·

λN0 (µ) < λN1 (µ) < · · · < λNn (µ) < · · ·

Theorem 12. (Meng & Zhang) As nonlinear functionals,

µ ∈ (M0[0, 1], w∗)→ λD/Nn (q) ∈ R

are continuous.

Very strong continuous dependence!
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Proposition 13. One has

L1(r) = λD1 (rδ1/2),

which is attained by a completely singular measure.
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IV. Some Solved and Unsolved Problems

• Solved Problem For example, as eigenvalues satisfy

λn(q + c) = λn(q)− c

for constants c ∈ R, it is reasonable to study the following

problems

Min/Max λn(q) s.t. q̄ :=

∫ 1

0

q = 0, ‖q‖L1 = r.
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For these problems, the critical equations contain some

additional parameter mp (due to the constraint q̄ = 0)

y′′ + µpy ± |y2 −mp|p
∗−2(y2 −mp)y = 0.

The limiting analysis is much complicated.

Meng-Yan-Zhang have recently solved these problems.
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• Partially Solved Problem — Periodic/anti-periodic

eigenvalues: We have only obtained partial results. The

main reason is that λn(q) and λn(q) are not continuously

differentiable at those potentials such that λn(q) = λn(q)

(coexistent potentials). These are related with dynamics.
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• An Unsolved Problem — Optimal Gaps between

Eigenvalues: For example, find

inf (sup) {λ2(q)− λ1(q) : q ∈ Sp[r]} ,

where 1 < p <∞.

The critical system of these problems is

x′′i + λixi ± |x2
1 − x2

2|p
∗
xi = 0, i = 1, 2. (10)

Here λi and xi are the critical eigenvalues and

eigenfunctions.
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• Nonlinear perturbation of the linear oscillators

• Non-Hamiltonian system

• Degree-2-of-freedom

• A first integral

1

2
(x′21 + λ1x

2
1)−

1

2
(x′22 + λ2x

2
2)±

1

2p∗
|x2

1 − x2
2|p

∗
= c.

Problem Is system (10) completely integrable?

Yes, if λ1 = λ2 = 0.
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