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Preface

Politics is for the present, but an equation is something for eternity.
(Albert Einstein)

This monograph is based on (and greatly expanded from) a lecture series given
at the NSF-CBMS regional conference on nonlinear and dispersive wave equations
at New Mexico State University, held in June 2005. Its objective is to present
some aspects of the global existence theory (and in particular, the regularity and
scattering theory) for various nonlinear dispersive and wave equations, such as the
Korteweg-de Vries (KdV), nonlinear Schrödinger, nonlinear wave, and wave maps
equations. The theory here is rich and vast and we cannot hope to present a
comprehensive survey of the field here; our aim is instead to present a sample of
results, and to give some idea of the motivation and general philosophy underlying
the problems and results in the field, rather than to focus on the technical details.
We intend this monograph to be an introduction to the field rather than an ad-
vanced text; while we do include some very recent results, and we imbue some more
classical results with a modern perspective, our main concern will be to develop
the fundamental tools, concepts, and intuitions in as simple and as self-contained
a matter as possible. This is also a pedagogical text rather than a reference; many
details of arguments are left to exercises or to citations, or are sketched informally.
Thus this text should be viewed as being complementary to the research literature
on these topics, rather than being a substitute for them.

The analysis of PDE is a beautiful subject, combining the rigour and technique
of modern analysis and geometry with the very concrete real-world intuition of
physics and other sciences. Unfortunately, in some presentations of the subject (at
least in pure mathematics), the former can obscure the latter, giving the impression
of a fearsomely technical and difficult field to work in. To try to combat this, this
book is devoted in equal parts to rigour and to intuition; the usual formalism of
definitions, propositions, theorems, and proofs appear here, but will be interspersed
and complemented with many informal discussions of the same material, centering
around vague “Principles” and figures, appeal to physical intuition and examples,
back-of-the-envelope computations, and even some whimsical quotations. Indeed,
the exposition and exercises here reflect my personal philosophy that to truly under-
stand a mathematical result one must view it from as many perspectives as possible
(including both rigorous arguments and informal heuristics), and must also be able
to translate easily from one perspective to another. The reader should thus be
aware of which statements in the text are rigorous, and which ones are heuristic,
but this should be clear from context in most cases.

To restrict the field of study, we shall focus primarily on defocusing equations,
in which soliton-type behaviour is prohibited. From the point of view of global
existence, this is a substantially easier case to study than the focusing problem, in
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which one has the fascinating theory of solitons and multi-solitons, as well as various
mechanisms to enforce blow-up of solutions in finite or infinite time. However, we
shall see that there are still several analytical subtleties in the defocusing case,
especially when considering critical nonlinearities, or when trying to establish a
satisfactory scattering theory. We shall also work in very simple domains such
as Euclidean space Rn or tori Tn, thus avoiding consideration of boundary-value
problems, or curved space, though these are certainly very important extensions to
the theory. One further restriction we shall make is to focus attention on the initial
value problem when the initial data lies in a Sobolev space Hs

x(R
d), as opposed to

more localised choices of initial data (e.g. in weighted Sobolev spaces, or self-similar
initial data). This restriction, combined with the previous one, makes our choice of
problem translation-invariant in space, which leads naturally to the deployment of
the Fourier transform, which turns out to be a very powerful tool in our analysis.
Finally, we shall focus primarily on only four equations: the semilinear Schrödinger
equation, the semilinear wave equation, the Korteweg-de Vries equation, and the
wave maps equation. These four equations are of course only a very small sample of
the nonlinear dispersive equations studied in the literature, but they are reasonably
representative in that they showcase many of the techniques used for more general
equations in a comparatively simple setting.

Each chapter of the monograph is devoted to a different class of differential
equations; generally speaking, in each chapter we first study the algebraic struc-
ture of these equations (e.g. symmetries, conservation laws, and explicit solutions),
and then turn to the analytic theory (e.g. existence and uniqueness, and asymptotic
behaviour). The first chapter is devoted entirely to ordinary differential equations
(ODE). One can view partial differential equations (PDE) such as the nonlinear
dispersive and wave equations studied here, as infinite-dimensional analogues of
ODE; thus finite-dimensional ODE can serve as a simplified model for understand-
ing techniques and phenomena in PDE. In particular, basic PDE techniques such
as Picard and Duhamel iteration, energy methods, continuity or bootstrap argu-
ments, conservation laws, near-conservation laws, and monotonicity formulae all
have useful ODE analogues. Furthermore, the analogy between classical mechan-
ics and quantum mechanics provides a useful heuristic correspondence between
Schrödinger type equations, and classical ODE involving one or more particles, at
least in the high-frequency regime.

The second chapter is devoted to the theory of the basic linear dispersive mod-
els: the Airy equation, the free Schrödinger equation, and the free wave equation.
In particular, we show how the Fourier transform and conservation law methods,
can be used to establish existence of solutions, as well as basic estimates such as
the dispersive estimate, local smoothing estimates, Strichartz estimates, and Xs,b

estimates.
In the third chapter we begin studying nonlinear dispersive equations in earnest,

beginning with two particularly simple semilinear models, namely the nonlinear
Schrödinger equation (NLS) and nonlinear wave equation (NLW). Using these
equations as examples, we illustrate the basic approaches towards defining and
constructing solutions, and establishing local and global properties, though we de-
fer the study of the more delicate energy-critical equations to a later chapter. (The
mass-critical nonlinear Schrödinger equation is also of great interest, but we will
not discuss it in detail here.)
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In the fourth chapter, we analyze the Korteweg de Vries equation (KdV), which
requires some more delicate analysis due to the presence of derivatives in the non-
linearity. To partly compensate for this, however, one now has the structures of
nonresonance and complete integrability; the interplay between the integrability on
one hand, and the Fourier-analytic structure (such as nonresonance) on the other,
is still only partly understood, however we are able to at least establish a quite
satisfactory local and global wellposedness theory, even at very low regularities,
by combining methods from both. We also discuss a less dispersive cousin of the
KdV equation, namely the Benjamin-Ono equation, which requires more nonlinear
techniques, such as gauge transforms, in order to obtain a satisfactory existence
and wellposedness theory.

In the fifth chapter we return to the semilinear equations (NLS and NLW),
and now establish large data global existence for these equations in the defocusing,
energy-critical case. This requires the full power of the local wellposedness and per-
turbation theory, together with Morawetz-type estimates to prevent various kinds
of energy concentration. The situation is especially delicate for the Schrödinger
equation, in which one must employ the induction on energy methods of Bourgain
in order to obtain enough structural control on a putative minimal energy blowup
solution to obtain a contradiction and thus ensure global existence.

In the final chapter, we turn to the wave maps equation (WM), which is some-
what more nonlinear than the preceding equations, but which on the other hand
enjoys a strongly geometric structure, which can in fact be used to renormalise
most of the nonlinearity. The small data theory here has recently been completed,
but the large data theory has just begun; it appears however that the geometric
renormalisation provided by the harmonic map heat flow, together with a Morawetz
estimate, can again establish global existence in the negatively curved case.

As a final disclaimer, this monograph is by no means intended to be a defini-
tive, exhaustive, or balanced survey of the field. Somewhat unavoidably, the text
focuses on those techniques and results which the author is most familiar with, in
particular the use of the iteration method in various function spaces to establish a
local and perturbative theory, combined with frequency analysis, conservation laws,
and monotonicity formulae to then obtain a global non-perturbative theory. There
are other approaches to this subject, such as via compactness methods, nonlinear
geometric optics, infinite-dimensional Hamiltonian dynamics, or the techniques of
complete integrability, which are also of major importance in the field (and can
sometimes be combined, to good effect, with the methods discussed here); however,
we will be unable to devote a full-length treatment of these methods in this text. It
should also be emphasised that the methods, heuristics, principles and philosophy
given here are tailored for the goal of analyzing the Cauchy problem for semilinear
dispersive PDE; they do not necessarily extend well to other PDE questions (e.g.
control theory or inverse problems), or to other classes of PDE (e.g. conservation
laws or to parabolic and elliptic equations), though there are certain many connec-
tions and analogies between results in dispersive equations and in other classes of
PDE.

Terence Tao

Notation. As is common with any book attempting to survey a wide range of
results by different authors from different fields, the selection of a unified notation
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becomes very painful, and some compromises are necessary. In this text I have
(perhaps unwisely) decided to make the notation as consistent across chapters as
possible, which means that any individual result presented here will likely have a
notation slightly different from the way it is usually presented in the literature. For
the most part, changing from one convention to another is a matter of permuting
various numerical constants such as 2, π, i, and −1; these constants are usually
quite harmless (except for the sign −1), but one should nevertheless take care in
transporting an identity or formula in this book to another context in which the
conventions are slightly different.

In this text, d will always denote the dimension of the ambient physical space,
which will either be a Euclidean space1 Rd or the torus Td := (R/2πZ)d. (Chapter
1 deals with ODE, which can be considered to be the case d = 0.) All integrals on
these spaces will be with respect to Lebesgue measure dx. If x = (x1, . . . , xd) and
ξ = (ξ1, . . . , ξd) lie in Rd, we use x · ξ to denote the dot product x · ξ := x1ξ1 + . . .+
xdξd, and |x| to denote the magnitude |x| := (x2

1 + . . . + x2
d)

1/2. We also use 〈x〉
to denote the inhomogeneous magnitude (or Japanese bracket) 〈x〉 := (1 + |x|2)1/2
of x, thus 〈x〉 is comparable to |x| for large x and comparable to 1 for small x.
In a similar spirit, if x = (x1, . . . , xd) ∈ Td and k = (k1, . . . , kd) ∈ Zd we define
k · x := k1x1 + . . .+ kdxd ∈ T. In particular the quantity eik·x is well-defined.

We say that I is a time interval if it is a connected subset of R which contains
at least two points (so we allow time intervals to be open or closed, bounded or
unbounded). If u : I×Rd → Cn is a (possibly vector-valued) function of spacetime,
we write ∂tu for the time derivative ∂u

∂t , and ∂x1u, . . . , ∂xd
u for the spatial derivatives

∂u
∂x1

, . . . , ∂u∂xd
; these derivatives will either be interpreted in the classical sense (when

u is smooth) or the distributional (weak) sense (when u is rough). We use ∇xu :
I × Rd → Cnd to denote the spatial gradient ∇xu = (∂x1u, . . . , ∂xd

u). We can
iterate this gradient to define higher derivatives ∇k

x for k = 0, 1, . . .. Of course,
these definitions also apply to functions on Td, which can be identified with periodic
functions on Rd.

We use the Eisenstein convention for summing indices, with Latin indices rang-
ing from 1 to d, thus for instance xj∂xju is short for

∑d
j=1 xj∂xju. When we come

to wave equations, we will also be working in a Minkowski space R1+d with a
Minkowski metric gαβ ; in such cases, we will use Greek indices and sum from 0 to d
(with x0 = t being the time variable), and use the metric to raise and lower indices.
Thus for instance if we use the standard Minkowski metric dg2 = −dt2 + |dx|2, then
∂0u = ∂tu but ∂0u = −∂tu.

In this monograph we always adopt the convention that
∫ t
s = − ∫ s

t if t < s.
This convention will usually be applied only to integrals in the time variable.

We use the Lebesgue norms

‖f‖Lp
x(Rd→C) := (

∫
Rd

|f(x)|p dx)1/p

1We will be using two slightly different notions of spacetime, namely Minkowski space R1+d

and Galilean spacetime R × Rd; in the very last section we also need to use parabolic spacetime
R+ × Rd. As vector spaces, they are of course equivalent to each other (and to the Euclidean

space Rd+1), but we will place different (pseudo)metric structures on them. Generally speaking,
wave equations will use Minkowski space, whereas nonrelativistic equations such as Schrödinger
equations will use Galilean spacetime, while heat equations use parabolic spacetime. For the most
part the reader will be able to safely ignore these subtle distinctions.
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for 1 ≤ p < ∞ for complex-valued measurable functions f : Rd → C, with the
usual convention

‖f‖L∞
x (Rd→C) := ess sup

x∈Rd

|f(x)|.

In many cases we shall abbreviate Lpx(R
d → C) as Lpx(R

d), Lp(Rd), or even Lp

when there is no chance of confusion. The subscript x, which denotes the dummy
variable, is of course redundant. However we will often retain it for clarity when
dealing with PDE, since in that context one often needs to distinguish between
Lebesgue norms in space x, time t, spatial frequency ξ, or temporal frequency
τ . Also we will need it to clarify expressions such as ‖xf‖Lp

x(Rd), in which the
expression in the norm depends explicitly on the variable of integration. We of
course identify any two functions if they agree almost everywhere. One can of
course replace the domain Rd by the torus Td or the lattice Zd, thus for instance

‖f‖lpx(Zd→C) := (
∑
k∈Zd

|f(k)|p)1/p.

One can replace C by any other Banach spaceX , thus for instance Lpx(R
d → X)

is the space of all measurable functions u : Rd → X with finite norm

‖u‖Lp
x(Rd→X) := (

∫
Rd

‖u(x)‖pX dx)1/p

with the usual modification for p = ∞. In particular we can define the mixed
Lebesgue norms LqtL

r
x(I ×Rd → C) = Lqt (I → Lrx(R

d → C)) for any time interval
I as the space of all functions u : I × Rd → C with norm

‖u‖Lq
tL

r
x(I×Rd→C) := (

∫
I

‖u(t)‖q
Lr

x(Rd)
dt)1/q = (

∫
I

(
∫
Rd

|u(t, x)|r dx)q/r dt)1/q

with the usual modifications when q = ∞ or r = ∞. One can also use this Banach
space notation to make sense of the Lp norms of tensors such as ∇f , ∇2f , etc.,
provided of course that such derivatives exist in the Lp sense.

In a similar spirit, if I is a time interval and k ≥ 0, we use Ckt (I → X) to
denote the space of all k-times continuously differentiable functions u : I → X with
the norm

‖u‖Ck
t (I→X) :=

k∑
j=0

‖∂jtu‖L∞
t (I→X).

We caution that if I is not compact, then it is possible for a function to be k-
times continuously differentiable but have infinite Ckt norm; thus we shall generally
restrict attention to compact intervals to avoid this confusion. We adopt the con-
vention that ‖u‖Ck

t (I→X) = ∞ if u is not k-times continuously differentiable.
IfX and Y are two quantities (typically non-negative), we useX � Y or Y � X

to denote the statement that X ≤ CY for some absolute constant C > 0. We use
X = O(Y ) synonymously with |X | � Y . More generally, given some parameters
a1, . . . , ak, we use X �a1,...,ak

Y or Y �a1,...,ak
X to denote the statement that

X ≤ Ca1,...,ak
Y for some (typically large) constant Ca1,...,ak

> 0 which can depend
on the parameters a1, . . . , ak, and defineX = Oa1,...,ak

(Y ) similarly. Typical choices
of parameters include the dimension d, the regularity s, and the exponent p. We
will also say that X is controlled by a1, . . . , ak if X = Oa1,...,ak

(1). We use X ∼
Y to denote the statement X � Y � X , and similarly X ∼a1,...,ak

Y denotes
X �a1,...,ak

Y �a1,...,ak
X . We will occasionally use the notation X �a1,...,ak

Y
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or Y �a1,...,ak
X to denote the statement X ≤ ca1,...,ak

Y for some suitably small
quantity ca1,...,ak

> 0 depending on the parameters a1, . . . , ak. This notation is
somewhat imprecise (as one has to specify what “suitably small” means) and so we
shall usually only use it in informal discussions.

Recall that a function f : Rd → C is said to be rapidly decreasing if we have

‖〈x〉Nf(x)‖L∞
x (Rd) <∞

for all N ≥ 0. We then say that a function is Schwartz if it is smooth and all of its
derivatives ∂αx f are rapidly decreasing, where α = (α1, . . . , αd) ∈ Zd+ ranges over
all multi-indices, and ∂αx is the differential operator

∂αx := (
∂

∂x1
)α1 . . . (

∂

∂xd
)αd .

In other words, f is Schwartz if and only if ∂αx f(x) = Of,α,N (〈x〉−N ) for all α ∈ Zd+
and all N . We use Sx(Rd) to denote the space of all Schwartz functions. As
is well known, this is a Frechet space, and thus has a dual Sx(Rd)∗, the space
of tempered distributions. This space contains all locally integrable functions of
polynomial growth, and is also closed under differentiation, multiplication with
functions g of symbol type (i.e. g and all its derivatives are of polynomial growth)
and convolution with Schwartz functions; we will not present a detailed description
of the distributional calculus here.



CHAPTER 1

Ordinary differential equations

Science is a differential equation. Religion is a boundary condition.
(Alan Turing, quoted in J.D. Barrow, “Theories of everything”)

This monograph is primarily concerned with the global Cauchy problem (or
initial value problem) for partial differential equations (PDE), but in order to as-
semble some intuition on the behaviour of such equations, and on the power and
limitations of the various techniques available to analyze these equations, we shall
first study these phenomena and methods in the much simpler context of ordi-
nary differential equations (ODE), in which many of the technicalities in the PDE
analysis are not present. Conversely, the theory of ODEs, particularly Hamiltonian
ODEs, has a very rich and well-developed structure, the extension of which to non-
linear dispersive PDEs is still far from complete. For instance, phenomena from
Hamiltonian dynamics such as Kolmogorov-Arnold-Moser (KAM) invariant tori,
symplectic non-squeezing, Gibbs and other invariant measures, or Arnold diffusion
are well established in the ODE setting, but the rigorous theory of such phenomena
for PDEs is still its infancy.

One technical advantage of ODE, as compared with PDE, is that with ODE
one can often work entirely in the category of classical (i.e. smooth) solutions,
thus bypassing the need for the theory of distributions, weak limits, and so forth.
However, even with ODE it is possible to exhibit blowup in finite time, and in high-
dimensional ODE (which begin to approximate PDE in the infinite dimensional
limit) it is possible to have the solution stay bounded in one norm but become
extremely large in another norm. Indeed, the quantitative study of expressions
such as mass, energy, momentum, etc. is almost as rich in the ODE world as it is
in the PDE world, and thus the ODE model does serve to illuminate many of the
phenomena that we wish to study for PDE.

A common theme in both nonlinear ODE and nonlinear PDE is that of feedback
- the solution to the equation at any given time generates some forcing term, which
in turn feeds back into the system to influence the solution at later times, usually
in a nonlinear fashion. The tools we will develop here to maintain control of this
feedback effect - the Picard iteration method, Gronwall’s inequality, the bootstrap
principle, conservation laws, monotonicity formulae, and Duhamel’s formula - will
form the fundamental tools we will need to analyze nonlinear PDE in later chapters.
Indeed, the need to deal with such feedback gives rise to a certain “nonlinear way
of thinking”, in which one continually tries to control the solution in terms of itself,
or derive properties of the solution from (slightly weaker versions of) themselves.
This way of thinking may initially seem rather unintuitive, even circular, in nature,
but it can be made rigorous, and is absolutely essential to proceed in this theory.

1



2 1. ORDINARY DIFFERENTIAL EQUATIONS

1.1. General theory

It is a capital mistake to theorise before one has data. Insensibly
one begins to twist facts to suit theories, instead of theories to suit
facts. (Sir Arthur Conan Doyle, “A Study in Scarlet”)

In this section we introduce the concept of an ordinary differential equation
and the associated Cauchy problem, but then quickly specialise to an important
subclass of such problems, namely the Cauchy problem (1.7) for autonomous first-
order quasilinear systems.

Throughout this chapter, D will denote a (real or complex) finite dimensional
vector space, which at times we will endow with some norm ‖‖D; the letter D stands
for “data”. An ordinary differential equation (ODE) is an equation which governs
certain functions u : I → D mapping a (possibly infinite) time interval I ⊆ R to
the vector space1 D. In this setup, the most general form of an ODE is that of a
fully nonlinear ODE

(1.1) G(u(t), ∂tu(t), . . . , ∂kt u(t), t) = 0

where k ≥ 1 is an integer, and G : Dk+1×I → X is a given function taking values in
another finite-dimensional vector space X . We say that a function u ∈ Ck(I → X)
is a classical solution2 (or solution for short) of the ODE if (1.1) holds for all t ∈ I.
The integer k is called the order of the ODE, thus for instance if k = 2 then we
have a second-order ODE. One can think of u(t) as describing the state of some
physical system at a given time t; the dimension of D then measures the degrees
of freedom available. We shall refer to D as the state space, and sometimes refer
to the ODE as the equation(s) of motion, where the plural reflects the fact that X
may have more than one dimension. While we will occasionally consider the scalar
case, when D is just the real line R or the complex plane C, we will usually be
more interested in the case when the dimension of D is large. Indeed one can view
PDE as a limiting case of ODE as dim(D) → ∞.

In this monograph we will primarily consider those ODE which are time-
translation-invariant (or autonomous), in the sense that the function G does not
actually depend explicitly on the time parameter t, thus simplifying (1.1) to

(1.2) G̃(u(t), ∂tu(t), . . . , ∂kt u(t)) = 0

for some function G̃ : Dk+1 → X . One can in fact convert any ODE into a time-
translation-invariant ODE, by the trick of embedding the time variable itself into
the state space, thus replacing D with D ×R, X with X ×R, u with the function

1One could genera the concept of ODE further, by allowing D to be a smooth manifold instead
of a vector space, or even a smooth bundle over the time interval I. This leads for instance to the
theory of jet bundles, which we will not pursue here. In practice, one can descend from this more
general setup back to the original framework of finite-dimensional vector spaces - locally in time,
at least - by choosing appropriate local coordinate charts, though often the choice of such charts
is somewhat artifical and makes the equations messier.

2We will discuss non-classical solutions shortly. As it turns out, for finite-dimensional ODE
there is essentially no distinction between a classical and non-classical solution, but for PDE there
will be a need to distinguish between classical, strong, and weak solutions. See Section 3.2 for
further discussion.
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ũ(t) := (u(t), t), and G with the function3

G̃((u0, s0), (u1, s1), . . . , (uk, sk)) := (G(u0, . . . , uk), s1 − 1).

For instance, solutions to the non-autonomous ODE

∂tu(t) = F (t, u(t))

are equivalent to solutions to the system of autonomous ODE

∂tu(t) = F (s(t), u(t)); ∂ts(t) − 1 = 0

provided that we also impose a new initial condition s(0) = 0. This trick is not
always without cost; for instance, it will convert a non-autonomous linear equation
into an autonomous nonlinear equation.

By working with time translation invariant equations we obtain our first sym-
metry, namely the time translation symmetry

(1.3) u(t) �→ u(t− t0).

More precisely, if u : I → D solves the equation (1.2), and t0 ∈ R is any time
shift parameter, then the time-translated function ut0 : I + t0 → D defined by
ut0(t) := u(t − t0), where I + t0 := {t + t0 : t ∈ I} is the time translation of I,
is also a solution to (1.2). This symmetry tells us, for instance, that the initial
value problem for this equation starting from time t = 0 will be identical (after
applying the symmetry (1.3)) to the initial value problem starting from any other
time t = t0.

The equation (1.2) implicitly determines the value of the top-order derivative
∂kt u(t) in terms of the lower order derivatives u(t), ∂tu(t), . . . , ∂k−1

t u(t). If the
hypotheses of the implicit function theorem4 are satisfied, then we can solve for
∂kt u(t) uniquely, and rewrite the ODE as an autonomous quasilinear ODE of order
k

(1.4) ∂kt u(t) = F (u(t), ∂tu(t), . . . , ∂k−1
t u(t)),

for some function F : Dk → D. Of course, there are times when the implicit
function theorem is not available, for instance if the domain Y of G̃ has a different
dimension than that of D. If Y has larger dimension than D then the equation is
often over-determined ; it has more equations of motion than degrees of freedom,
and one may require some additional hypotheses on the initial data before a solution
is guaranteed. If Y has smaller dimension than D then the equation is often under-
determined ; it has too few equations of motion, and one now expects to have a
multiplicity of solutions for any given initial datum. And even if D and Y have
the same dimension, it is possible for the ODE to sometimes be degenerate, in that
the Jacobian that one needs to invert for the implicit function theorem becomes
singular.

3Informally, what one has done is added a “clock” s to the system, which evolves at the fixed
rate of one time unit per time unit ( ds

dt
−1 = 0), and then the remaining components of the system

are now driven by clock time rather than by the system time. The astute reader will note that this
new ODE not only contains all the solutions to the old ODE, but also contains some additional
solutions; however these new solutions are simply time translations of the solutions coming from
the original ODE.

4An alternate approach is to differentiate (1.2) in time using the chain rule, obtaining an

equation which is linear in ∂k+1
t u(t), and provided that a certain matrix is invertible, one can

rewrite this in the form (1.4) but with k replaced by k + 1.
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Degenerate ODE are rather difficult to study and will not be addressed here.
Both under-determined and over-determined equations cause difficulties for analy-
sis, which are resolved in different ways. An over-determined equation can often be
made determined by “forgetting” some of the constraints present in (1.2), for in-
stance by projecting Y down to a lower-dimensional space. In many cases, one can
then recover the forgotten constraints by using some additional hypothesis on the
initial datum, together with an additional argument (typically involving Gronwall’s
inequality); see for instance Exercises 1.12, (6.4). Meanwhile, an under-determined
equation often enjoys a large group of “gauge symmetries” which help “explain”
the multiplicity of solutions to the equation; in such a case one can often fix a spe-
cial gauge, thus adding additional equations to the system, to make the equation
determined again; see for instance Section 6.2 below. In some cases, an ODE can
contain both over-determined and under-determined components, requiring one to
perform both of these types of tricks in order to recover a determined equation,
such as one of the form (1.4).

Suppose that u is a classical solution to the quasilinear ODE (1.4), and that
the nonlinearity F : Dk → D is smooth. Then one can differentiate (1.4) in time,
use the chain rule, and then substitute in (1.4) again, obtain an equation of the
form

∂k+1
t u(t) = Fk+1(u(t), ∂tu(t), . . . , ∂k−1

t u(t))
for some smooth function Fk+1 : Dk → D which can be written explicitly in terms
of G. More generally, by an easy induction we obtain equations of the form

(1.5) ∂k
′
t u(t) = Fk′ (u(t), ∂tu(t), . . . , ∂k−1

t u(t))

for any k′ ≥ k, where Fk′ : Dk → D is a smooth function which depends only on G
and k′. Thus, if one specifies the initial data u(t0), . . . , ∂k−1

t u(t0) at some fixed time
t0, then all higher derivatives of u at t0 are also completely specified. This shows in
particular that if u is k− 1-times continuously differentiable and F is smooth, then
u is automatically smooth. If u is not only smooth but analytic, then from Taylor
expansion we see that u is now fixed uniquely. Of course, it is only reasonable to
expect u to be analytic if F is also analytic. In such a case, we can complement
the above uniqueness statement with a (local) existence result:

Theorem 1.1 (Cauchy-Kowalevski theorem). Let k ≥ 1. Suppose F : Dk → D
is real analytic, let t0 ∈ R, and let u0, . . . , uk−1 ∈ D be arbitrary. Then there exists
an open time interval I containing t0, and a unique real analytic solution u : I → D
to (1.4), which obeys the initial value conditions

u(t0) = u0; ∂tu(t0) = u1, . . . , ∂
k−1
t u(t0) = uk−1.

We defer the proof of this theorem to Exercise 1.1. This beautiful theorem
can be considered as a complete local existence theorem for the ODE (1.4), in
the case when G is real analytic; it says that the initial position u(t0), and the
first k − 1 derivatives, ∂tu(t0), . . . , ∂k−1

t u(t0), are precisely the right amount of
initial data5 needed in order to have a wellposed initial value problem (we will
define wellposedness more precisely later). However, it turns out to have somewhat

5Conventions differ on when to use the singular “datum” and the plural “data”. In this text,
we shall use the singular “datum” for ODE and PDE that are first-order in time, and the plural
“data” for ODE and PDE that are higher order (or unspecified order) in time. Of course, in both
cases we use the plural when considering an ensemble or class of data.
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limited application when we move from ODE to PDE (though see Exercise 3.25).
We will thus rely instead primarily on a variant of the Cauchy-Kowalevski theorem,
namely the Picard existence theorem, which we shall discuss below.

Remark 1.2. The fact that the solution u is restricted to lie in a open interval
I, as opposed to the entire real line R, is necessary. A basic example is the initial
value problem

(1.6) ut = u2; u(0) = 1

where u takes values on the real line R. One can easily verify that the function
u(t) := 1

1−t solves this ODE with the given initial datum as long as t < 1, and thus
is the unique real-analytic solution to this ODE in this region. But this solution
clearly blows up (i.e. ceases to be smooth) at t = 1, and so cannot be continued6

real analytically beyond this point.

There is a simple trick available to reduce a kth order ODE such as (1.4) to a
first order ODE, at the cost of multiplying the number of degrees of freedom by k,
or more precisely, replacing the state space D by the phase space Dk. Indeed, if
one defines the new function ũ : I → Dk by

ũ(t) := (u(t), ∂tu(t), . . . , ∂k−1
t u(t)),

then the equation (1.4) is equivalent to

∂tũ(t) = F̃ (ũ(t))

where F̃ : Dk → Dk is the function

F̃ (u0, . . . , uk−1) = (u1, . . . , uk−1, F (u0, . . . , uk−1)).

Furthermore, ũ is continuously differentiable if and only if u is k times continuously
differentiable, and the k initial conditions

u(t0) = u0; ∂tu(t0) = u1; . . . ; ∂k−1
t u(t0) = uk−1

collapse to a single initial condition

ũ(t0) = ũ0 := (u0, . . . , uk−1).

Thus for the remainder of this chapter, we shall focus primarily on the initial value
problem (or Cauchy problem) of obtaining solutions u(t) to the first-order ODE7

(1.7) ∂tu(t) = F (u(t)) for all t ∈ I; u(t0) = u0.

where the interval I, the initial time t0, the initial datum u0 ∈ D, and the nonlin-
earity F : D → D are given. We will distinguish three types of solutions:

6One can of course consider a meromorphic continuation beyond t = 1, but this would require
complexifying time, which is a somewhat non-physical operation. Also, this complexification now
relies very heavily on the analyticity of the situation, and when one goes from ODE to PDE, it is
unlikely to work for non-analytic initial data. The question of whether one can continue a solution
in some weakened sense beyond a singularity is an interesting and difficult one, but we will not
pursue it in this text.

7One can interpret F as a vector field on the state space D, in which case the ODE is simply
integrating this vector field; see Figure 1. This viewpoint is particularly useful when considering
the Hamiltonian structure of the ODE as in Section 1.4, however it is not as effective a conceptual
framework when one passes to PDE.
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u0

u(t)

F(u(t))

Figure 1. Depicting F as a vector field on D, the trajectory of the
solution u(t) to the first order ODE (1.7) thus “follows the arrows”
and integrates the vector field F . Contrast this interpretation of
an ODE with the rather different interpretation in Figure 2.

• A classical solution of (1.7) is a function u ∈ C1(I → D) which solves
(1.7) for all t ∈ I in the classical sense (i.e. using the classical notion of
derivative).

• A strong solution of (1.7) is a function u ∈ C0(I → D) which solves (1.7)
in the integral sense that

(1.8) u(t) = u0 +
∫ t

t0

F (u(s)) ds

holds for all8 t ∈ I;
• A weak solution of (1.7) is a function u ∈ L∞(I → D) which solves (1.8)

in the sense of distributions.
Later, when we turn our attention to PDE, these three notions of solution

shall become somewhat distinct; see Section 3.2. In the ODE case, however, we
fortunately have the following equivalence (under a very mild assumption on F ):

Lemma 1.3. Let F ∈ C0(D → D). Then the notions of classical solution,
strong solution, and weak solution are equivalent.

Proof. It is clear that a classical solution is strong (by the fundamental theo-
rem of calculus), and that a strong solution is weak. If u is a weak solution, then it
is bounded and measurable, hence F (u) is also bounded and measurable. Thus the
integral

∫ t
t0
F (u(s)) ds is Lipschitz continuous, and (since u solves (1.8) in the sense

of distributions) u(t) is also Lipschitz continuous, so it is a strong solution. Then

8Recall that we are adopting the convention that
� t
s = − � s

t if t < s.
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Forcing term
F(u)

Solution
uu

0
Constant evolution

Integration
in time

Initial datum

Nonlinearity F 

Figure 2. A schematic depiction of the relationship between the
initial datum u0, the solution u(t), and the nonlinearity F (u). The
main issue is to control the “feedback loop” in which the solution
influences the nonlinearity, which in turn returns to influence the
solution.

F (u) is continuous, and so the fundamental theorem of calculus and (1.8) again, u
is in fact in C1 and is a classical solution. �

The three perspectives of classical, strong, and weak solutions are all important
in the theory of ODE and PDE. The classical solution concept, based on the differ-
ential equation (1.7), is particularly useful for obtaining conservation laws (Section
1.4) and monotonicity formulae (Section 1.5), and for understanding symmetries
of the equation. The strong solution concept, based on the integral equation (1.8),
is more useful for constructing solutions (in part because it requires less a priori
regularity on the solution), and establishing regularity and growth estimates on the
solution. It also leads to a very important perspective on the equation, viewing
the solution u(t) as being the combination of two influences, one coming from the
initial datum u0 and the other coming from the forcing term F (u); see Figure 2.
Finally, the concept of a weak solution arises naturally when constructing solutions
via compactness methods (e.g. by considering weak limits of classical solutions),
since continuity is not a priori preserved by weak limits.

To illustrate the strong solution concept, we can obtain the first fundamental
theorem concerning such Cauchy problems, namely the Picard existence theorem.
We begin with a simplified version of this theorem to illustrate the main point.

Theorem 1.4 (Picard existence theorem, simplified version). Let D be a finite-
dimensional normed vector space. Let F : D → D be a Lipschitz function on D
with Lipschitz constant M . Let 0 < T < 1/M . Then for any t0 ∈ R and u0 ∈ D,
there exists a strong (hence classical) solution u : I → D to the Cauchy problem
(1.7), where I is the time interval I := (t0 − T, t0 + T ).

Proof. Fix u0 ∈ D and t0 ∈ R, and let Φ : C0(I → D) → C0(I → D) be the
map

Φ(u)(t) := u0 +
∫ t

t0

F (u(t′)) dt′.
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Observe from (1.8) that a strong solution is nothing more than a fixed point of the
map Φ. It is easy to verify that Φ is indeed a map from C0(I → D) to C0(I → D).
Using the Lipschitz hypothesis on F and the triangle inequality, we obtain

‖Φ(u)(t) − Φ(v)(t)‖D = ‖
∫ t

t0

F (u(t′)) − F (v(t′)) dt′| ≤
∫ t

t0

M‖u(t′) − v(t′)‖D dt′

for all t ∈ I and u, v ∈ C0(I → Ωε), and thus

‖Φ(u) − Φ(v)‖C0(I→D) ≤ TM‖u− v‖C0(I→D).

Since we have TM < 1, we see that Φ will be a strict contraction on the complete
metric space C0(I → D). Applying the contraction mapping theorem (Exercise 1.2)
we obtain a fixed point to Φ, which gives the desired strong (and hence classical)
solution to the equation (1.7). �

Remark 1.5. An inspection of the proof of the contraction mapping theorem
reveals that the above argument in fact gives rise to an explicit iteration scheme
that will converge to the solution u. Indeed, one can start with the constant
solution u(0)(t) := u0, and then define further iterates u(n) ∈ C0(I → Ωε) by
u(n) := Φ(u(n−1)), or in other words

u(n)(t) := u0 +
∫ t

t0

F (u(n−1)(t′) dt′.

These Picard iterates do not actually solve the equation (1.7) in any of the above
senses, but they do converge uniformly on I to the actual solution. See Figure 3.

Remark 1.6. The above argument is perhaps the simplest example of the
iteration method (also known as the contraction mapping principle method or the
inverse function theorem method), constructing a nonlinear solution as the strong
limit of an iterative procedure. This type of method will be our primary means
of generating solutions which obey a satisfactory set of existence, uniqueness, and
regularity properties. Note that one needs to select a norm ‖‖D in order to obtain
a quantitative estimate on the time of existence. For finite-dimensional ODE, the
exact choice of norm is not terribly important (as all norms are equivalent), but
selecting the norm in which to apply the contraction mapping theorem will become
decisive when studying PDE.

Because F is assumed to be globally Lipschitz, one can actually construct a
global solution to (1.7) in this case, by iterating the above theorem; see Exercise 1.9.
However, in most applications F will only be locally Lipschitz, and so we shall need
a more general version of the above existence theorem. One such version (which
also gives some further information, namely some Lipschitz continuity properties
on the solution map) is as follows.

Theorem 1.7 (Picard existence theorem, full version). Let D be a finite-
dimensional normed vector space. Let t0 ∈ R, let Ω be a non-empty subset of D,
and let Nε(Ω) := {u ∈ D : ‖u − v‖D < ε for some v ∈ D} be the ε-neighbourhood
of Ω for some ε > 0. Let F : D → D be a function which is Lipschitz on the closed
neighbourhood Nε(Ω) with some Lipschitz constant M > 0, and which is bounded
by some A > 0 on this region. Let 0 < T < min(ε/A, 1/M), and let I be the
interval I := (t0 − T, t0 + T ). Then for every u0 ∈ Ω, there exists a strong (hence
classical) solution u : I → Nε(Ω) to the Cauchy problem (1.7). Furthermore, if we
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Φ

Forcing term

Solution

Nonlinearity F

Constant evolution

Integration
in time

Ωin
0

u

(dilates by M)

(contracts by T)

F(u) in C

in Cu 0

0

Initial datum

Figure 3. The Picard iteration scheme. The map Φ is basically
the loop from the solution u to itself. To obtain the fixed point,
start with the initial datum u0 as the first approximant to u, and
apply Φ repeatedly to obtain further approximations to u. As long
as the net contraction factor T ×M is less than 1, the iteration
scheme will converge to an actual solution.

then define the solution maps St0(t) : Ω → D for t ∈ I and St0 : Ω → C0(I → D)
by setting St0(t)(u0) := u(t) and St0(u0) := u, then St0(t) and St0 are Lipschitz
continuous maps, with Lipschitz constant at most 1

1−TM .

Proof. Write Ωε := Nε(Ω) for short. For each u0 ∈ Ω let Φu0 : C0(I →
Ωε) → C0(I → Ωε) be the map

Φu0(u)(t) := u0 +
∫ t

t0

F (u(s)) ds.

As before, a strong solution to (1.7) is nothing more than a fixed point of the map
Φu0 . Since F is bounded by A on Ωε and T < ε/A, we see from the triangle
inequality that Φu0 will indeed map C0(I → Ωε) to C0(I → Ωε). Also, since F
has Lipschitz constant at most M on Ωε, we may argue as in the proof of Theorem
1.4 and conclude that Φu0 will thus be a strict contraction on the complete metric
space C0(I → Ωε) with contraction constant c := TM < 1, and hence will have a
fixed point u = Φu0(u) ∈ C0(I → Ωε). This gives a strong (and hence classical)
solution to the equation (1.7).

Now let u0 and ũ0 be two initial data in Ω, with corresponding solutions
St0(u0) = u ∈ C0(I → D), St0(ũ0) = ũ ∈ C0(I → D) constructed above. Observe
from construction that Φu0(u) = u and Φu0(ũ) = Φũ0(ũ) + u0 − ũ0 = ũ+ u0 − ũ0,
thus

u− ũ = Φu0(u) − Φu0(ũ) + u0 − ũ0.

Taking norms and applying the contraction property and the triangle inequality,
we conclude

‖u− ũ‖C0(I→D) ≤ c‖u− ũ‖C0(I→D) + ‖u0 − ũ0‖D
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and hence
‖u− ũ‖C0(I→D) ≤ 1

1 − c
‖u0 − ũ0‖D.

This proves the desired Lipschitz property on St0 , and hence on each individual
St0(t). �

Remark 1.8. The above theorem illustrates a basic point in nonlinear differ-
ential equations: in order to construct solutions, one does not need to control the
nonlinearity F (u) for all choices of state u, but only for those u that one expects to
encounter in the evolution of the solution. For instance, if the initial datum is small,
one presumably only needs to control F (u) for small u in order to obtain a good
existence result. This observation underlies many of the “perturbative” arguments
which we shall see in this text (see for instance Proposition 1.24 below).

Remark 1.9. In the next section we shall complement the Picard existence
theorem with a uniqueness theorem. The hypothesis that F is Lipschitz can be
weakened, but at the cost of losing the uniqueness; see Exercise 1.21.

Exercise 1.1. Begin the proof of the Cauchy-Kowalevski theorem by reducing
to the case k = 1, t0 = 0, and u0 = 0. Then, use induction to show that if the
higher derivatives ∂mt u(0) are derived recursively as in (1.5), then we have some
bound of the form

‖∂mt u(0)‖D ≤ Km+1m!
for all m ≥ 0 and some large K > 0 depending on F , where ‖‖D is some arbitrary
norm on the finite-dimensional space D. Then, define u : I → D for some sufficiently
small neighbourhood I of the origin by the power series

u(t) =
∞∑
m=0

∂mt u(0)
m!

tm

and show that ∂tu(t) −G(u(t)) is real analytic on I and vanishes at infinite order
at zero, and is thus zero on all of I.

Exercise 1.2. (Contraction mapping theorem) Let (X, d) be a complete non-
empty metric space, and let Φ : X → X be a strict contraction on X , thus there
exists a constant 0 < c < 1 such that d(Φ(u),Φ(v)) ≤ cd(u, v) for all u, v ∈ X .
Show that Φ has a unique fixed point, thus there is a unique u ∈ X such that
u = Φ(u). Furthermore, if u0 is an arbitrary element of X and we construct the
sequence u1, u2, . . . ∈ X iteratively by un+1 := Φ(un), show that un will converge
to the fixed point u. Finally, we have the bound

(1.9) d(v, u) ≤ 1
1 − c

d(v,Φ(v))

for all v ∈ X .

Exercise 1.3. (Inverse function theorem) Let D be a finite-dimensional vec-
tor space, and let Φ ∈ C1(D → D) be such that ∇Φ(x0) has full rank for some
x0 ∈ D. Using the contraction mapping theorem, show that there exists an open
neighbourhood U of x0 and an open neighbourhood V of Φ(x0) such that Φ is a
bijection from U to V , and that Φ−1 is also C1.

Exercise 1.4. Suppose we make the further assumption in the Picard existence
theorem that F ∈ Ck(D → D) for some k ≥ 1. Show that the maps St0(t) and S(t)
are then also continuously k-times differentiable, and that u ∈ Ck+1(I → D).
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Exercise 1.5. How does the Picard existence theorem and the Cauchy-Kowalevski
theorem generalise to higher order quasilinear ODE? What if there is time depen-
dence in the nonlinearity? (These questions can be answered quickly by using the
reduction tricks mentioned in this section.)

Exercise 1.6. One could naively try to extend the local solution given by the
Picard existence theorem to a global solution by iteration, as follows: start with
the initial time t0, and use the existence theorem to construct a solution all the
way up to some later time t1. Then use u(t1) as a new initial datum and apply the
existence theorem again to move forward to a later time t2, and so forth. What
goes wrong with this strategy, for instance when applied to the problem (1.6)?

1.2. Gronwall’s inequality

It takes money to make money. (Proverbial)
As mentioned earlier, we will be most interested in the behaviour of ODE in

very high dimensions. However, in many cases one can compress the key features
of an equation to just a handful of dimensions, by isolating some important scalar
quantities arising from the solution u(t), for instance by inspecting some suitable
norm ‖u(t)‖D of the solution, or looking at special quantities related to conservation
or pseudoconservation laws such as energy, centre-of-mass, or variance. In many
cases, these scalar quantities will not obey an exact differential equation themselves,
but instead obey a differential inequality, which places an upper limit on how quickly
these quantities can grow or decay. One is then faced with the task of “solving”
such inequalities in order to obtain good bounds on these quantities for extended
periods of time. For instance, if a certain quantity is zero or small at some time
t0, and one has some upper bound on its growth rate, one would like to say that
it is still zero or small at later times. Besides the iteration method used already
in the Picard existence theorem, there are two very useful tools for achieving this.
One is Gronwall’s inequality, which deals with linear growth bounds and is treated
here. The other is the continuity method, which can be used with nonlinear growth
bounds and is treated in Section 1.3.

We first give Gronwall’s inequality in an integral form.

Theorem 1.10 (Gronwall inequality). Let u : [t0, t1] → R+ be continuous and
non-negative, and suppose that u obeys the integral inequality

(1.10) u(t) ≤ A+
∫ t

t0

B(s)u(s) ds

for all t ∈ [t0, t1], where A ≥ 0 and B : [t0, t1] → R is continuous. Then we have

(1.11) u(t) ≤ A exp(
∫ t

t0

B(s) ds)

for all t ∈ [t0, t1].

Remark 1.11. This estimate is absolutely sharp, since the function u(t) :=
A exp(

∫ t
t0
B(s) ds) obeys the hypothesis (1.10) with equality.

Proof. By a limiting argument it suffices to prove the claim when A > 0. By
(1.10) and the fundamental theorem of calculus, (1.10) implies

d

dt
(A+

∫ t

t0

B(s)u(s) ds) ≤ B(t)(A +
∫ t

t0

B(s)u(s) ds)
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Forcing term
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u
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Integration
in time
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B u
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Figure 4. The linear feedback encountered in Theorem 1.10, that
causes exponential growth by an amount depending on the growth
factor B. Contrast this with Figure 2.

and hence by the chain rule

d

dt
log(A+

∫ t

t0

B(s)u(s) ds) ≤ B(t).

Applying the fundamental theorem of calculus again, we conclude

log(A+
∫ t

t0

B(s)u(s) ds) ≤ logA+
∫ t

t0

B(s) ds.

Exponentiating this and applying (1.10) again, the claim follows. �

From this theorem and the fundamental theorem of calculus, we obtain a dif-
ferential form of Gronwall’s inequality:

Corollary 1.12 (Gronwall inequality). Let u : [t0, t1] → R+ be absolutely
continuous and non-negative, and suppose that u obeys the differential inequality

∂tu(t) ≤ B(t)u(t)

for almost every t ∈ [t0, t1], where B : [t0, t1] → R is continuous. Then we have

u(t) ≤ u(t0) exp(
∫ t

t0

B(s) ds)

for all t ∈ [t0, t1].

For a generalisation of this corollary, see Exercise 1.7. Note that no sign hy-
pothesis is required on B (though in applications B is often non-negative).

Remark 1.13. This inequality can be viewed as controlling the effect of linear
feedback; see Figure 4. As mentioned earlier, this inequality is sharp in the “worst
case scenario” when ∂tu(t) equals B(t)u(t) for all t. This is the case of “adversarial
feedback”, when the forcing term B(t)u(t) is always acting to increase u(t) by
the maximum amount possible. Many other arguments in this text have a similar
“worst-case analysis” flavour. In many cases (in particular, supercritical defocusing
equations) it is suspected that the “average-case” behaviour of such solutions (i.e.
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for generic choices of initial data) is significantly better than what the worst-case
analysis suggests, thanks to self-cancelling oscillations in the nonlinearity, but we
currently have very few tools which can separate the average case from the worst
case.

As a sample application of this theorem, we have

Theorem 1.14 (Picard uniqueness theorem). Let I be an interval. Suppose we
have two classical solutions u, v ∈ C1(I → D) to the ODE

∂tu(t) = F (u(t))

for some locally Lipschitz F : D → D. If u and v agree at one time t0 ∈ I, then
they agree for all times t ∈ I.

Remark 1.15. Of course, the same uniqueness claim follows for strong or weak
solutions, thanks to Lemma 1.3.

Proof. By a limiting argument (writing I as the union of compact intervals)
it suffices to prove the claim for compact I. We can use time translation invariance
to set t0 = 0. By splitting I into positive and negative components, and using the
change of variables t �→ −t if necessary, we may take I = [0, T ] for some T > 0.

Here, the relevant scalar quantity to analyze is the distance ‖u(t) − v(t)‖D
between u and v, where ‖‖D is some arbitrary norm on D. We then take the ODE
for u and v and subtract, to obtain

∂t(u(t) − v(t)) = F (u(t)) − F (v(t)) for all t ∈ [0, T ]

Applying the fundamental theorem of calculus, the hypothesis u(0) = v(0), and the
triangle inequality, we conclude the integral inequality

(1.12) ‖u(t) − v(t)‖D ≤
∫ t

0

‖F (u(s)) − F (v(s))‖D ds for all t ∈ [0, T ].

Since I is compact and u, v are continuous, we see that u(t) and v(t) range over
a compact subset of D. Since F is locally Lipschitz, we thus have a bound of the
form |F (u(s)) − F (v(s))| ≤ M |u(s) − v(s)| for some finite M > 0. Inserting this
into (1.12) and applying Gronwall’s inequality (with A = 0), the claim follows. �

Remark 1.16. The requirement that F be Lipschitz is essential; for instance
the non-Lipschitz Cauchy problem

(1.13) ∂tu(t) = pu(t)(p−1)/p; u(0) = 0

for some p > 1 has the two distinct solutions u(t) := 0 and v(t) := tp. Note that a
modification of this example also shows that one cannot expect any continuous or
Lipschitz dependence on the initial data in such cases.

By combining the Picard existence theorem with the Picard uniqueness theo-
rem, we obtain

Theorem 1.17 (Picard existence and uniqueness theorem). Let F : D → D
be a locally Lipschitz function, let t0 ∈ R be a time, and let u0 ∈ D be an initial
datum. Then there exists a maximal interval of existence I = (T−, T+) for some
−∞ ≤ T− < t0 < T+ ≤ +∞, and a unique classical solution u : I → D to the
Cauchy problem (1.7). Furthermore, if T+ is finite, we have ‖u(t)‖D → ∞ as
t → T+ from below, and similarly if T+ is finite then we have ‖u(t)‖D → ∞ as
t→ T− from above.
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Figure 5. The maximal Cauchy development of an ODE which
blows up both forwards and backwards in time. Note that in order
for the time of existence to be finite, the solution u(t) must go
to infinity in finite time; thus for instance oscillatory singularities
cannot occur (at least when the nonlinearity F is smooth).

Remark 1.18. This theorem gives a blowup criterion for the Cauchy problem
(1.7): a solution exists globally if and only if the ‖u(t)‖D norm does not go to
infinity9 in finite time; see Figure 5. (Clearly, if ‖u(t)‖D goes to infinity in finite
time, u is not a global classical solution.) As we shall see later, similar blowup
criteria (for various norms D) can be established for certain PDE.

Proof. We define I to be the union of all the open intervals containing t0 for
which one has a classical solution to (1.7). By the existence theorem, I contains a
neighbourhood of t0 and is clearly open and connected, and thus has the desired
form I = (T−, T+) for some −∞ ≤ T− < t0 < T+ ≤ +∞. By the uniqueness
theorem, we may glue all of these solutions together and obtain a classical solution
u : I → D on (1.7). Suppose for contradiction that T ∗ was finite, and that there was
some sequence of times tn approaching T+ from below for which ‖u(t)‖D stayed
bounded. On this bounded set (or on any slight enlargement of this set) F is
Lipschitz. Thus we may apply the existence theorem and conclude that one can
extend the solution u to a short time beyond T+; gluing this solution to the existing
solution (again using the uniqueness theorem) we contradict the maximality of I.
This proves the claim for T+, and the claim for T− is proven similarly. �

The Picard theorem gives a very satisfactory local theory for the existence and
uniqueness of solutions to the ODE (1.7), assuming of course that F is Lipschitz.

9We sometimes say that a solution blows up at infinity if the solution exists globally as
t → ∞, but that the norm ‖u(t)‖D is unbounded; note that Theorem 1.17 says nothing about
whether a global solution will blow up at infinity or not, and indeed both scenarios are easily seen
to be possible.
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The issue remains, however, as to whether the interval of existence (T−, T+) is
finite or infinite. If one can somehow ensure that ‖u(t)‖D does not blow up to
infinity at any finite time, then the above theorem assures us that the interval of
existence is all of R; as we shall see in the exercises, Gronwall’s inequality is one
method in which one can assure the absence of blowup. Another common way
to ensure global existence is to obtain a suitably “coercive” conservation law (e.g.
energy conservation), which manages to contain the solution to a bounded set;
see Proposition 1.24 below, as well as Section 1.4 for a fuller discussion. A third
way is to obtain decay estimates, either via monotonicity formulae (see Section
1.5) or some sort of dispersion or dissipation effect. We shall return to all of these
themes throughout this monograph, in order to construct global solutions to various
equations.

Gronwall’s inequality is causal in nature; in its hypothesis, the value of the
unknown function u(t) at times t is controlled by its value at previous times 0 <
s < t, averaged against a function B(t) which can be viewed as a measure of
the feedback present in the system; thus it is excessive feedback which leads to
exponential growth. This is of course very compatible with one’s intuition regarding
cause and effect, and our interpretation of t as a time variable. However, in some
cases, when t is not being interpreted as a time variable, one can obtain integral
inequalities which are acausal in that u(t) is controlled by an integral of u(s) both
for s < t and s > t. In many such cases, these inequalities lead to no useful
conclusion. However, if the feedback is sufficiently weak, and one has some mild
growth condition at infinity, one can still proceed as follows.

Theorem 1.19 (Acausal Gronwall inequality). Let 0 < α′ < α, 0 < β′ < β
and ε > 0 be real numbers. Let u : R → R+ be measurable and non-negative, and
suppose that u obeys the integral inequality

(1.14) u(t) ≤ A(t) + ε

∫
R

min(e−α(s−t), e−β(t−s))u(s) ds

for all t ∈ R, where A : R → R+ is an arbitrary function. Suppose also that we
have the subexponential growth condition

sup
t∈R

e−ε|t|u(t) <∞.

Then if ε is sufficiently small depending on α, β, α′, β′, we have

(1.15) u(t) ≤ 2 sup
s∈R

min(e−α
′(s−t), e−β

′(t−s))A(s).

for all t ∈ R.

Proof. We shall use an argument similar in spirit to that of the contraction
mapping theorem, though in this case there is no actual contraction to iterate as
we have an integral inequality rather than an integral equation. We will assume
that there exists σ > 0 such that A(t) ≥ σeε|t| for all t ∈ R; the general case can
then be deduced by replacing A(t) by A(t) + σeε|t| and then letting σ → 0, noting
that the growth of the eε|t| factor will be compensated for by the decay of the
min(e−α

′(s−t), e−β
′(t−s)) factor if ε is sufficiently small. Let B : R → R+ denote

the function
B(t) := sup

s∈R
min(e−α

′(s−t), e−β
′(t−s))A(s).
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Then we see that σeε|t| ≤ A(t) ≤ B(t), that B is strictly positive, and furthermore
B obeys the continuity properties

(1.16) B(s) ≤ max(eα
′(s−t), eβ

′(t−s))B(t)

for all t, s ∈ R.
Let M be the smallest real number such that u(t) ≤ MB(t) for all t ∈ R; our

objective is to show that M ≤ 2. Since B is bounded from below by σeε|t|, we see
from the subexponential growth condition that M exists and is finite. From (1.14)
we have

u(t) ≤ B(t) + ε

∫
R

min(e−α(s−t), e−β(t−s))u(s) ds.

Bounding u(s) by MB(s) and applying (1.16), we conclude

u(t) ≤ B(t) +MB(t)ε
∫
R

min(e−(α−α′)(s−t), e−(β−β′)(t−s)) ds.

Since 0 < α′ < α and 0 < β′ < β, the integral is convergent and is independent of
t. Thus if ε is sufficiently small depending on α, β, α′, β′, we conclude that

u(t) ≤ B(t) +
1
2
MB(t)

which by definition ofM impliesM ≤ 1+ 1
2M . Hence we haveM ≤ 2 as desired. �

The above inequality was phrased for a continuous parameter t, but it quickly
implies a discrete analogue:

Corollary 1.20 (Discrete acausal Gronwall inequality). Let 0 < α′ < α,
0 < β′ < β and ε > 0 be real numbers. Let (un)n∈Z be a sequence of non-negative
numbers such that

(1.17) un ≤ An + ε
∑
m∈Z

min(e−α(m−n), e−β(n−m))um

for all t ∈ R, where (An)n∈Z is an arbitrary non-negative sequence. Suppose also
that we have the subexponential growth condition

sup
n∈Z

une
−ε|n| <∞.

Then if ε is sufficiently small depending on α, β, α′, β′, we have

(1.18) un ≤ 2 sup
m∈Z

min(e−α
′(m−n), e−β

′(n−m))Am.

for all n ∈ Z.

This corollary can be proven by modifying the proof of the previous theorem,
or alternatively by considering the function u(t) := u[t], where [t] is the nearest
integer to t; we leave the details to the reader. This corollary is particularly useful
for understanding the frequency distribution of solutions to nonlinear dispersive
equations, in situations when the data is small (so the nonlinear effects of energy
transfer between dyadic frequency ranges |ξ| ∼ 2n are weak). See for instance
[Tao5], [Tao6], [Tao7] for ideas closely related to this. One can also use these
types of estimates to establish small energy regularity for various elliptic problems
(the smallness is needed to make the nonlinear effects weak).
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Exercise 1.7 (Comparison principle). Let I = [t0, t1] be a compact interval,
and let u : I → R, v : I → R be two scalar absolutely continuous functions. Let
F : I ×R → R be a locally Lipschitz function, and suppose that u and v obey the
differential inequalities

∂tu(t) ≤ F (t, u(t)); ∂tv(t) ≥ F (t, v(t))

for all t ∈ I. Show that if u(t0) ≤ v(t0), then u(t) ≤ v(t) for all t ∈ [t0, t1], and
similarly if u(t0) < v(t0), then u(t) < v(t) for all t ∈ [t0, t1]. (Hint: for the first
claim, apply Gronwall’s inequality to max(u(t) − v(t), 0). For the second, perturb
the first argument by an epsilon.) Note that this principle substantially generalises
Corollary 1.12.

Exercise 1.8 (Sturm comparison principle). Let I be a time interval, and let
u, v ∈ C2(I → R) and a, f, g ∈ C0(I → R) be such tat

∂2
t u(t) + a(t)∂tu(t) + f(t)u(t) = ∂2

t v(t) + a(t)∂tv(t) + g(t)v(t) = 0

for all t ∈ I. Suppose also that v oscillates faster than u, in the sense that g(t) ≥ f(t)
for all t ∈ I. Show that the zeroes of v intersperse the zeros of u, in the sense that
whenever t1 < t2 are times in I such that u(t1) = u(t2) = 0, then v contains
at least one zero in the interval [t1, t2]. (Hint: obtain a first order equation for
the Wronskian u∂tv − v∂tu.) This principle can be thought of as a substantial
generalisation of the observation that the zeroes of the sine and cosine functions
intersperse each other.

Exercise 1.9. Let F : D → D be a locally Lipschitz function of at most linear
growth, thus ‖F (u)‖D � 1 + ‖u‖D for all u ∈ D. Show that for each u0 ∈ D and
t0 ∈ R there exists a unique classical global solution u : R → D to the Cauchy
problem (1.7). Also, show that the solution maps St0(t) : D → D defined by
St0(u0) = u(t0) are locally Lipschitz, obey the time translation invariance St0(t) =
S0(t − t0), and the group laws S0(t)S0(t′) = S0(t + t′) and S0(0) = id. (Hint:
use Gronwall’s inequality to obtain bounds on ‖u(t)‖D in the maximal interval of
existence (T−, T+) given by Theorem 1.17.) This exercise can be viewed as the
limiting case p = 1 of Exercise 1.10 below.

Exercise 1.10. Let p > 1, let D be a finite-dimensional normed vector space,
and let F : D → D be locally Lipschitz function pth-power growth, thus ‖F (u)‖D �
1 + ‖u‖pD for all u ∈ D. Let t0 ∈ R and u0 ∈ D, and let u : (T−, T+) → D be
the maximal classical solution to the Cauchy problem (1.7) given by the Picard
theorem. Show that if T+ is finite, then we have the lower bound

‖u(t)‖D �p (T+ − t)−1/(p−1)

as t approaches T+ from below, and similarly for T−. Give an example to show
that this blowup rate is best possible.

Exercise 1.11 (Slightly superlinear equations). Suppose F : D → D is a
locally Lipschitz function of x log x growth, thus

‖F (u)‖D � (1 + ‖u‖D) log(2 + ‖u‖D)

for all u ∈ D. Do solutions to the Cauchy problem (1.7) exist classically for all time
(as in Exercise 1.9), or is it possible to blow up (as in Exercise 1.10)? In the latter
case, what is the best bound one can place on the growth of ‖u(t)‖D in time; in
the former case, what is the best lower bound one can place on the blow-up rate?
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Exercise 1.12 (Persistence of constraints). Let u : I → D be a (classical)
solution to the ODE ∂tu(t) = F (u(t)) for some time interval I and some F ∈
C0(D → D), and let H ∈ C1(D → R) be such that 〈F (v), dH(v)〉 = G(v)H(v) for
some G ∈ C0(D → R) and all v ∈ D; here we use

(1.19) 〈u, dH(v)〉 :=
d

dε
H(v + εu)|u=0

to denote the directional derivative of H at v in the direction u. Show that if
H(u(t)) vanishes for one time t ∈ I, then it vanishes for all t ∈ I. Interpret this
geometrically, viewing F as a vector field and studying the level surfaces of H .

Exercise 1.13. (Compatibility of equations) Let F,G ∈ C1(D → D) have the
property that

(1.20) 〈F (v), dG(v)〉 − 〈G(v), dF (v)〉 = 0

for all v ∈ D. (The left-hand side has a natural interpretation as the Lie bracket
[F,G] of the differential operators F ·∇, G ·∇ associated to the vector fields F and
G.) Show that for any u0 ∈ D, there exists a neighbourhood B ⊂ R2 of the origin,
and a map u ∈ C2(B → D) which satisfies the two equations

(1.21) ∂su(s, t) = F (u(s, t)); ∂tu(s, t) = G(u(s, t))

for all (s, t) ∈ B, with initial datum u(0, 0) = u0. Conversely, if u ∈ C2(B → D)
solves (1.21) on B, show that (1.20) must hold for all v in the range of u. (Hint:
use the Picard existence theorem to construct u locally on the s-axis {t = 0}
by using the first equation of (1.21), and then for each fixed s, extend u in the
t direction using the second equation of (1.21). Use Gronwall’s inequality and
(1.20) to establish that u(s, t) − u(0, t) − ∫ s

0
F (u(s′, t)) ds′ = 0 for all (s, t) in a

neighbourhood of the origin.) This is a simple case of Frobenius’s theorem, regarding
when a collection of vector fields can be simultaneously integrated.

Exercise 1.14 (Integration on Lie groups). Let H be a finite-dimensional
vector space, let End(H) be the space of linear transformations fromH to itself, and
let G be a Lie group in End(H) (i.e. a subgroup of End(H) which is also a smooth
manifold). Let g be the Lie algebra ofG (i.e. the tangent space ofG at the identity).
Let g0 ∈ G, and let X : R → g be any locally Lipschitz function. Show that there
exists a unique function g ∈ C1(R → G) such that g(0) = g0 and ∂tg(t) = X(t)g(t)
for all t ∈ R. (Hint: first use Gronwall’s inequality and Picard’s theorem to
construct a global solution g : R →Mn(C) to the equation ∂tg(t) = X(t)g(t), and
then use Gronwall’s inequality again, and local coordinate patches of G, to show
that g stays on G.) Show that the same claim holds if the matrix product X(t)g(t)
is replaced by the Lie bracket [g(t), X(t)] = g(t)X(t) −X(t)g(t).

Exercise 1.15. Give examples to show that Theorem 1.19 and Corollary 1.20
fail (even when A is identically zero) if ε becomes too large, or if the hypothesis
that u has subexponential growth is dropped.

Exercise 1.16. Let α, ε > 0, let d ≥ 1 be an integer, let 0 ≤ γ < n, and let
u : Rd → R+ and A : Rd → R+ be locally integrable functions such that one has
the pointwise inequality

u(x) ≤ A(x) + ε

∫
Rd

e−α|x−y|

|x− y|γ u(y) dy
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for almost every x ∈ Rd. Suppose also that u is a tempered distribution in addition
to a locally integrable function. Show that if 0 < α′ < α and ε is sufficiently small
depending on α, α′, γ, then we have the bound

u(x) ≤ 2‖e−α′|x−y|A(y)‖L∞
y (Rd)

for almost every x ∈ Rd. (Hint: you will need to regularise u first, averaging on a
small ball, in order to convert the tempered distribution hypothesis into a pointwise
subexponential bound. Then argue as in Proposition 1.19. One can then take limits
at the end using the Lebesgue differentiation theorem.)

Exercise 1.17 (Singular ODE). Let F,G : D → D be Lipschitz maps with
F (0) = 0, and suppose that the Lipschitz constant of F is strictly less than one.
Show that there exists a T > 0 for which there exists a unique classical solution
u : (0, T ] → D to the singular non-autonomous ODE ∂tu(t) = 1

tF (u(t)) +G(u(t))
with the boundary condition lim supt→0 ‖u(t)‖D/t < ∞ as t → 0. (Hint: For
uniqueness, use a Gronwall inequality argument. For existence, construct iterates
in the space of functions {tv : v ∈ C0([0, T ] → D)}.) Show that u in fact extends
to a C1 function on [0, T ] with u(0) = 0 and ∂tu(0) = G(0). Also give an example
to show that uniqueness can break down when the Lipschitz constant of F exceeds
1. (You can take a very simple example, for instance with F linear and G zero.)

1.3. Bootstrap and continuity arguments

If you have built your castles in the air, your work need not be lost;
that is where they should be. Now put the foundations under them.
(Henry David Thoreau, “Walden”)

The Picard existence theorem allows us to construct solutions to ODE such as
∂tu(t) = F (u(t)) on various time intervals. Once these solutions have been con-
structed, it is natural to then ask what kind of quantitative estimates and asymp-
totics these solutions satisfy, especially over long periods of time. If the equation
is fortunate enough to be solvable exactly (which can happen for instance if the
equation is completely integrable), then one can often read off the desired estimates
from the exact solution. However, in the majority of cases no explicit solution is
available10. Many times, the best one can do is to write the solution u(t) in terms
of itself, using the strong solution concept. For instance, if the initial condition is
u(t0) = u0, then we have

(1.22) u(t) = u0 +
∫ t

t0

F (u(s)) ds.

This equation tells us that if we have some information on u (for instance, if we
control some norm ‖‖Y of u(s)), we can insert this information into the right-
hand side of the above integral equation (together with some knowledge of the

10Of course, the contraction mapping argument used in Theorem 1.7 does in principle give
a description of the solution, at least locally, as the limit of iterates of a certain integral map Φ,
and the Cauchy-Kowalevski theorem in principle gives a Taylor series expansion of the solution.
However in practice these expansions are rather complicated, and only useful for analyzing the

short-time behaviour and not long-time behaviour. Even if an explicit solution (e.g. involving
special functions) is available, it may be easier to read off the asymptotics and other features of
the equation from an analytic argument such as a bootstrap argument than from inspection of
the explicit solution.
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initial datum u0 and the nonlinearity F ), and conclude some further control of the
solution u (either in the same norm ‖‖Y , or in some new norm).

Thus we can use equations such as (1.22) to obtain control on u - but only if one
starts with some control on u in the first place. Thus it seems difficult to get started
when executing this strategy, since one often starts with only very little control on
u, other than continuity. Nevertheless there is a simple principle, of almost magical
power, that allows one to assume “for free” that u already obeys some quantitative
bound, in order to prove that u obeys another quantitative bound - as long as
the bound one ends up proving is slightly stronger than the bound one used as a
hypothesis (to avoid circularity). This principle - which is a continuous analogue
of the principle of mathematical induction - is known as the bootstrap principle or
the continuity method11. Abstractly, the principle works as follows.

Proposition 1.21 (Abstract bootstrap principle). Let I be a time interval,
and for each t ∈ I suppose we have two statements, a “hypothesis” H(t) and a
“conclusion” C(t). Suppose we can verify the following four assertions:

(a) (Hypothesis implies conclusion) If H(t) is true for some time t ∈ I, then
C(t) is also true for that time t.

(b) (Conclusion is stronger than hypothesis) If C(t) is true for some t ∈ I,
then H(t′) is true for all t′ ∈ I in a neighbourhood of t.

(c) (Conclusion is closed) If t1, t2, . . . is a sequence of times in I which con-
verges to another time t ∈ I, and C(tn) is true for all tn, then C(t) is
true.

(d) (Base case) H(t) is true for at least one time t ∈ I.

Then C(t) is true for all t ∈ I.

Remark 1.22. When applying the principle, the properties H(t) and C(t) are
typically chosen so that properties (b), (c), (d) are relatively easy to verify, with
property (a) being the important one (and the “nonlinear” one, usually proven by
exploiting one or more nonlinear feedback loops in the equations under study). The
bootstrap principle shows that in order to prove a property C(t) obeying (c), (d),
it would suffice to prove the seemingly easier assertion H(t) =⇒ C(t), as long as
H is “weaker” than C in the sense of (b).

Proof. Let Ω be the set of times t ∈ I for which C(t) holds. Properties (d)
and (a) ensure that Ω is non-empty. Properties (b) and (a) ensure that Ω is open.
Property (c) ensures that Ω is closed. Since the interval I is connected, we thus see
that Ω = I, and the claim follows. �

More informally, one can phrase the bootstrap principle as follows:

Principle 1.23 (Informal bootstrap principle). If a quantity u can be bounded
in a nontrivial way in terms of itself, then under reasonable conditions, one can
conclude that u is bounded unconditionally.

11The terminology “bootstrap principle” arises because a solution u obtains its regularity
from its own resources rather than from external assumptions - “pulling itself up by its bootstraps”,
as it were. The terminology “continuity method” is used because the continuity of the solution is
essential to making the method work.
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H(t  )

(closed)
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Hypothesis

Conclusion
C(t)
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Figure 6. A schematic depiction of the relationship between the
hypothesis H(t) and the conclusion C(t); compare this with Figure
2. The reasoning is noncircular because at each loop of the iteration
we extend the set of times for which the hypothesis and conclusion
are known to hold. The closure hypothesis prevents the iteration
from getting stuck indefinitely at some intermediate time.

We give a simple example of the bootstrap principle in action, establishing
global existence for a system in a locally stable potential well from small initial
data.

Proposition 1.24. Let D be a finite-dimensional Hilbert space, and let V ∈
C2(D → R) be such that such that V (0) = 0, ∇V (0) = 0, and ∇2V (0) is strictly
positive definite. Then for all u0, u1 ∈ D sufficiently close to 0, there is a unique
classical global solution u ∈ C2(R → D) to the Cauchy problem

(1.23) ∂2
t u(t) = −∇V (u(t)); u(0) = u0; ∂tu(0) = u1.

Furthermore, this solution stays bounded uniformly in t.

Remark 1.25. The point here is that the potential well V is known to be stable
near zero by hypothesis, but could be highly unstable away from zero; see Figure
7. Nevertheless, the bootstrap argument can be used to prevent the solution from
“tunnelling” from the stable region to the unstable region.

Proof. Applying the Picard theorem (converting the second-order ODE into
a first-order ODE in the usual manner) we see that there is a maximal interval
of existence I = (T−, T+) containing 0, which supports a unique classical solution
u ∈ C2(I → D) to the Cauchy problem (1.23). Also, if T+ is finite, then we have
limt→T+ ‖u(t)‖D + ‖∂tu(t)‖D = ∞, and similarly if T− is finite.

For any time t ∈ I, let E(t) denote the energy

(1.24) E(t) :=
1
2
‖∂tu(t)‖2

D + V (u(t)).

From (1.23) we see that

∂tE(t) = 〈∂tu(t), ∂2
t u(t)〉 + 〈∂tu(t),∇V (u(t))〉 = 0
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Figure 7. The potential well V in Proposition 1.24. As long as
‖∂tu(t)‖2

D + ‖u(t)‖2
D is known to be bounded by (2ε)2, the Hamil-

tonian becomes coercive and energy conservation will trap a parti-
cle in the region ‖∂tu(t)‖2

D +‖u(t)‖2
D ≤ ε2 provided that the initial

energy is sufficiently small. The bootstrap hypothesis can be re-
moved because the motion of the particle is continuous. Without
that bootstrap hypothesis, it is conceivable that a particle could
discontinuously “tunnel” through the potential well and escape,
without violating conservation of energy.

and thus we have the conservation law

E(t) = E(0) =
1
2
‖u1‖2

D + V (u0).

If u0, u1 are sufficiently close to 0, we can thus make E(t) = E(0) as small as
desired.

The problem is that we cannot quite conclude from the smallness of E that u
is itself small, because V could turn quite negative away from the origin. However,
such a scenario can only occur when u is large. Thus we need to assume that u is
small in order to prove that u is small. This may seem circular, but fortunately the
bootstrap principle allows one to justify this argument.

Let ε > 0 be a parameter to be chosen later, and let H(t) denote the statement

‖∂tu(t)‖2
D + ‖u(t)‖2

D ≤ (2ε)2

and let C(t) denote the statement

‖∂tu(t)‖2
D + ‖u(t)‖2

D ≤ ε2.
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Since u is continuously twice differentiable, and blows up at any finite endpoint of
I, we can easily verify properties (b) and (c) of the bootstrap principle, and if u0

and u1 are sufficiently close to 0 (depending on ε) we can also verify (d) at time
t = 0. Now we verify (a), showing that the hypothesis H(t) can be “bootstrapped”
into the stronger conclusion C(t). If H(t) is true, then ‖u(t)‖D = O(ε). We then
see from the hypotheses on V and Taylor expansion that

V (u(t)) ≥ c‖u(t)‖2
D +O(ε3)

for some c > 0. Inserting this into (1.24), we conclude
1
2
‖∂tu(t)‖2

D + c‖u(t)‖2
D ≤ E(0) +O(ε3).

This is enough to imply the conclusion C(t) as long as ε is sufficiently small, and
E(0) is also sufficiently small. This closes the bootstrap, and allows us to conclude
that C(t) is true for all t ∈ I. In particular, I must be infinite, since we know
that ‖∂tu(t)‖2

D + ‖u(t)‖2
D would blow up at any finite endpoint of I, and we are

done. �

One can think of the bootstrap argument here as placing an “impenetrable
barrier”

ε2 < ‖∂tu(t)‖2
D + ‖u(t)‖2

D ≤ (2ε)2

in phase space. Property (a) asserts that the system cannot venture into this
barrier. Properties (b), (c) ensure that this system cannot “jump” from one side
of the barrier to the other instantaneously. Property (d) ensures that the system
starts out on the “good” side of the barrier. We can then conclude that the system
stays in the good side for all time; see Figure 7. Note also the division of labour
in proving these properties. The properties (b), (c) are proven using the local
existence theory (i.e. Theorem 1.17). The property (d) comes from the hypotheses
on the initial datum. The property (a) requires some structural information on the
equation, in this case the existence of a conserved energy E(t) with enough locally
“coercive” properties to contain the system within the desired barrier. This pattern
of argument is very common in the analysis of nonlinear ODE and PDE, and we
shall see several more examples of this later in this monograph.

Exercise 1.18. Show by example that Proposition 1.21 fails if any one of its
four hypotheses are removed.

Exercise 1.19. Let I be a time interval, and u ∈ C0(I → R+) be a non-
negative function obeying the inequality

(1.25) u(t) ≤ A+ εF (u(t))

for some A, ε > 0 and some function F : R+ → R+ which is locally bounded.
Suppose also that u(t0) ≤ 2A for some t0 ∈ I. If ε is sufficiently small depending
on A and F , show that in fact u(t) ≤ 2A for all t ∈ I. Show that the conclusion
can fail if u is not continuous or ε is not small. Note however that no assumption
is made on the growth of F at infinity. Informally speaking, this means that if
one ever obtains an estimate of the form u ≤ A + εF (u), then one can drop the
εF (u) term (at the cost of increasing the main term A by a factor of 2) provided
that ε is suitably small, some initial condition is verified, and some continuity is
available. This is particularly useful for showing that a nonlinear solution obeys
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Figure 8. A depiction of the situation in Exercise 1.19. Note the
impenetrable barrier in the middle of the u domain.

almost the same estimates as a linear solution if the nonlinear effect is sufficiently
weak. Compare this with Principle 1.23.

Exercise 1.20. Let I be a time interval, and let u ∈ C0(I → R+) obey the
inequality

u(t) ≤ A+ εF (u(t)) +Bu(t)θ

for some A,B, ε > 0 and 0 < θ < 1, and some locally bounded function F : R+ →
R+. Suppose also that u(t0) ≤ A′ for some t0 ∈ I and A′ > 0. Show that if ε is
sufficiently small depending on A,A′, B, θ, F , then we have u(t) �θ A+B1/(1−θ) for
all t ∈ I. Thus we can tolerate an additional u-dependent term on the right-hand
side of (1.25) as long as it grows slower than linearly in u.

Exercise 1.21 (Compactness solutions). Let t0 ∈ R be a time, let u0 ∈ D,
and let F : D → D be a function which is continuous (and hence bounded) in a
neighbourhood of u0. Show that there exists an open time interval I containing
t0, and a classical solution u ∈ C1(I → D) to the Cauchy problem (1.7). (Hint:
approximate F by a sequence of Lipschitz functions Fm and apply Theorem 1.17
to obtain solutions um to the problem ∂tum = Fm(um) on some maximal interval
(T−,m, T+,m). Use a bootstrap argument and Gronwall’s inequality to show that
for some fixed open interval I (independent of m) containing t0, the solutions um
will stay uniformly bounded and uniformly Lipschitz (hence equicontinuous) in this
interval, and that this interval is contained inside all of the (T−,m, T+,m). Then
apply the Arzela-Ascoli theorem to extract a uniformly convergent subsequence of
the um on I, and see what happens to the integral equations um(t) = um(t0) +∫ t
t0
Fm(um(s)) ds in the limit, using Lemma 1.3 if necessary.) This is a simple

example of a compactness method to construct solutions to equations such as (1.13),
for which uniqueness is not available.
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Exercise 1.22 (Persistence of constraints, II). Let u : [t0, t1] → D be a classical
solution to the ODE ∂tu(t) = F (u(t)) for some continuous F : D → D, and let
H1, . . . , Hn ∈ C1(D → R) have the property that

〈F (v), dHj(v)〉 ≥ 0

whenever 1 ≤ j ≤ n and v ∈ D is such that Hj(v) = 0 and Hi(v) ≥ 0 for all
1 ≤ i ≤ n. Show that if the statement

Hi(u(t)) ≥ 0 for all 1 ≤ i ≤ n

is true at time t = t0, then it is true for all times t ∈ [t0, t1]. Compare this result
with Exercise 1.12.

Exercise 1.23 (Forced blowup). Let k ≥ 1, and let u : [0, T∗) → R be a
classical solution to the equation ∂kt u(t) = F (u(t)), where F : R → R is continuous.
Suppose that u(0) > 0 and ∂jt u(0) ≥ 0 for all 1 ≤ j < k, and suppose that one has
the lower bound such that F (v) � vp for all v ≥ u(0) and some p > 1. Conclude
the upper bound T∗ �p,k u(0)(1−p)/k on the time of existence. (Hint: first establish
that u(t) ≥ u(0) and ∂jt u(t) ≥ 0 for all 1 ≤ j < k and 0 ≤ t < T∗, for instance by
using Exercise 1.22. Then bootstrap these bounds to obtain some estimate on the
doubling time of u, in other words to obtain an upper bound on the first time t for
which u(t) reaches 2u(0).) This shows that equations of the form ∂kt u(t) = F (u(t))
can blow up if the initial datum is sufficiently large and positive.

Exercise 1.24. Use the continuity method to give another proof of Gronwall’s
inequality (Theorem 1.10). (Hint: for technical reasons it may be easier to first
prove that u(t) ≤ (1 + ε)A exp(

∫ t
t0
B(s) ds) for each ε > 0, as continuity arguments

generally require “an epsilon of room”.) This alternate proof of Gronwall’s inequal-
ity is more robust, as it can handle additional nonlinear terms on the right-hand
side provided that they are suitably small.

1.4. Noether’s theorem

Now symmetry and consistency are convertible terms - thus Poetry
and Truth are one. (Edgar Allen Poe, “Eureka: A Prose Poem”)

A remarkable feature of many important differential equations, especially those
arising from mathematical physics, is that their dynamics, while complex, still con-
tinue to maintain a certain amount of unexpected structure. One of the most
important examples of such structures are conservation laws - certain scalar quan-
tities of the system that remain constant throughout the evolution of the system;
another important example are symmetries of the equation - that there often exists
a rich and explicit group of transformations which necessarily take one solution
of the equation to another. A remarkable result of Emmy Noether shows that
these two structures are in fact very closely related, provided that the differential
equation is Hamiltonian; as we shall see, many interesting nonlinear dispersive and
wave equations will be of this type. Noether’s theorem is one of the fundamental
theorems of Hamiltonian dynamics, and has proven to be extremely fruitful in the
analysis of such PDE. Of course, the field of Hamiltonian mechanics offers many
more beautiful mathematical results than just Noether’s theorem; it is of great in-
terest to see how much else of this theory (much of which is still largely confined
to ODE) can be extended to the PDE setting.



26 1. ORDINARY DIFFERENTIAL EQUATIONS

Noether’s theorem can be phrased symplectically, in the context of Hamiltonian
mechanics, or variationally, in the context of Lagrangian mechanics. We shall opt
to focus almost exclusively on the former; the variational perspective has certain
strengths (most notably in elucidating the role of the stress-energy tensor, and of
the distinguished role played by ground state solitons) but we will not pursue it in
detail here (though see Exercises 1.41, 1.42, 2.58).

Hamiltonian mechanics can be defined on any symplectic manifold, but for
simplicity we shall restrict our attention to symplectic vector spaces.

Definition 1.26. A symplectic vector space (D, ω) is a finite-dimensional real
vector space D, equipped with a symplectic form ω : D×D → R, which is bilinear
and anti-symmetric, and also non-degenerate (so for each non-zero u ∈ D there
exists a v ∈ D such that ω(u, v) �= 0). Given any H ∈ C1(D → R), we define the
symplectic gradient ∇ωH ∈ C0(D → D) to be the unique function such that

(1.26) 〈v, dH(u)〉 =
d

dε
H(u+ εv)|ε=0 = ω(∇ωH(u), v);

this definition is well-defined thanks to the non-degeneracy of ω and the finite
dimensionality of D. Given two functions H,E ∈ C1(D → R), we define the
Poisson bracket {H,E} : D → R by the formula

(1.27) {H,E}(u) := ω(∇ωH(u),∇ωE(u)).

A Hamiltonian function on a phase space (D, ω) is any function12 H ∈ C2(D → R);
to each such Hamiltonian, we associate the corresponding Hamiltonian flow

(1.28) ∂tu(t) = ∇ωH(u(t))

which is thus a quasilinear time-translation-invariant first-order ODE on the phase
space D.

Note that with this definition, Hamiltonian equations are automatically time-
translation-invariant. However it is possible to consider time-varying Hamiltonians
also: see Exercise 1.39. Note that the Hamiltonian of an equation is only determined
up to a constant, since replacing H by H+C does not affect the symplectic gradient
of H .

Example 1.27. If D = Rn×Rn = {(q1, . . . , qn, p1, . . . , pn) : q1, . . . , qn, p1, . . . , pn ∈
R} for some n ≥ 1, and ω : D ×D → R is the bilinear form

ω :=
n∑
j=1

dqj ∧ dpj

or in other words

ω((q1, . . . , qn, p1, . . . , pn), (q′1, . . . , q
′
n, p

′
1, . . . , p

′
n)) :=

n∑
j=1

p′jqj − pjq
′
j

then (D, ω) is symplectic, and for any H,E ∈ C1(D → R) we have

∇ωH = (
∂H

∂p1
, . . . ,

∂H

∂pn
,−∂H

∂q1
, . . . ,− ∂H

∂qn
)

12One can weaken this hypothesis of continuous twice differentiability and still define a
Hamiltonian flow, but the theory becomes more delicate and we will not address it here.
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and

{H,E} =
n∑
j=1

∂H

∂pj

∂E

∂qj
− ∂H

∂qj

∂E

∂pj
.

In particular, the Hamiltonian ODE associated to a Hamiltonian function H ∈
C2(D → R) is given by Hamilton’s equations of motion

(1.29) ∂tqj(t) =
∂H

∂pj
(q(t), p(t)); ∂tpj(t) = −∂H

∂qj
(q(t), p(t)),

where we write u(t) = (q(t), p(t)), q(t) = (q1(t), . . . , qn(t)), and p(t) = (p1(t), . . . , pn(t)).
Thus, for instance, if H takes the form

H(q, p) =
1

2m
|p|2 + V (q)

where |p|2 := p2
1 + . . . + p2

n, m > 0 is a constant, and V ∈ C2(Rn → R), then
Hamilton’s equations become Newton’s laws of motion

∂tq(t) =
1
m
p(t); ∂tp(t) = −∇V (q(t)).

Example 1.28. Let D = Cn be endowed with the symplectic form

(1.30) ω :=
n∑
j=1

1
2
Im(dzj ∧ dzj)

or in other words

ω((z1, . . . , zn), (z′1, . . . , z
′
n)) :=

n∑
j=1

Im(zjz′j).

Then for any H,E ∈ C1(D → R) we have

∇ωH = (2i
∂H

∂z1
, . . . , 2i

∂H

∂zn
)

and

{H,E} = 4
n∑
j=1

Im(
∂H

∂zj

∂E

∂zj
)

where ∂H
∂z := ∂H

∂x − i∂H∂y and ∂H
∂z := ∂H

∂x + i∂H∂y . Thus for instance if H is the simple
harmonic oscillator

(1.31) H(z) :=
n∑
j=1

1
2
λj |zj |2

for some λ1, . . . , λn ∈ R, then the equations of motion are

∂tzj(t) = iλjzj(t).

This is in fact the canonical form for any quadratic Hamiltonian; see Exercise
1.38.

Hamiltonian equations enjoy a number of good properties. Since H is contin-
uously twice differentiable, the function ∇ωH ∈ C1(D → D) is locally Lipschitz,
and so the Picard existence theorem applies; in particular, for any bounded set
Ω ⊂ D, there is a positive time T > 0 for which we have Lipschitz flow maps
S(t) = S0(t) : Ω → D defined for |t| ≤ T . In the quadratic growth case when ∇2H
is bounded, then ∇ωH is globally Lipschitz, and one thus has locally Lipschitz
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global flow maps S(t) ∈ C0(D → D) defined for all times t ∈ R (by Exercise 1.9).
These maps obey the group laws S(t+ t′) = S(t)S(t′), S(0) = id. Furthemore the
S(t) are diffeomorphisms and symplectomorphisms; see Exercise 1.4 and Exercise
1.30.

Let H,E ∈ C2(D → R) be two Hamiltonians on a symplectic phase space
(D, ω), and let u ∈ C1(I → D) be a classical solution to the Hamiltonian ODE
(1.28). From the chain rule and (1.26), (1.27), we thus have the Poisson equation13

(1.32)
d

dt
E(u(t)) = {H,E}(u(t)).

Let us say that a quantity E is conserved by (1.28) if E(u(t)) is constant for any
solution u : I → D of (1.28). From (1.32) and the anti-symmetry {H,E} =
−{E,H} of the Poisson bracket, we conclude

Theorem 1.29 (Noether’s theorem). Let H and E be two Hamiltonians on a
symplectic phase space (D, ω). Then the following are equivalent.

(a) {H,E} = 0.
(b) The quantity E is conserved by the Hamiltonian flow of H.
(c) The quantity H is conserved by the Hamiltonian flow of E.

If any of the above three properties hold, we say that H and E Poisson com-
mute. As stated, Noether’s theorem is symmetric in H and E. However, this
theorem is often interpreted in a somewhat asymmetric way. Assume for sake of
argument that the flow maps SE(t) of E are globally defined (this is the case, for in-
stance, if E is quadratic growth). We view the flow maps SE(t) as a one-dimensional
group action on the phase space D. Noether’s theorem then asserts that E is a con-
served quantity for the equation (1.28) if and only if H is symmetric (i.e. invariant)
with respect to the group actions SE(t); for a generalisation to higher-dimensional
group actions, see Exercise 1.32. Thus this theorem gives a very satisfactory link
between the symmetries of the Hamiltonian H to the conserved quantities of the
flow (1.28). The larger the group of symmetries, the more conserved quantities one
obtains14.

For instance, since H clearly Poisson commutes with itself, we see that H
itself is a conserved quantity, thus H(u(t0)) = H(u0) for any classical solution
u ∈ C1(I → D) to the Cauchy problem

(1.33) ∂tu(t) = ∇ωH(u(t)); u(t0) = u0.

As another example, if (D, ω) is the complex phase space given in Example 1.28,
and the Hamiltonian is invariant under phase rotations, thus

H(eiθz1, . . . , eiθzn) = H(z1, . . . , zn) for all z1, . . . , zn ∈ C, θ ∈ R

13This equation is unrelated to the PDE ∆u = f , which is sometimes also referred to as
Poisson’s equation.

14Provided, of course, that the symmetries themselves come from Hamiltonian flows. Certain
symmetries, notably scaling symmetries, are thus difficult to place in this framework, as they

typically violate Louiville’s theorem and thus cannot be Hamiltonian flows, though they do tend
to generate almost conserved quantities, such as that arising in the virial identity. Also, discrete
symmetries such as time reversal symmetry or permutation symmetry also are not in the range
of applicability for Noether’s theorem.
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Table 1. Some common symmetry groups and their associated
conservation laws (or approximate conservation laws, in the case of
the virial identity). Not all of these follow directly from Noether’s
theorem as stated, and are best viewed instead using the “La-
grangian” approach to this theorem. In some cases, the interpre-
tation of the conserved quantity depends on the equation; for in-
stance spatial translation corresponds to momentum for wave and
Schrödinger equations, but corresponds instead to mass for KdV
type equations.

Symmetry Conserved quantity
time translation energy / Hamiltonian
spatial translation momentum / mass
spatial rotation angular momentum
Galilean transformation (renormalised) centre-of-mass
Lorentz transformation (renormalised) centre-of-energy
scaling (virial identity)
base space diffeomorphism stress-energy
phase rotation mass / probability / charge
gauge transform charge

then the total charge
∑n
j=1 |zj |2 is conserved by the flow. Indeed, the phase rotation

is (up to a factor of two) nothing more than the Hamiltonian flow associated to the
total charge.

Another class of important examples concerns the phase space (Rd ×Rd)N of
N particles in Rd, parameterised by N position variables q1, . . . , qN ∈ Rd and N
momentum variables p1, . . . , pN ∈ Rd, with the symplectic form

ω :=
N∑
j=1

dqj ∧ dpj =
N∑
j=1

d∑
i=1

dqj,i ∧ dpj,i.

If a Hamiltonian H(q1, . . . , qN , p1, . . . , pN) is invariant under spatial translations,
thus

H(q1 − x, . . . , qN − x, p1, . . . , pN) = H(q1, . . . , qN , p1, . . . , pN)
for all x, p1, . . . , pN , q1, . . . , qN ∈ Rd, then Noether’s theorem implies that the total
momentum p =

∑N
j=1 pj is conserved by the flow. If the Hamiltonian takes the

form

(1.34) H(q1, . . . , qN , p1, . . . , pN) =
N∑
j=1

1
2
mi|pi|2 + V (q1, . . . , qN )

for some (translation invariant) potential V ∈ C2((Rd)N → R), then the total
momentum takes the familiar form

p =
N∑
j=1

mj
dqj
dt
.

Similarly, if the Hamiltonian is invariant under angular rotations U : Rd → Rd,
thus

H(Uq1, . . . , UqN , Up1, . . . , UpN ) = H(q1, . . . , qN , p1, . . . , pN )
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H = const

z(t)

i |z(t)|   z(t)
2

Figure 9. The complex scalar ODE ż = i|z|2z is a Hamiltonian
ODE with the conserved Hamiltonian H(z) := 1

4 |z|4. This conser-
vation law coerces the solution z to stay inside a bounded domain,
and hence blowup does not occur. This is in contrast with the
similar-looking ODE ż = +|z|2z, which blows up in finite time
from any non-zero initial datum. Note also the rotation symmetry
of this equation, which by Noether’s theorem implies conservation
of |z|2.

for all p1, . . . , pN , q1, . . . , qN ∈ Rd and U ∈ SO(d), then Noether’s theorem (or more
precisely the generalisation in Exercise 1.32) implies that the angular momentum
L :=

∑N
j=1 qj ∧ pj ∈

∧2 Rd is also preserved by the flow.

Remark 1.30. Noether’s theorem connects exact (Hamiltonian) symmetries
with exact conservation laws. There are a number of generalisations (both rig-
orous and informal) to this theorem. In particular, we expect approximate or
non-Hamiltonian symmetries to be related to approximate conservation laws. One
important instance of this heuristic involves conformal Killing vector fields, which
can be viewed as approximate symmetries of the underlying geometry; see Section
2.5.

Exercise 1.25. Let D be a real Hilbert space, and let J : D → D be a linear
map such that J2 = −id. Show that the bilinear form ω : D × D → R defined
by ω(u, v) := 〈u, Jv〉 is a symplectic form, and that ∇ωH = −J∇H (where ∇ is
the gradient with respect to the Hilbert space structure). This is the constant-
coefficient version of a more general fact, that a symplectic form can be combined
with an almost complex structure J to produce a Riemannian metric; this fact is



1.4. NOETHER’S THEOREM 31

fundamental to the theory of symplectic topology, which is far beyond the scope of
this text (though see Section 4.3).

Exercise 1.26 (Linear Darboux theorem). Show that any symplectic space
(D, ω) is equivalent, after a linear change of variables, to the standard symplectic
space in Example 1.27; in particular symplectic spaces are always finite dimensional.
(Hint: induct on the dimension of D. If the dimension is non-zero, use the non-
degeneracy of ω to locate two linearly independent vectors u, v ∈ D such that
ω(u, v) �= 0. Then restrict to the symplectic complement {w ∈ D : ω(u,w) =
ω(v, w) = 0} and use the induction hypothesis.) Note that this change of variables
will usually not be unique. Conclude in particular that every symplectic phase
space has an even number of dimensions.

Exercise 1.27. Show that if H ∈ C2(D → R) is a Hamiltonian which has a
non-degenerate local minimum at some u0 ∈ D (thus ∇H(u0) = 0 and ∇2H(u0) is
strictly positive definite), then one has global solutions to the associated Hamilton-
ian equation as soon as the initial datum ũ0 is sufficiently close to u0. Note that
this generalises Proposition 1.24; indeed, one can proceed by a modification of the
proof of that proposition. Similarly, show that if H is a Hamiltonian which is glob-
ally coercive in the sense that limv→∞ |H(v)| = ∞, then one has global solutions
to the associated Hamiltonian equation for arbitrary initial data.

Exercise 1.28. Show that if one applies the time reversal change of variable
t �→ −t to a Hamiltonian equation, one obtains another Hamiltonian equation;
what is the new Hamiltonian?

Exercise 1.29. Let I be a time interval, and let (D, ω), (D′, ω′) be symplec-
tic vector spaces. Let u ∈ C1(I → D) solve a Hamiltonian equation ∂tu(t) =
∇ωH(u(t)) for some Hamiltonian H ∈ C2(D → R), and let u′ ∈ C1(I → D′)
solve a Hamiltonian equation ∂tu

′(t) = ∇ω′H ′(u′(t)) for some Hamiltonian H ′ ∈
C2(D′ → R). Show that the combined system (u, u′) ∈ C1(I → D × D′) solves a
Hamiltonian equation on D ×D′, with an appropriate symplectic form ω ⊕ ω′ and
a Hamiltonian H⊕H ′. This shows that a system of many non-interacting particles
is automatically Hamiltonian if each component particle evolves in a Hamiltonian
manner.

Exercise 1.30 (Preservation of symplectic form). Let (D, ω) be a symplectic
space, let H ∈ C2(D → R) be a Hamiltonian, and let u ∈ C2(R × R × R → D)
be such that for each x, y ∈ R, the function t �→ u(t, x, y) solves the Hamiltonian
equation ∂tu(t, x, y) = ∇ωH(u(t, x, y)). Show that for each x, y ∈ R, the quantity
ω(∂xu(t, x, y), ∂yu(t, x, y)) is conserved in time. Conclude in the quadratic growth
case (with ∇2H bounded) that the solution maps S(t) are symplectomorphisms
(they preserve the symplectic form ω).

Exercise 1.31 (Liouville’s theorem). Let (D, ω) be a symplectic space, and
let dm be a Haar measure on D. (One can define a canonical Haar measure,
namely Louiville measure, by setting m := ωdim(D)/2.) Let H ∈ C2(D → R) be a
Hamiltonian, and let Ω be any open bounded set in D, thus we have a solution map
S(t) ∈ C0(Ω → D) for any sufficiently small t. Show that S(t)(Ω) has the same
m-measure as Ω. (Hint: use Exercise 1.30.) More generally, show that the previous
claim is true if we replace dm by the (non-normalised) Gibbs measure dµβ :=
e−βHdm for any β ∈ R. This constructs for us a small family of invariant measures
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for the Hamiltonian flow; a major (and rather difficult) problem in the field is
to construct similar invariant measures for Hamiltonian PDE, and to investigate
to what extent these are the only invariant measures available. See for instance
[Kuk3], [Bou4].

Exercise 1.32 (Moment maps). Let G be a finite-dimensional Lie group acting
(on the left) on a symplectic phase space (D, ω), let g be the Lie algebra and let
g∗ be the dual Lie algebra. We identify each Lie algebra element x ∈ g with a
vector field Xx on D in the obvious manner. Suppose we have a moment map
Φ ∈ C2(D → g∗), in other words a map with the property that

Xx(u) = ∇ω〈x,Φ(u)〉 for all u ∈ D, x ∈ g.

(For instance, if G is the additive real line R, then the group action is simply
the Hamiltonian flow maps S(t) associated to the Hamiltonian Φ.) Show that if
H ∈ C2(D → R) is a Hamiltonian which is G-invariant (thus H(gu) = H(u) for all
u ∈ D, g ∈ G), then Φ is conserved by the Hamiltonian flow of H . Show that the
converse is also true if G is connected. Use this generalisation of Noether’s theorem
to verify the claims concerning conservation of momentum and angular momentum
made above.

Exercise 1.33. If H1, H2, H3 ∈ C2(D → R) are three Hamiltonians, verify
the Jacobi identity {H1, {H2, H3}}+{H2, {H3, H1}}+{H3, {H1, H2}} = 0 and the
Leibnitz rule

(1.35) {H1, H2H3} = {H1, H2}H3 +H2{H1, H3}
Exercise 1.34. A function E ∈ C0(D → R) is said to be an integral of motion

of an ODE ∂tu(t) = F (u(t)) if there is a function G : C0(D → D∗) assigning a
linear functional G(u) : D → R to each u ∈ D, such that we have the identity

E(u(t1)) − E(u(t0)) =
∫ t1

t0

G(u)(∂tu(t) − F (u(t))) dt

for all functions u ∈ C1(I → D) (which may or may not solve the ODE). Show
that a Hamiltonian function E is an integral of motion for a Hamiltonian ODE
∂tu(t) = ∇ωH(u(t)) if and only if E Poisson commutes with H .

Exercise 1.35. Let H ∈ C2(D → R) be a Hamiltonian. Show that the space
of all Hamiltonians E which Poisson commute with H form an algebra (thus the
space is a vector space and is also closed under pointwise multiplication), and is
also closed under all change of variable maps E �→ Φ ◦E for any Φ ∈ C2(R → R).
(In fact, these claims are valid for the space of integrals of motion for any first-order
ODE, not just the Hamiltonian ones.)

Exercise 1.36. Let H,E ∈ C2(D → R) be two quadratic growth Hamiltonian
functions (so ∇2H , ∇2E are bounded), and let SH(t) and SE(s) be the associated
flow maps for t, s ∈ R. Show that H,E Poisson commute if and only if SH(t) and
SE(s) commute for all t, s ∈ R. (Hint: use Exercise 1.13.)

Exercise 1.37. LetH ∈ C2(D → R). Show that the flow maps SH(t) : D → D
are linear for all times t if and only if H is a quadratic form.

Exercise 1.38 (Symplectic normal forms). Let (D, ω) be a 2n-dimensional
symplectic vector space, and let H : D → R+ be a positive definite quadratic form
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on D. Show that there exists real numbers λ1 ≥ . . . ≥ λn > 0 and linear coordinate
functions z1, . . . , zn : D → C such that ω takes the form (1.30) and H takes the
form (1.31). (Hint: choose a real coordinate system on D (identifying it with R2n)
so that H is just the standard Euclidean form H(x) = |x|2. Then the symplectic
form is given by ω(x, y) = x · Jy for some anti-symmetric non-degenerate real-
valued 2n × 2n matrix J . Analyze the eigenspaces and eigenvalues of J and use
this to construct the complex coordinates z1, . . . , zd.) Conclude in particular that
the ellipsoid {z ∈ D : H(z) = 1} contains n periodic orbits for the Hamiltonian
flow with periods 2π/λ1, . . . , 2π/λn respectively. We refer to λ1, . . . , λn as the
frequencies of the Hamiltonian H . One can devise analogues of this transformation
for more general Hamiltonians (which contain higher order terms in addition to a
quadratic component), leading to the theory of Birkhoff normal forms, which we
will not discuss here.

Exercise 1.39. Let (D, ω) be a symplectic space, let H ∈ C1(R × D → R),
and consider the time-varying Hamiltonian equation

∂tu(t) = ∇ωH(t, u(t)).

Show that it is possible to convert this time-varying Hamiltonian equation into a
time-independent equation on a symplectic vector space R2 ×D, by a trick similar
to that mentioned in Section 1.1.

Exercise 1.40. Let D = (Rd × Rd)N be the phase space of N particles in d
dimensions. Suppose that a Hamiltonian equation is invariant under the Galilean
symmetry

(q1, . . . , qN , p1, . . . , pN ) �→ (q1 − vt, . . . , qN − vt, p1 −m1v, . . . , pN −mNv)

for any v ∈ Rd and some fixed m1, . . . ,mN > 0, in the sense that whenever the
function

t �→ (q1(t), . . . , qN (t), p1(t), . . . , pN (t))
solves the Hamiltonian ODE, then so does the transformed function

t �→ (q1 − vt, . . . , qN − vt, p1 −m1v, . . . , pN −mNv).

Conclude that the normalised centre of mass
N∑
j=1

mjqj − t

N∑
j=1

pj

is an invariant of the flow. (Hint: convert t into another phase space variable as in
Exercise 1.39, so that Noether’s theorem can be applied.)

Exercise 1.41 (Connection between Hamiltonian and Lagrangian mechanics,
I). Let (D, ω) be the standard symplectic phase space in Example 1.27, and let
L ∈ C∞(Rn × Rn → R); we use q1, . . . , qn, q̇1, . . . , q̇n to denote the variables of L.
Define the momentum coordinates p1, . . . , pn by

(1.36) pj :=
∂L

∂q̇j
(q, q̇)

and assume that the coordinate systems (q1, . . . , qn, q̇1, . . . , q̇n) and (q1, . . . , qn, p1, . . . , pn)
are diffeomorphic. We then define the Hamiltonian H ∈ C∞(D → R) by

H(q, p) := L(q, q̇) − q̇p
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where q̇ is defined implicitly by (1.36). Show that if I is a bounded interval and
q ∈ C∞(I → Rn), then q is a formal critical point for the Lagrangian

S(q) :=
∫
I

L(q(t), ∂tq(t)) dt

with endpoints held fixed, if and only if (q(t), p(t)) solves the Hamiltonian ODE
(1.29).

Exercise 1.42 (Connection between Hamiltonian and Lagrangian mechanics,
II). Let (D, ω) be the standard symplectic phase space in Example 1.27, and let
H ∈ C∞(D → R) be a Hamiltonian phase function. Let I be a bounded time
interval. Show that if q, p ∈ C∞(I → Rn) obey the constraint

(1.37) ∂tqj(t) =
∂H

∂pj
(q(t), p(t))

(which can be viewed as an implicit definition of the momentum p(t) in terms of the
position q(t) and the velocity ∂tq(t), at least if H is sufficiently non-degenerate),
then q and p obey the Hamiltonian ODE (1.29), if and only if q and p are formal
critical points of the Lagrangian

S(q, p) :=
∫
I

(∂tq(t))p(t) −H(q(t), p(t)) dt

subject to the constraint (1.37) and also fixing the values of q(t) and p(t) at the
endpoints. Explain why this connection is essentially the inverse of that in the
preceding exercise.

1.5. Monotonicity formulae

If something cannot go on forever, it will stop. (Herbert Stein)
As we have already seen, conservation laws (such as conservation of the Hamil-

tonian) can be very useful for obtaining long-time existence and bounds for solutions
to ODE. A very useful variant of a conservation law is that of a monotonicity for-
mula - a quantity G(u(t), t) depending on the solution u(t), and perhaps on the time
t, which is always monotone increasing in time t, or perhaps monotone decreasing
in time t. These monotone quantities can be used to obtain long-time control of a
solution in several ways. For instance, if a quantity G(u(t), t) is large at some initial
time t0 and is monotone increasing, then clearly it will stay large for all later times
t > t0; conversely, if G(u(t), t) is bounded at time t0, is monotone decreasing, and
is manifestly non-negative, then it will stay bounded for all later times t > t0. If G
is monotone increasing, and is itself the time derivative of another quantity K(t),
then we also learn that K(t) is convex in time, which can be useful in a number of
ways. Finally, if one knows that G(u(t), t) is bounded uniformly in time (e.g. by
using conservation laws), and is monotone, then we conclude from the fundamental
theorem of calculus that the derivative ∂tG(u(t), t) is absolutely integrable in time,
and thus decays to zero as t → ±∞, at least in some averaged sense. This type of
long-time decay is especially useful for understanding the asymptotic behaviour of
the solution.

We will be most interested in monotonicity formulae in the setting of PDE.
However, we can present some simple ODE analogues of some of the more common
monotonicity formulae here, which may help motivate the otherwise miraculous-
seeming formulae which we will encounter in later chapters.
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Unlike conservation laws, which can be systematically generated from symme-
tries via Noether’s theorem, we do not have a fully automated way for producing
monotone or convex quantities other than trial and error (for instance by starting
with a conserved quantity such as energy or momentum and perturbing it some-
how to be monotone instead of conserved), although certain tactics (e.g. exploiting
conformal Killing fields, see Section 2.5) have proven to be generally quite fruit-
ful. Thus we shall content ourselves in this section by presenting some illustrative
examples of monotonicity formulae for ODE, each of which has an extension to a
PDE such as the nonlinear Schrödinger equation.

Example 1.31 (Virial identity). Let V ∈ C2(Rd → R) be a twice continuously
differentiable potential, and consider a classical solution x : I → Rd to Newton’s
equations of motion

(1.38) ∂2
t x(t) = −∇V (x(t)).

Then we observe the virial identity

∂2
t (|x(t)|2) = 2∂t(x(t) · ∂tx(t))

= 2|∂tx(t)|2 + 2x(t) · ∂2
t x(t)

= 2|∂tx(t)|2 − 2x(t) · ∇V (x(t)).

This has a number of consequences. If V is radially decreasing, so that x·∇V (x) ≤ 0
for all x ∈ Rd, then we thus conclude that |x(t)|2 is convex. If instead we have a
bound of the form

x · ∇V (x) ≤ −CV (x)
for some C ≥ 2, then we can obtain the lower bound

∂2
t (|x(t)|2) ≥ 2CE

where E is the conserved energy

(1.39) E = E(t) =
1
2
|∂tx(t)|2 + V (x(t)).

Thus |x(t)|2 is now strictly convex when the energy is positive. At a heuristic
level, we thus see that positive energy tends to repel solutions from the origin,
whereas negative energy tends to focus solutions towards the origin. For another
application, see Exercise 1.45. For the linear and nonlinear Schrödinger analogues
of these estimates, see (2.38), (3.72).

Example 1.32 (Morawetz identity). We continue the previous example. A
variant of the virial identity is the Morawetz identity

∂2
t |x(t)| = ∂t(

x(t)
|x(t)| · ∂tx(t))

=
|∂tx(t)|2
|x(t)| − (x(t) · ∂tx(t))2

|x(t)|3 +
x(t)
|x(t)| · ∂

2
t x(t)

=
|πx(t)(∂tx(t))|2

|x(t)| − x(t) · ∇V (x(t))
|x(t)|

whenever x(t) �= 0, where πx(v) := v − x
|x|〈 x|x| , v〉 is the projection of a vector v to

the orthogonal complement of x. Now suppose that V is radially decreasing and
non-negative, then the above identity shows that the quantity x(t)

|x(t)| · ∂tx(t), which
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x(2)

x(1)

x(3)

Figure 10. A particle passing by the origin, encountering a repul-
sive force, will convert its ingoing momentum to outgoing momen-
tum. Since there is no way to convert outgoing momentum back
to ingoing momentum, we conclude that if the total energy (and
hence momentum) is bounded, then the particle cannot move past
the origin for extended periods of time. Note that this diagram is
slightly different from the one in Figure 1 because the equation is
second-order rather than first-order in time; the position controls
the acceleration rather than the velocity.

measures the radial component of the velocity, is monotone increasing (and that
|x(t)| is convex). This is intuitively plausible; particles that move towards the origin
must eventually move away from the origin, but not vice versa, if the potential is
repulsive. On the other hand, we have

| x(t)|x(t)| · ∂tx(t)| ≤ |∂tx(t)| ≤
√

2E

where the energy E is defined in (1.39). From the fundamental theorem of calculus,
we thus conclude that

(1.40)
∫
I

|πx(t)(∂tx(t))|2
|x(t)| dt+

∫
I

−x(t) · ∇V (x(t))
|x(t)| dt ≤ 2

√
2E,

provided that x does not pass through the origin in the time interval I. (This
latter hypothesis can be removed by limiting arguments; see Exercise 1.43.) If
I = R, this estimate is asserting in particular a certain decay for the angular
component πx(t)(∂tx(t)) of the velocity; that particles following this law of motion
must eventually move in mostly radial directions. For the linear and nonlinear
Schrödinger analogues of these estimates, see (2.40), (3.37).

Example 1.33 (Local smoothing). Again continuing the previous example, one
can obtain a smoother analogue of the Morawetz inequality by replacing the non-
differentiable function |x| by the smoother function 〈x〉 := (1 + |x|2)1/2. One then
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x  (1)i

x  (2)x  (2)

x  (1)

j

j

i

Figure 11. When two particles “collide” (i.e. pass through each
other), their mutual ingoing momentum is converted to mutual
outgoing momentum. As there is no mechanism to convert mutual
outgoing momentum back into mutual ingoing momentum, we thus
see that the total number of collisions (weighted by their mass and
relative velocity) is controlled by the total momentum.

has15

∂2
t 〈x(t)〉 = ∂t(

x(t)
〈x(t)〉 · ∂tx(t))

=
|∂tx(t)|2
〈x(t)〉 − (x(t) · ∂tx(t))2

〈x(t)〉3 +
x(t)
〈x(t)〉 · ∂

2
t x(t)

=
|∂tx(t)|2
〈x(t)〉3 +

|x(t)|2|∂tx(t)|2 − (x(t) · ∂tx(t))2
〈x(t)〉3 − x(t) · ∇V (x(t))

〈x(t)〉 .

This time there is no need to exclude the case when x(t) = 0. In particular, if V is
radially decreasing and non-negative, we conclude that

∂t(
x(t)
〈x(t)〉 · ∂tx(t)) ≥

|∂tx(t)|2
〈x(t)〉3

and hence by using the fundamental theorem of calculus we obtain the local smooth-
ing estimate ∫

I

|∂tx(t)|2
〈x(t)〉3 dt ≤ CE1/2

for some absolute constant C > 0. This result is perhaps a little surprising, since
E1/2 only seems to control the speed |∂tx(t)|, as opposed to the square of the speed
|∂tx(t)|2. Intuitively, the reason for this is the localisation factor 1

〈x(t)〉3 , combined
with the integration in time. When the particle x(t) is travelling at very high
speeds, then |∂tx(t)|2 is much larger than |∂tx(t)|, but to compensate for this, the
particle only lives near the origin (where the localisation factor 1

〈x(t)〉3 is large)
for a brief time. In Section 2.4, we shall quantise this estimate to Schrödinger
equations; the ability to upgrade the speed to the square of the speed will become
a smoothing effect of half a derivative, which may help explain the terminology
“local smoothing”.

15One can in fact deduce this new identity from the previous one by adding an extra dimension
to the state space Rd, and replacing x by (x, 1); we omit the details.



38 1. ORDINARY DIFFERENTIAL EQUATIONS

Example 1.34 (Interaction Morawetz). Consider an N -particle system of non-
interacting particles with masses m1, . . . ,mN > 0, with the classical solution x :
I → (Rd)N given by Newton first law

mi∂
2
t xi(t) = 0 for i = 1, . . . , N.

It is easily verified that this system has a conserved energy

E :=
∑
i

1
2
mi|∂txi(t)|2

and one trivially also has a conserved mass M :=
∑

imi. Let define a collision
to be a triplet (i, j, t) where t is a time and 1 ≤ i < j ≤ N are indices such that
xi(t) = xj(t). Let us make the assumption that only finitely many collisions occur
in the time interval I. If t is not one of the times where a collision occurs, we can
define the interaction momentum

P (t) :=
∑ ∑

1≤i<j≤N
mimj

xi(t) − xj(t)
|xi(t) − xj(t)| · ∂t(xi(t) − xj(t));

roughly speaking, this measures how much the particles are receding from each
other. A computation shows that

∂tP (t) =
∑ ∑

1≤i<j≤N
mimj

|πxi(t)−xj(t)∂t(xi(t) − xj(t))|2
|xi(t) − xj(t)| ≥ 0

when t is not a collision time. Each collision (i, j, t) causes a jump in P (t) by
2mimj |∂t(xi(t) − xj(t))|, thus P is monotone increasing. Using the crude bound

|P (t)| ≤
∑
i

mi

∑
j

mj |xj(t)| ≤M
√

2ME

from Cauchy-Schwarz, we thus conclude the interaction Morawetz inequality∑
(i,j,t)

2mimj |∂t(xi(t) − xj(t))| ≤ 2M
√

2ME

where (i, j, t) runs over all collisions. There is a related (though not completely
analogous) inequality for the nonlinear Schrödinger equation; see (3.42).

Exercise 1.43. Let V : Rd → R be twice continuously differentiable, radially
decreasing (so in particular ∇V (0) = 0), and non-negative, and let u0 ∈ Rd. Show
that there is a unique global solution u : R → Rd to (1.38) with initial datum
u(0) = u0. Also, show that if x(t) is not identically zero, then x(t) can equal zero
for at most one time t0 ∈ R, and in such a case we can refine (1.40) to∫

R

|πx(t)(∂tx(t))|2
|x(t)| dt+

∫
R

−x(t) · ∇V (x(t))
|x(t)| dt+ 2|∂tx(t0)| ≤ 2

√
2E.

Exercise 1.44. With the same hypotheses as Exercise 1.43, show that for each
ε > 0 we have the estimate ∫

R

|∂tx(t)|2
〈x(t)〉1+ε dt �ε E

1/2.

This improves upon Example 1.33, which dealt with the case ε = 2. (Hint: use the
monotonicity formulae already established, as well as some new formulae obtained
by considering derivatives of expressions such as 〈x(t)〉−1−ε(x(t) · ∂tx(t)).) Show
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that the estimate fails at the endpoint ε = 0, even when V = 0 (compare this with
(1.40)).

Exercise 1.45 (Virial identity). Suppose that x1, . . . , xN ∈ C2(R → Rd) are
solutions to the system of ODE

mj∂
2
t xj(t) = −

∑
i	=j

G
mimj

|xi(t) − xj(t)|2

where the masses m1, . . . ,mN are positive, and G > 0 is an absolute constant; this
models the behaviour of N particles under Newtonian gravity. Assume that the xj
are all uniformly bounded in time and that |xi − xj | never vanishes for any i �= j.
Suppose also that the average kinetic and potential energies

〈T 〉 := lim
T→∞

1
2T

∫ T

−T

N∑
j=1

1
2
mj |∂txj(t)|2 dt;

〈V 〉 := lim
T→∞

− 1
2T

∫ T

−T

∑
1≤i<j≤N

Gmimj

|xi(t) − xj(t)| dt

exist. Conclude the virial identity 〈T 〉 = − 1
2 〈V 〉. (Hint: look at Exercise 1.31.)

This identity is of importance in astrophysics, as it allows one to infer the potential
energy (and hence the possible existence of dark matter) from measurements of the
kinetic energy.

1.6. Linear and semilinear equations

Mathematics would certainly have not come into existence if one
had known from the beginning that there was in nature no exactly
straight line, no actual circle, no absolute magnitude. (Friedrich
Nietzsche, “Human, All Too Human”)

Let us now return to the general Cauchy problem (1.7). We shall assume that
we have a special solution, the vacuum solution u(t) ≡ 0; in other words, we assume
that F (0) = 0. If F is continuously differentiable, we can then perform a Taylor
expansion

F (u) = Lu+N(u)
where L : D → D is a linear operator, and N : D → D vanishes faster than linearly
at 0, thus

(1.41) lim
‖u‖D→0

N(‖u‖D)
‖u‖D = 0.

We shall refer to L as the linear component of F , andN as the “genuinely nonlinear”
component. Thus we can write our quasilinear equation as a semilinear equation16

(1.42) ∂tu(t) − Lu(t) = N(u(t)).

If N = 0, we say that the equation is linear, otherwise it is nonlinear. In general,
linear equations are much better understood than nonlinear equations, as a vast

16For ODE, there is little distinction between a quasilinear equation and a semilinear one.
For PDE, one usually requires in a semilinear equation that the genuinely nonlinear part N(u)
of the equation is lower order (contains fewer spatial derivatives) than the linear part Lu; some
authors require that N(u) contain no derivatives whatsoever.
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D

u   −> u0 lin

Forcing term

Solution
uu

0

Initial datum

(homogeneous)
Linear evolution

(inhomogeneous)
Linear evolution

N(u) Genuine nonlinearity   
N

Figure 12. The Duhamel formulation of a semilinear ODE, re-
lating the initial datum u0, the solution u(t), and the nonlinearity
N(u). Again, compare with Figure 2.

array of tools such as linear algebra, spectral theory, Fourier analysis, special func-
tions (explicit solutions), and the principle of superposition can be now invoked to
analyze the equation. A very profitable idea in solving equations such as (1.42) is
to treat the genuine nonlinearity N(u) as negligible, and thus to view the equation
(1.42) as a perturbation of the linear equation

(1.43) ∂tu(t) − Lu(t) = 0.

This perturbation strategy is reasonable if u is small (so that N(u), which vanishes
to at least second order, will be very small compared to Lu) or if one is only solving
the equation for very short times (so that the nonlinearity does not have much of
a cumulative influence on the solution). However, when considering large solutions
for long periods of time, the perturbation approach usually needs to be abandoned
in favour more “global” or “non-perturbative” techniques such as energy methods
or monotonicity formula methods, although if one establishes a sufficient amount
of decay on the solution in time, then one can often re-instate the perturbation
analysis in the asymptotic limit t→ ∞, which can be used for instance to obtain a
scattering theory.

In accordance to this perturbation philosophy, let us study (1.42) by first con-
sidering the linear equation (1.43), say with initial datum u(0) = u0 ∈ D. (We know
from time translation invariance that the choice of initial time t0 is not particularly
relevant.) Then there is a unique global solution to (1.43), given by

u(t) = etLu0 =
∞∑
n=0

tn

n!
Lnu0;

the finite dimensionality of D ensures that L is bounded, and hence this sum is
absolutely convergent. We refer to the linear operators etL as the linear propagators ;
observe that we have the group law etLesL = e(t+s)L with e0L = id. In particular,
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if u0 is an eigenvector of L, thus Lu0 = λu0 for some λ ∈ C, then the unique global
solution to (1.43) is given by u(t) = etλu0.

It is thus clear that the eigenvalues of L will play an important role in the
evolution of the equation (1.43). If L has eigenvalues with negative real part, then
the equation is stable or dissipative in the corresponding eigenspaces, displaying
exponential decay in time as t → +∞ (but exponential growth as t → −∞).
Conversely, if L has eigenvalues with positive real part, then the equation is unstable
or anti-dissipative in the corresponding eigenspaces, exhibiting exponential growth
as t → +∞. We will be concerned primarily with the dispersive case, in between
the stable and unstable modes, in which the eigenvalues are all purely imaginary;
in particular, we will usually consider the case when L is skew-adjoint with respect
to a suitable Hilbert space structure on D. In such cases, we see from the spectral
theorem that there exists an orthogonal Fourier basis (eξ)ξ∈Ξ of D, with each eξ
being an eigenvector of L with some imaginary eigenvalue ih(ξ):

Leξ = ih(ξ)eξ.

The function h : Ξ → R will be referred to as the dispersion relation of L. If we
then define the Fourier coefficients f̂(ξ) := 〈f, eξ〉 for any f ∈ D and ξ ∈ Ξ, then
the solution to (1.43) can be given on the Fourier side as

(1.44) û(t)(ξ) = eith(ξ)û0(ξ).

Thus each Fourier mode in (1.43) oscillates independently in time, with the time
oscillation frequency given by the dispersion relation ξ �→ h(ξ). The magnitude
|û(t)(ξ)| is conserved by the flow, so each Fourier coefficient simply moves in a
circle.

In order to perturb the linear equation (1.43) to the nonlinear equation (1.42),
we need the fundamental identity

Proposition 1.35 (Duhamel’s formula). Let I be a time interval, let t0 be a
time in I, let L : D → D be linear, let u ∈ C1(I → D), and let f ∈ C0(I → D).
Then we have

(1.45) ∂tu(t) − Lu(t) = f(t) for all t ∈ I

if and only if

(1.46) u(t) = e(t−t0)Lu(t0) +
∫ t

t0

e(t−s)Lf(s) ds for all t ∈ I,

where we adopt the convention that
∫ t
t0

= − ∫ t0
t if t < t0.

Remark 1.36. The case L = 0 is just the Fundamental theorem of calculus.
Indeed one can view Duhamel’s formula as the Fundamental theorem of calculus,
twisted (i.e. conjugated) by the linear propagator etL; this helps explain the simi-
larity between Figure 2 and Figure 12.

Proof. If we make the ansatz17 u(t) = etLv(t) for some v : I → D in (1.45),
then (1.45) is equivalent to

∂tv(t) = e−tLf(t),

17This is of course the technique of integrating factors, which is a special case of the method
of variation of parameters. The choice of ansatz u(t) = etLv(t) is inspired by the fact that one
solves the linear equation (1.43) if and only if v is constant.
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which by the fundamental theorem of calculus is equivalent to

v(t) = v(t0) +
∫ t

t0

e−sLf(s) ds.

The claim then follows by multiplying both sides by etL and using the group law. �

In view of this proposition, we see that if N : D → D is continuous and u is
assumed to be continuous, then the Cauchy problem

∂tu− Lu = N(u); u(0) = u0,

is equivalent to the integral equation

(1.47) u(t) = etLu0 +
∫ t

0

e(t−s)LN(u(s)) ds.

This should be compared with the solution u(t) = etLu0 of the corresponding linear
problem; thus if we think of N as being small, (1.47) is a quantitative formulation
of the assertion that the nonlinear solution resembles the linear solution. One can
view (1.47) as the strong solution concept for u, adapted to the flow etL of the
linear operator L.

The equation (1.47) is a variant of (1.8), but is a little “smarter” in that it uses
the more accurate approximation etLu0 to the nonlinear solution u, as opposed to
the somewhat cruder approximation u0. As a consequence, the error term in (1.47)
tends to be somewhat smaller than that in (1.8), as it involves just the genuinely
nonlinear component N of the nonlinearity. Just as (1.8) can be iterated using the
contraction mapping theorem to obtain the Picard existence theorem, the variant
(1.47) can also be iterated to obtain a variant of the Picard existence theorem,
which can exploit the special properties of the linear propagator etL to give better
bounds on the time of existence. To describe this iteration scheme, let us first work
abstractly, viewing (1.47) as instance of the more general equation

(1.48) u = ulin +DN(u)

where ulin(t) := etLu0 is the linear solution, and D is the Duhamel operator

DF (t) :=
∫ t

0

e(t−s)LF (s) ds.

A useful heuristic principle in trying to solve equations of this general abstract type
is

Principle 1.37 (Perturbation principle). If one is working on a time interval
[0, T ] such that DN(u) � ulin, then u should evolve on [0, T ] as if it were linear
(in particular, the solution should exist and obey the same type of estimates that
ulin does). If one is working instead on a time interval where DN(u) � ulin, one
should expect u to exhibit nonlinear behaviour (which could range from blowup or
excessive growth on one hand, to additional decay on the other, or something in
between such as nontrivial nonlinear oscillation).

This is of course a very vague principle, since terms such as “�”, “�”, or
“nonlinear behaviour” are not well defined. In practice, DN(u) will tend to be
small compared to ulin if the initial datum u0 is suitably small, or if the time t is
close to 0, so for small data or small times one expects linear-type behaviour. For
large data or large times, perturbation theory does not predict linear behaviour,
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Figure 13. The iteration scheme for Proposition 1.38. In prac-
tice, the object ulin arises as the linear evolution of some initial
datum u0, as in Figure 12, though we do not use this in the state-
ment and proof of the Proposition.

and one could now have nonlinear effects such as blowup18. To control solutions
in this regime one generally needs to augment the perturbation theory with other
tools such as conservation laws.

Let us now give a rigorous formulation of the first half of this principle, by using
the following variant of the contraction mapping theorem to construct solutions.

Proposition 1.38 (Abstract iteration argument). Let N , S be two Banach
spaces. Suppose we are given a linear operator D : N → S with the bound

(1.49) ‖DF‖S ≤ C0‖F‖N
for all F ∈ N and some C0 > 0, and suppose that we are given a nonlinear operator
N : S → N with N(0) = 0, which obeys the Lipschitz-type bounds

‖N(u) −N(v)‖N ≤ 1
2C0

‖u− v‖S(1.50)

(1.51)

for all u, v in the ball Bε := {u ∈ S : ‖u‖S ≤ ε}, where ε > 0. Then for all
ulin ∈ Bε/2 there exists a unique solution u ∈ Bε to the equation (1.48), with the
map ulin �→ u Lipschitz of order 2. In particular we have

(1.52) ‖u‖S ≤ 2‖ulin‖S .

18Note however that it is possible for the nonlinear term to dominate the linear term but
still be able to construct and control solutions. This for instance occurs if there is an “energy
cancellation” that shows that the nonlinear term, while nominally stronger than the linear term,
is somehow “almost orthogonal” to the solution in the sense that it does not significantly increase

certain energies; we shall see several examples of this in the text. Thus the solutions will not
stay close to the linear solution but will still be bounded in various norms. In certain defocusing
dissipative settings it is even possible for the nonlinearity to always act to reduce the energy, thus
giving a better behaved solution than the linear equation.
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u(t)

L u(t)

N(u(t))

Figure 14. Proposition 1.41 from the vector field perspective of
Figure 1. If u is sufficiently small, then the dissipative effect of
the linear term Lu will dominate the effect of the nonlinearity
N(u), regardless of the orientation of N(u), causing u to decay
exponentially towards the origin.

This proposition is established by the arguments used to prove the contraction
mapping principle, and is left as an exercise. The idea of using this type of abstract
Duhamel iteration to tackle nonlinear PDE dates back to [Seg].

Remarks 1.39. Note that we have considerable freedom in selecting the spaces
S and N ; this freedom becomes very important when considering the low-regularity
local wellposedness theory of PDE. The Picard existence argument in Theorem 1.7
corresponds, roughly speaking, to the choice S = N = C0(I → D), with (1.8)
taking the place of (1.47). There are a number of variations of this iteration scheme;
for instance, instead of measuring the solution u in a single norm S, one sometimes
is in a situation where u is measured both in a “smooth” norm S and a “rough”
norm S0; the solution may be large in the smooth norm but small in the rough norm.
In such cases it can still be possible to close an iteration argument using estimates
that combine both norms together; this becomes important in the large data theory
and in the persistence of regularity theory. While it is possible to build an abstract
framework for such schemes, the formulation becomes rather complicated, and so
when these types of situations arise (see for instance Proposition 3.8) we shall
simply perform the iteration by hand.

Remark 1.40. As with Remark 1.5, the proof of the above theorem provides
an explicit iteration scheme to construct the desired solution, starting with the
linear iterate u(0) := ulin and then constructing successive Duhamel iterates u(n) :=
ulin + DN(u(n−1)). This scheme often converges better than the one in Remark
1.5, though it is far from the most rapidly convergent scheme (and is usually not
used directly in numerical computations).

We illustrate the iteration method by establishing global existence for linearly
stable nonlinear equations from small data.
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Proposition 1.41 (Linear stability implies nonlinear stability). Let D be a
finite-dimensional real Hilbert space, and let L : D → D be a linear operator which
is linearly stable in the sense that19 there exists σ > 0 such that 〈Lu, u〉 ≤ −σ‖u‖2

D
for all u ∈ D. Let N : D → D be a locally Lipschitz function which vanishes to
more than first order at the origin in the sense of (1.41). If u0 ∈ D is sufficiently
close to the origin, then there exists a unique classical solution u : [0,+∞) → D
to (1.42) with initial datum u(0) = u0, and furthermore there is an estimate of the
form

(1.53) ‖u(t)‖D ≤ 2e−σt‖u0‖D.
Proof. The uniqueness of u follows from the Picard uniqueness theorem, so

it suffices to establish existence, as well as the estimate (1.53). A simple Gronwall
argument (see Exercise 1.51) gives the dissipative estimate

(1.54) ‖etLu0‖D ≤ e−σt‖u0‖D
for all u0 ∈ D and t ≥ 0. Let us now define the spaces S = N to be the space of
all functions u ∈ C0([0,+∞) → D) whose norm

‖u‖S := sup
t≥0

eσt‖u(t)‖D

is finite; thus if we set ulin(t) := etLu0 then ‖ulin‖S ≤ ‖u0‖D. Next, observe from
(1.41) that if ‖u‖D, ‖v‖D ≤ ε for some sufficiently small ε, then

‖N(u) −N(v)‖D ≤ 1
2
σ‖u− v‖D.

From this one easily sees that

‖N(u) −N(v)‖N ≤ 1
2
σ‖u− v‖S

whenever ‖u‖S , ‖v‖S ≤ ε. Also, from the triangle inequality and (1.54) we have

‖DF‖S ≤ 1
σ
‖F‖N

where D is the Duhamel operator. From Proposition 1.38 we thus see that if
‖u0‖D ≤ ε/2, then can thus construct a solution u to (1.45) with ‖u‖S ≤ 2‖ulin‖S ≤
2‖u0‖D, and the claim follows. �

An important special case of the general equation (1.42) occurs when the gen-
uinely nonlinear component N is k-linear for some k ≥ 2, in the sense that

N(u) = Nk(u, u, . . . , u)

where Nk : Xk → X is a function which is (real-)linear in each of the k variables.
In the k = 2 case we call N bilinear or quadratic, in the k = 3 case we call N
trilinear or cubic, and so forth. The condition k ≥ 2 is essentially forced upon us
by the condition (1.41). In these cases, the hypothesis (1.50) will hold for ε small
provided that N is bounded from S to N ; see Exercise 1.48.

19In the finite-dimensional case, linear stability is equivalent to the spectrum of L being

contained entirely in the interior of the left half-plane. In the infinite-dimensional case, the
relationship between stability and spectrum is more delicate, especially if L fails to be normal or
self-adjoint. Indeed, for PDE, nonlinear stability is often significantly more difficult to establish
than linear stability.
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When the nonlinearity is k-linear and the linear term L is skew-adjoint, one
can view the evolution (1.42) in terms of frequency interactions. We illustrate this
in the k = 2 case N(u) = N2(u, u); to simplify the exposition, we will also assume
that N2 is not only real linear but is in fact complex linear. The situation for anti-
linear nonlinearities and for higher orders k > 2 requires some simple modifications
to the discussion below which are left to the reader. If we take Fourier transforms
of (1.47), we obtain

û(t)(ξ) = eith(ξ)û0(ξ) +
∫ t

0

ei(t−s)h(ξ)
∑
ξ1,ξ2

cξ1,ξ2ξ û(t)(ξ1)û(t)(ξ2) ds

where cξ1,ξ2ξ is the structure constant

cξ1,ξ2ξ := 〈N2(eξ1 , eξ2), eξ〉.
Typically, the structure constants will usually be zero; given any mode ξ, only a
few pairs of modes ξ1, ξ2 can interact to excite that mode; a typical constraint
in order for cξ1,ξ2ξ to be non-zero is of the form ξ = ξ1 + ξ2 (where one places
some group structure on the space Ξ of frequencies). Making the renormalisation
û(t)(ξ) := eith(ξ)aξ(t), which is suggested to us by the variation of parameters
method, we obtain an integral system of equations for the functions (aξ(t))ξ∈Ξ:

(1.55) aξ(t) = û0(ξ) +
∫ t

0

eis(h(ξ1)+h(ξ2)−h(ξ))cξ1,ξ2ξ aξ1(s)aξ2(s) ds.

Thus each aξ(t) is initially set equal to û0(ξ), but as time evolves, the ξ-modes
aξ(t) is influenced by the bilinear interactions of the pairs of modes aξ1(t), aξ2(t)
that can excite the ξ-mode. The resonance function h(ξ1) + h(ξ2) − h(ξ) plays a
key role in the analysis. If this quantity is large in magnitude, then the integral in
(1.55) will be highly oscillatory, and thus likely to be rather small; in this case, we
say that the interaction between the modes ξ1, ξ2, ξ is non-resonant. The dominant
contribution to (1.55) typically consists instead of the resonant interactions, in
which the resonance function is zero or small. In order to obtain an iterative
scheme for solving this equation (using for instance Proposition 1.38), especially at
low regularities, one often has to spend some effort to control the resonant portions
of interaction, either by showing that the resonant interactions are fairly rare, or
by extracting some “null structure” from the structure coefficients cξ1,ξ2ξ , which
causes them to vanish whenever the resonance function vanishes. We will see some
examples of this in later sections.

Exercise 1.46. Prove Proposition 1.38. (Hint: review the proof of Theorem
1.4, Theorem 1.7, and Exercise 1.2.)

Exercise 1.47 (Stability). Let the notation and hypotheses be as in Proposi-
tion 1.38. Suppose that ulin ∈ Bε/2, and we have an approximate solution ũ ∈ Bε
to the equation (1.48), in the sense that ũ = ulin +DN(ũ) + e for some e ∈ S. Let
u ∈ Bε be the actual solution to (1.48) given by the above Proposition. Show that
‖ũ − u‖S ≤ 2‖e‖S . Note that this generalises the Lipschitz claim in Proposition
1.38.

Exercise 1.48. Let N ,S be Banach spaces as in Proposition 1.38, and suppose
that one is given a k-linear nonlinearity N(u) = Nk(u, . . . , u), which maps S to N
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with the k-linear estimate

‖N(u1, . . . , uk)‖N ≤ C1‖u1‖S . . . ‖uk‖S
for all u1, . . . , uk ∈ S and some constant C1 > 0. Show that the hypothesis (1.50)
holds for u, v ∈ Bε with ε := 1

2kC0C1
.

Exercise 1.49 (Second order Duhamel). Let L : D → D be linear. Suppose
that the solution to the homogeneous linear second-order ODE

utt − Lu = 0

with initial datum u(0) = u0, ∂tu(0) = u1 is given by u(t) = U0(t)u0 + U1(t)u1 for
some operators U0 : R ×D → D, U1 : R ×D → D. Show that the unique classical
solution u ∈ C2(D → R) to the inhomogeneous linear second-order ODE

utt − Lu = f

with initial datum u(t0) = u0, ∂tu(t0) = u1, where f ∈ C0(D → D) and t0 ∈ R, is
given by the Duhamel formula

u(t) = U0(t− t0)u0 + U1(t− t0)u1 +
∫ t

t0

U1(t− s)f(s) ds.

(Hint: convert the second-order equation to a first order one, then use Proposition
1.35.)

Exercise 1.50 (Duhamel vs. resolvents). Let L : D → D and L0 : D → D be
linear, and suppose that L = L0 + V for some other linear operator V : D → D.
Use Duhamel’s formula to show that

etL = etL0 +
∫ t

0

e(t−s)L0V esL ds = etL0 +
∫ t

0

e(t−s)LV esL0 ds.

If λ is a scalar such that the resolvent operators R(λ) := (L − λ)−1 and R0(λ) :=
(L0 − λ)−1 exist, establish the resolvent identity

R(λ) = R0(λ) −R0(λ)V R(λ) = R0(λ) −R(λ)V R0(λ)

and discuss the relationship between the above identities using the Fourier duality
between t and λ.

Exercise 1.51. Let L be as in Proposition 1.41, and let u solve the equation
(1.43). Use Gronwall’s inequality to establish the bound ‖u(t)‖D ≤ e−σt‖u(0)‖D
for all t ≥ 0. (Hint: establish a monotonicity formula for ‖u(t)‖2

D.)

Exercise 1.52 (Stable manifold). Let D be a finite-dimensional real Hilbert
space, and let L : D → D be a linear operator which is weakly linearly stable in the
sense that 〈Lu, u〉 ≤ 0 for all u ∈ D. Let N : D → D be a locally Lipschitz function
with the property that 〈Nu, u〉 ≤ 0 for all u ∈ D. Show that for any u0 ∈ D, there
exists a unique classical solution u : [0,+∞) → D to (1.42) with initial datum
u(0) = u0, which is uniformly bounded and obeys the estimate∫ ∞

0

|〈Lu(t), u(t)〉| dt ≤ ‖u0‖2
D.

Conclude in particular that if V is the subspace V := {u ∈ D : 〈Lu, u〉 = 0}, that
dist(u(t), V ) → 0 as t→ +∞.
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1.7. Completely integrable systems

Tyger! Tyger! burning bright
In the forests of the night,
What immortal hand or eye
Could frame thy fearful symmetry?
(William Blake, “The Tyger”)

We have already encountered Hamiltonian ODE in Section 1.4, which enjoy
at least one conserved integral of motion, namely the Hamiltonian H itself. This
constrains the Hamiltonian flow to a codimension one subspace of the symplectic
phase space D. Additional conserved integrals of motion can constrain the flow
further. It turns out that the largest number of independent conserved integrals that
one can have in a Hamiltonian system is half the dimension of the phase space (see
Exercise 1.53). When this occurs, we say that the system is completely integrable20;
the phase space splits completely into the conserved quantities E1, . . . , EN (also
called action variables), together with the dynamic variables (also called angle
variables) induced by the N flows corresponding to E1, . . . , EN .

Example 1.42 (Simple harmonic oscillator). Let D = Cn be the phase space in
Example 1.28, and let H be the Hamiltonian (1.31). Then there are n independent
conserved quantities

E1 := |z1|2; . . . ;En := |zn|2
and n angle variables θ1, . . . , θn ∈ T, defined for most points in phase space by
polar coordinates

z1 = |z1|eiθ1 ; . . . ; zn = |zn|eiθn .

Then the Hamiltonian flow in these action-angle coordinates becomes linear:

∂jEj(t) = 0; ∂jθj(t) = λj .

Also, observe that the Hamiltonian H is just a linear combination of the basic
conserved quantities E1, . . . , En, which is of course consistent with the fact that H
is itself conserved. More generally, any linear system (1.43) in which L is skew-
adjoint will lead to a completely integrable system.

There are many ways to determine if a system is completely integrable. We
shall discuss only one, the method of Lax pairs.

Definition 1.43. Consider an ODE

(1.56) ∂tu(t) = F (u(t)),

where F : D → D is a locally Lipschitz function on some phase space D. Let
H be a finite-dimensional complex Hilbert space, and let End(H) be the space of
linear maps from H to itself (for instance, if H = Cn, then End(H) is essentially
the ring of n × n complex matrices). A Lax pair for the ODE (1.56) is any pair
L,P ∈ C1(D → End(H)) of functions such that we have the identity

(1.57) ∂tL(u(t)) = [L(u(t)), P (u(t))]

20This definition unfortunately does not rigorously extend to the infinite dimensional phase

spaces one encounters in PDE. Indeed, we do not yet have a fully satisfactory definition of what
it means for a PDE to be completely integrable, though we can certainly identify certain very
suggestive “symptoms” of complete integrability of a PDE, such as the presence of infinitely many
conserved quantities, a Lax pair formulation, or the existence of explicit multisoliton solutions.
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for all classical solutions u : I → D to the ODE (1.56), or equivalently if

(F (u) · ∇)L(u) = [L(u), P (u)] for all u ∈ D.
Here [A,B] := AB −BA denotes the usual Lie bracket of the matrices A and B.

Remark 1.44. Geometrically, the equation (1.57) asserts that the matrix L(u(t))
evolves via “infinitesimal rotations” that are “orthogonal” to L(u(t)). In many
cases, P will take values in the Lie algebra g of some Lie group G in End(H), and
L will take values either in the Lie algebra g or the Lie group G; note that the
equation (1.57) is consistent with this assumption, since Lie algebras are always
closed under the Lie bracket (see also Exercise 1.14).

A trivial example of a Lax pair is when L : D → Mn(C) is constant, and P
is chosen to commute with L; we shall be more interested in non-trivial examples
when L, and more precisely the spectrum (eigenvalues) of L, admit some genuine
variation across the phase space D. A simple example is provided by the one-
dimensional harmonic oscillator

∂tu = iωu

in the phase space D = C, with H = C2 and Lax pair

(1.58) L(u) :=
(
i(|u|2 − λ) iu2

iū2 i(λ− |u|2)
)

; P (u) :=
( −iω 0

0 iω

)
where the spectral parameter λ is an arbitrary complex number. Here, L and P take
values in the Lie algebra su2(C) of SU2(C), the group of 2 × 2 unitary matrices.
The higher-dimensional harmonic oscillator in Example 1.28 can also be given a
Lax pair by taking direct sums of the above example; we omit the details.

Now we show how Lax pairs lead to conserved quantities.

Proposition 1.45. Suppose that an ODE (1.56) is endowed with a Lax pair
L : D → End(H), P : D → End(H). Then for any non-negative integer k, the
moment tr(Lk) is preserved by the flow (1.56), as is the spectrum σ(L) := {λ ∈ C :
L− λ not invertible}.

Proof. We begin with the moments tr(Lk). Let u : I → D solve (1.56). From
the Leibnitz rule and the first trace identity

(1.59) tr(AB) = tr(BA)

we have

∂ttr(L(u(t))k) = ktr(L(u(t))k−1∂tL(u(t))) = ktr(L(u(t))k−1[L(u(t)), P (u(t))]).

But from the second trace identity

(1.60) tr(A[B,C]) = tr(B[C,A]) = tr(C[A,B])

(which follows easily from the first trace identity), and the obvious fact that Lk−1

commutes with L, we obtain ∂ttr(L(u(t))k) = 0 as desired.
One can conclude conservation of the spectrum σ(L) from that of the moments

by using the characteristic polynomial of L. For a more direct approach (which
does not rely as much on the finite dimensionality of L), see Exercise 1.54. �
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The quantities tr(L), tr(L2), . . . may seem like an infinite number of conserved
quantities, but they are of course not all independent. For instance in the example
(1.58), all the quantities tr(Lk) are functions of a single conserved quantity |z|2.
This makes the number of conserved quantities equal to the half the (real) dimension
of the phase space C, and so this equation is completely integrable.

One special case of solutions to a completely integrable system arises when the
spectrum σ(L) of the Lax operator is unexpectedly simple, for instance if L is a
rank one operator. This often leads to very algebraically structured solutions such
as solitary waves (solitons). For instance, in Example 1.42, the case when L is
rank one corresponds to that of a single excited mode, when only one of the zj is
non-zero, which can be viewed as a rather trivial instance of a solitary wave. The
more general task of reconstructing the solution given the spectral information on
L (and certain supplemental “scattering data” associated to the initial datum u0)
is known as inverse scattering and is a very rich subject involving some beautiful
analysis, algebra, and geometry. It is well outside the scope of this monograph; we
refer the reader to [HSW] for an introduction.

We now give some non-trivial examples of completely integrable systems. The
first is the periodic Toda lattice

(1.61) ∂tan = an(bn+1 − bn); ∂tbn = 2(a2
n − a2

n−1)

where n ranges over a cyclic group Z/NZ, and an : R → R, bn : R → R are real-
valued functions of time; this can be viewed as a discrete version of the periodic
Korteweg-de Vries (KdV) equation. To place this lattice in Lax pair form, we let H
be an N -dimensional real Hilbert space with orthonormal basis {en : n ∈ Z/NZ},
and for any given state u = ((an, bn))n∈Z/NZ we define L = L(u) : H → H and
P = P (u) : H → H on basis vectors by

Len := anen+1 + bnen + an−1en−1

Pen := anen+1 − an−1en−1.

One can easily verify the Lax pair equation (1.57) by testing it on basis vectors.
Note that L is self-adjoint and P is skew-adjoint, which is of course consistent with
(1.57). The Toda lattice enjoys N independent conserved quantities arising from
L, including the trace

tr(L) =
∑

n∈Z/NZ

bn

and the second moment

tr(L2) =
∑

n∈Z/NZ

b2n + 2a2
n;

one may verify by hand that these quantities are indeed preserved by (1.61). The
equation (1.61) is not a Hamiltonian flow using the standard symplectic form on
the state space, but can be transformed into a Hamiltonian flow (with Hamiltonian
2tr(L2)) after a change of variables, see Exercise 1.56. One can create higher order
Toda flows by using higher moments of L as Hamiltonians, but we will not pursue
this here.

Another example of a completely integrable system is the periodic Ablowitz-
Ladik system

(1.62) ∂tFn = i(1 − |Fn|2)(Fn−1 + Fn+1),
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where n ranges over a cyclic group Z/NZ, and Fn : R → C are complex-valued
functions of time with |Fn| < 1 for all n (this property is preserved by the flow).
This is a discrete analogue of the cubic defocusing periodic nonlinear Schrödinger
equation. To define a Lax pair (L,P ) for this equation, we take H to be a complex
Hilbert space spanned by 2N orthonormal basis vectors {vn, wn : n ∈ Z/NZ}. The
Lax operator L = L(F ) : H → H is then defined on basis elements by

Lvn :=
√

1 − |Fn|2vn+1 + Fnwn

Lwn+1 := −Fnvn+1 +
√

1 − |Fn|2wn+1;

note that L is in fact a unitary operator (a discrete analogue of a Dirac operator),
with adjoint L∗ = L−1 given by

L∗vn+1 :=
√

1 − |Fn|2vn − Fnwn+1

L∗wn := Fnvn +
√

1 − |Fn|2wn+1;

The P operator is a little trickier to define. We first define the reflection operator
J : H → H as

Jvn := vn; Jwn := −wn
and then the diagonal operator D = J

8 ([L, J ]2 + [L∗, J ]2) by

Dvn :=
Fn−1Fn + Fn−1Fn

2
vn; Dwn := −Fn−1Fn + Fn−1Fn

2
wn

and then define P by

P := i(
LJL+ L∗JL∗

2
−D).

The verification of (1.57) is rather tedious but straightforward. Note that P is
skew-adjoint, which is consistent with (1.57) and the unitarity of L.

A completely integrable system contains some quite low-dimensional invariant
sets; in many cases (as with the harmonic oscillator), these invariant sets take
the form of torii. A very interesting question concerns the stability of such in-
variant surfaces; if one makes a perturbation to the Hamiltonian (destroying the
complete integrability), does the invariant surface similarly perturb? The answer
can be surprisingly subtle, involving the theory of Kolmogorov-Arnold-Moser torii,
Nekhoroshev stability, and Arnold diffusion, among other things. We will not at-
tempt to describe this theory here, but refer the reader to [Kuk3] for a discussion
of these topics in the context of Hamiltonian PDE.

Exercise 1.53 (Lagrangian submanifolds). Call a linear subspace V of a sym-
plectic phase space (D, ω) null if ω(v, v′) = 0 for all v, v′ ∈ V . Show that if V is
null, then the dimension of V cannot exceed half the dimension of D. (Hint: look at
the symplectic complement V ⊥ := {u ∈ D : ω(v, u) = 0 for all v ∈ V }.) Conclude
that if E1, . . . , Ek are functions which Poisson commute with a given Hamilton-
ian H , then for each u ∈ D the gradients ∇ωE1(u), . . . ,∇ωEk(u) span a space of
dimension at most half the dimension of D.

Exercise 1.54 (Conservation of spectrum). Let the notation and hypotheses
be as in Proposition 1.45. Suppose that for some time t0 ∈ I and some λ ∈ L
we have λ ∈ σ(L), thus there exists a non-zero eigenvector φ0 ∈ H such that
L(u(t0))φ0 − λφ0 = 0. Now let φ : I → H solve the Cauchy problem

∂tφ(t) = P (u(t))φ(t); φ(t0) = φ0.
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Show that such a solution φ exists, and furthermore we have

L(u(t))φ(t) − λφ(t) = 0

for all t ∈ I. (Hint: use Exercise 1.12). Conclude that the spectrum σ(L) is an
invariant of the flow.

Exercise 1.55 (Lax pairs vs. Hamiltonian mechanics). uppose that a sym-
plectic phase space (D, ω) is endowed with maps L ∈ C1(D → End(H)) and
R ∈ C1(D → End(End(H))). Suppose we also have the R-matrix identity

{tr(AL), tr(BL)} = tr(BR([L,A]) −AR([L,B]))

for all A,B ∈Mn(C), where {, } denotes the Poisson bracket. Conclude the Poisson
commutation relations

{tr(AL), tr(Lk)} = −ktr(A[L,Rt(Lk−1)])

and
{tr(Lm), tr(Lk)} = 0

for all m, k ≥ 0 and A ∈ End(H), where Rt : D → End(End(H)) is the transpose
of R, thus tr(AR(B)) = tr(BR(A)) for all A,B ∈ End(H). (Hint: take advantage
of the trace identities (1.59), (1.60) and the Leibnitz rule (1.35)). Conclude that
the Hamiltonian flows given by the Poisson-commuting Hamiltonians tr(Lk) each
have a Lax pair (L,Pk) with Pk := −kRt(Lk−1).

Exercise 1.56 (Hamiltonian formulation of Toda). Let D = RN ×RN be the
phase space in Exercise 1.27, where we shall abuse notation and write the phase
space variables as pn, qn where n ranges over the cyclic group Z/NZ. Consider the
Hamiltonian

H(q, p) =
∑

n∈Z/NZ

1
2
p2
n + V (qn+1 − qn)

where V : R → R is the Toda potential V (x) := e−x + x − 1. Show that the
associated Hamiltonian flow is equivalent to the Toda equations (1.61) after making
the Flaschka change of variables

an :=
1
2
e−(qn+1−qn)/2; bn := −1

2
pn.

Furthermore, show that H = 2tr(L2).

Exercise 1.57. Suppose we are given initial data Fn(0) for n ∈ Z/NZ with
|Fn(0)| < 1 for all n ∈ Z/NZ. Show that there is a unique global classical solution
to (1.62) with this initial data, and that we have |Fn(t)| < 1 for all n ∈ Z/NZ and
t ∈ R.



CHAPTER 2

Constant coefficient linear dispersive equations

God runs electromagnetics by wave theory on Monday, Wednes-
day, and Friday, and the Devil runs them by quantum theory on
Tuesday, Thursday, and Saturday. (Sir William Bragg)

Having concluded our discussion of ODE, we begin the analysis of dispersive1

PDE. In this chapter, we shall begin with the study of constant-coefficient linear
dispersive PDE, which are the simplest example of a dispersive equation. Further-
more, much of the theory of nonlinear PDE, especially for short times or small
data, is obtained by perturbation of the linear theory; thus it is essential to have a
satisfactory theory of the linear equation before proceeding to the nonlinear one.

To simplify the discussion2, our partial differential equations shall always take
as their spatial domain either a Euclidean space Rd, or the standard torus Td =
(R/2πZ)d; functions on the latter domain can of course be viewed as periodic
functions on the former domain, and so we shall give our definitions for Rd only,
as the generalisation to Td will be clear. Also, we shall begin by focusing on PDE
which are first-order in time. A constant-coefficient linear dispersive PDE then
takes the form

(2.1) ∂tu(t, x) = Lu(t, x); u(0, x) = u0(x)

where the field3 u : R×Rd → V takes values in a finite-dimensional Hilbert space
V , and L is a skew-adjoint constant coefficient differential operator in space, thus
taking the form

Lu(x) :=
∑
|α|≤k

cα∂
α
x u(x),

where k ≥ 1 is an integer (the order of the differential operator), α = (α1, . . . , αd) ∈
Zn+ ranges over all multi-indices with |α| := α1 + . . .+ αd less than or equal to k,

1Informally, “dispersion” will refer to the fact that different frequencies in this equation
will tend to propagate at different velocities, thus dispersing the solution over time. This is in
contrast to transport equations such as (2.2), which move all frequencies with the same velocity
(and is thus a degenerate case of a dispersive equation), or dissipative equations such as the heat
equation ∂tu = ∆u, in which frequencies do not propagate but instead simply attenuate to zero.
The wave equation (2.9) is partly dispersive - the frequency of a wave determines the direction of
propagation, but not the speed; see Principle 2.1.

2The study of linear dispersive equations in the presence of potentials, obstacles or other
boundary conditions, or on curved manifolds or in variable coefficient situations, is of great impor-
tance in PDE, with applications to spectral theory, geometry, and even number theory; however,
we will not attempt to investigate these topics here.

3We shall say that the field is real if V is a real vector space, and complex if V is a complex
vector space. We say that the field is scalar if V is one-dimensional, vector if V is viewed as a
vector space, tensor if V is viewed as a tensor space, etc. For instance, a field taking values in Cd

would be a complex vector field. We will not use the term “field” in the algebraic sense in this
text.

53
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∂αx is the partial derivative

∂αx := (
∂

∂x1
)α1 . . . (

∂

∂xd
)αd ,

and cα ∈ End(V ) are coefficients that do not depend on x. This operator is clas-
sically only defined on k-times continuously differentiable functions, but we may
extend it to distributions or functions in other function spaces in the usual manner;
thus we can talk about both classical and weak (distributional) solutions to (2.1).
We can also write L = ih(D), where D is the frequency operator

D :=
1
i
∇ = (

1
i
∂x1 , . . . ,

1
i
∂xd

)

and h : Rd → End(V ) is the polynomial

h(ξ1, . . . , ξd) =
∑
|α|≤k

i|α|−1cαξ
α1
1 . . . ξαd

d .

We assume that L is skew-adjoint, thus∫
〈Lu(x), v(x)〉V dx = −

∫
〈u(x), Lv(x)〉V dx

for all test functions u, v; this is equivalent to requiring that coefficients of the
polynomial h be self-adjoint, so in the scalar case we require h to be real-valued.
Note that we do not restrict the time variable to an interval I; this is because the
solutions we shall construct to (2.1) will automatically exist globally in time. We
refer to the polynomial h as the dispersion relation of the equation (2.1).

A somewhat degenerate example of an equation of the form (2.1) is the phase
rotation equation

∂tu(t, x) = iωu(t, x); u(0, x) = u0(x)
where u is a complex field and ω ∈ R; this has the explicit solution u(t, x) =
eiωtu0(x), and the dispersion relation is h(ξ) = ω. Another degenerate example is
the transport equation

(2.2) ∂tu(t, x) = v · ∇xu(t, x); u(0, x) = u0(x)

for some constant vector v ∈ Rd; this has the explicit solution u(t, x) = u0(x− vt),
and the dispersion relation is h(ξ) = v · ξ. More interesting examples (many of
which arise from physics) can be constructed if one either raises the order of L, or
makes u vector-valued instead of scalar. Examples of the former include the free
Schrödinger equation

(2.3) i∂tu+
�

2m
∆u = 0,

where u : R × Rd → V is a complex field and ∆ =
∑d

j=1
∂2

∂x2
j

is the Laplacian
and Planck’s constant � > 0 and the mass m > 0 are fixed scalars, as well as the
one-dimensional Airy equation

(2.4) ∂tu+ ∂xxxu = 0

where u : R × R → R is a real scalar field. The dispersion relations here are
h(ξ) = − �

2m |ξ|2 and h(ξ) = ξ3 respectively. Examples of the latter include vacuum
Maxwell’s equations

(2.5) ∂tE = c2∇×B; ∂tB = −∇× E; ∇x · E = ∇x ·B = 0
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in three dimensions d = 3, where E,B : R1+3 × R3 are real vector4 fields and the
speed of light c > 0 is constant; the constraints that E and B be divergence-free
are not of the dynamical form (2.1), but nevertheless they end up being compatible
with the flow. The Maxwell equations are a special case of the abelian Yang-Mills
equations

(2.6) ∂αF
αβ = 0; ∂αFβγ + ∂βFγα + ∂γFαβ = 0

where F : R1+d → ∧2 R1+d is an real anti-symmetric two-form field, and R1+d =
R × Rd is endowed5 with the standard Minkowski metric gαβ , defined using the
spacetime interval dg2 = −c2dt2 + dx2

1 + dx2
2 + dx2

3 (with the convention x0 = t),
and which is used to raise and lower indices in the usual manner.

Another example from physics is the Dirac equation

(2.7) iγα∂αu =
mc

�
u,

where γ0, . . . , γ3 ∈ End(V ) are the gamma matrices, acting on a four-dimensional
complex vector space V , known as spinor space, via the commutation relations

(2.8) γαγβ + γβγα = −2gαβid

where gαβ is the Minkowski metric, the mass m ≥ 0 is non-negative, and u :
R1+3 → V is a spinor field; see Exercise 2.1 for one construction of spinor space.

It is also of interest to consider dispersive equations which are second-order in
time. We will not give a systematic description of such equations here, but instead
only mention the two most important examples, namely the wave equation

(2.9) �u = 0; u(0, x) = u0(x); ∂tu(0, x) = u1(x)

where u : R1+d → V is a field, and � is the d’Alembertian operator

� = ∂α∂α = − 1
c2
∂2
t + ∆,

and the slightly more general Klein-Gordon equation

(2.10) �u =
m2c2

�2
u; u(0, x) = u0(x); ∂tu(0, x) = u1(x)

where the mass m ≥ 0 is fixed.
Equations which involve c are referred to as relativistic, while equations in-

volving � are quantum. Of course, one can select units of space and time so that
c = � = 1, and one can also normalise m = 1 without much difficulty; these con-
stants need to be retained however if one wants to analyze the non-relativistic limit
c → ∞ of a relativistic equation, the classical limit � → 0 of a quantum equation,
or the massless limit m→ 0 of a massive equation.

4A more geometrically covariant statement would be that E and B combine to form a rank

two tensor field Fαβ , as in the example of the Yang-Mills equations below. Indeed, Fαβ should

be interpreted as the curvature of a connection; cf. Section 6.2.
5We shall use R1+d to denote Minkowski space with the Minkowski metric, and R × Rd to

denote a spacetime without any Minkowski metric. Relativistic equations such as the Maxwell,
Yang-Mills, Dirac, Klein-Gordon, and wave equations live on Minkowski space, and thus interact

well with symmetries of this space such as the Lorentz transformations, whereas non-relativistic
equations such as the Airy and Schrödinger equation have no relation to the Minkowski metric
or with any related structures such as Lorentz transformations, the light cone, or the raising and
lowering conventions associated with the metric.
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The constant-coefficient dispersive equations have a number of symmetries. All
are invariant under time translation u(t, x) �→ u(t − t0, x) and spatial translation
u(t, x) �→ u(t, x− x0). Several also enjoy a scaling symmetry (Exercise 2.9). There
is also usually a time reversal symmetry, though the precise nature of the symmetry
varies. For instance, for the Schrödinger equation one takes u(t, x) �→ u(−t,−x),
for the Airy equation one takes u(t, x) �→ u(−t,−x), and for the wave and Klein-
Gordon equations one takes u(t, x) �→ u(−t, x). For tensor equations such as Dirac,
Maxwell, and Yang-Mills, one has to apply the time reversal to the tensor space as
well as to the spacetime domain. The equations in Rd typically enjoy a rotation
and reflection invariance, which for scalar equations is simply u(t, x) �→ u(t, Ux) for
all orthogonal matrices U ∈ O(d); in particular, this implies (once one has a reason-
able uniqueness theory) that radially symmetric data leads to radially symmetric
solutions. Again, for tensor equations one has to rotate the tensor as well as the
domain. The Schrödinger equation also has a very useful Galilean invariance (Exer-
cise 2.5), while the relativistic equations have a similarly useful Lorentz invariance
(Exercise 2.6). Finally, the Schrödinger equation also enjoys the pseudo-conformal
symmetry (Exercise 2.26), while the wave equation similarly enjoys the conformal
symmetry (Exercise 2.14).

The above equations are all connected to each other in various ways; some of
them are given in the exercises.

Exercise 2.1 (Spinor space). Let V = C4 be endowed with the sesquilinear
form

{(z1, z2, z3, z4), (w1, w2, w3, w4)} := z1w1 + z2w2 − z3w3 − z4w4

and let γ0, . . . , γ3 ∈ End(V ) be given as

γ0(z1, z2, z3, z4) =
1
c
(z1, z2,−z3,−z4)

γ1(z1, z2, z3, z4) = (z4, z3,−z2,−z1)
γ2(z1, z2, z3, z4) = (−iz4, iz3, iz2,−iz1)
γ3(z1, z2, z3, z4) = (z3,−z4,−z1, z2).

Show that we have the commutation relations (2.8). Furthermore, for all u, v ∈ V ,
we have the symmetry {γαu, v} = {u, γαv}, and the 4-vector {u, γαu} is positive
time-like in the sense that

{u, γ0u} ≥ 0 and − {u, γαu}{u, γαu} ≥ {u, u}2 ≥ 0.

Exercise 2.2 (Maxwell vs. Yang-Mills; Dirac vs. Klein-Gordon). Show that
any C2

t,x solution to Maxwell’s equation (2.5) or the abelian Yang-Mills equation
(2.6), also solves the wave equation (2.9). Conversely, if A = (Aα)α=0,...,d ∈
C2
t,x(R

1+d → R1+d) solves the wave equation, show that the curvature Fαβ :=
∂αAβ − ∂βAα solves the abelian Yang-Mills equation. Also explain why Maxwell’s
equation is a special case of the abelian Yang-Mills equation. In a similar spirit,
show that any continuously twice differentiable solution to Dirac’s equation (2.7)
also solves the Klein-Gordon equation (2.10), and conversely if φ ∈ C2

t,x(R1+3 → V )
solves the Klein-Gordon equation then u := γα∂αφ+mφ solves the Dirac equation.

Exercise 2.3 (Airy vs. Schrödinger). Let u ∈ C∞
t,x(R × R → C) solve the

Schrödinger equation i∂tu + ∂2
xu = 0, with all derivatives uniformly bounded. Let
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N > 1 be a large number, and let v : R × R → R be the real scalar field

v(t, x) := Re
(
eiNx+iN

3tu(t,
x+ 3N2t√

3N
)
)
.

Show that v is an approximate solution to the Airy equation (2.4), in the sense that

∂tv + ∂3
xv = Ou(N−3/2).

This suggests that solutions to the Airy equation can behave, in certain circum-
stances, like suitably rescaled and modulated solutions to the Schrödinger equation.
See [BC], [CCT], [Schn] for some nonlinear developments of this idea.

Exercise 2.4 (Group velocity of waves). Let h : Rd → R be a polynomial
with real coefficients, and let L := iP (D). Show that if φ ∈ C∞

t,x(R
d → C) has all

derivatives bounded, and ε > 0, then the complex scalar field u ∈ C∞
t,x(R×Rd → C)

defined by
u(t, x) := eix·ξ0+ith(ξ0)φ((x + ∇h(ξ0)t)/ε)

is an approximate solution to (2.1) in the sense that

∂tu = Lu+Oφ(ε2).

This suggests that (sufficiently broad) solutions to (2.1) which oscillate in space
with frequency ξ0, should travel at group velocity −∇h(ξ0), and oscillate in time
with frequency h(ξ0); see also Principle 2.1. In the case of the Schrödinger equation
(2.3), conclude (on a heuristic level) de Broglie’s law mv = �ξ, where v denotes
the group velocity. (Note the phase velocity in this case will be twice the group
velocity, 2v.)

Exercise 2.5 (Galilean invariance). Let u ∈ C2
t,x(R×Rd → V ) be a complex

field, let v ∈ Rd, and let ũ ∈ C2
t,x(R × Rd → C) be the field

ũ(t, x) := eimx·v/�eimt|v|
2/2�u(t, x− vt).

show that ũ solves the Schrödinger equation (2.3) if and only if u does.

Exercise 2.6 (Lorentz invariance). Let u ∈ C2
t,x(R

1+d → V ) be a field, let
v ∈ Rd be such that |v| < c <∞, and let ũ ∈ C2

t,x(R
1+d → C) be the field

ũ(t, x) := u(
t− v · x/c2√
1 − |v|2/c2 ,

x− vt√
1 − |v|2/c2 ).

Show that ũ solves the wave equation (2.9) if and only if u does, and similarly
for the Klein-Gordon equation (2.10). (Hint: show that the Minkowski metric is
preserved by the Lorentz transformation (t, x) �→ ( t−v·x/c2√

1−|v|2/c2 ,
x−vt√

1−|v|2/c2 ).) What

is the analogous symmetry for the Dirac, Maxwell, and Yang-Mills equations?

Exercise 2.7 (Schrödinger vs. Klein-Gordon). Let u ∈ C∞
t,x(R

1+d → V ) be a
complex field solving the Klein-Gordon equation (2.10). Show that if one applies
the change of variables u = e−itmc

2/�v then one obtains

i∂tv +
�

2m
∆v =

�

2mc2
∂2
t v.

This suggests that the Klein-Gordon equation can converge to the Schrödinger
equation in the non-relativistic limit c → ∞, though one has to be extremely
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careful with this heuristic due to the double time derivative on the right-hand side.
(A more robust approximation is given in the next exercise.)

Exercise 2.8 (Schrödinger vs. Dirac). Let u : R × R3 → V be a spinor field
solving the Schrödinger equation

icγ0∂tu− �

2m
∆u = 0

with all derivatives uniformly bounded. Let v : R × R3 → V be the spinor field

v := e−imc
2γ0t/�u− �

2imc
eimc

2γ0t/�γj∂xju

where the j index is summed over 1, 2, 3. Show that v is an approximate solution to
the Dirac equation (2.7) (and hence the Klein-Gordon equation) in the sense that

iγα∂αv =
mc

�
v +O�,m,u(

1
c2

)

Thus in the non-relativistic limit c → ∞, certain solutions of the Dirac and
Klein-Gordon equations resemble suitably rescaled and modulated solutions of the
Schrödinger equation. See [MNO], [MNO2] for some nonlinear developments of
this idea. By using this correspondence between Schrödinger and Klein-Gordon,
one can also establish in a certain sense that the Lorentz invariance degenerates to
the Galilean invariance in the non-relativistic limit c→ ∞; we omit the details.

Exercise 2.9 (Scaling symmetry). Show that if P : Rd → C is a homoge-
neous polynomial of degree k, and L = P (∇), then the equation (2.1) is invariant
under the scaling u(t, x) �→ u( t

λk ,
x
λ) for any λ > 0. Thus for instance, with the

Schrödinger equation the time variable has “twice the dimension” of the space vari-
able, whereas for the Airy equation the time variable has three times the dimension
of the space variable. For relativistic equations such as the wave equation, space
and time have the same dimension.

Exercise 2.10 (Wave vs. Klein-Gordon). Let u ∈ C2
t,x(R × Rd → V ) be a

complex field, and define v ∈ C2
t,x(R × Rd+1 → C) by

v(t, x1, . . . , xn, xd+1) = eimcxd+1/�u(t, x1, . . . , xd).

Show that v solves the d+1-dimensional wave equation (2.9) if and only if u solves
the d-dimensional Klein-Gordon equation (2.10). This allows one to use the method
of descent (analyzing a lower-dimensional PDE by a higher-dimensional PDE) to
obtain information about the Klein-Gordon equation from information about the
wave equation. As the name implies, the method of descent is largely one-way; one
can use lower-dimensional PDE to construct solutions to higher-dimensional PDE
with special initial data rather than arbitrary data.

Exercise 2.11 (Wave vs. Schrödinger). Let u ∈ C2
t,x(R × Rd → V ) be a

complex field, and define v ∈ C2
t,x(R × Rd+1 → V ) by

v(t, x1, . . . , xd, xd+1) = e−i(t+xd+1)u(
t− xd+1

2
, x1, . . . , xd).

Set � = c = m = 1. Show that v solves the d+1-dimensional wave equation (2.9) if
and only if u solves the d-dimensional Schrödinger equation (2.3). See also Exercise
3.2.
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Exercise 2.12 (Wave vs. wave). Suppose that the field u ∈ C2
t,x(R×(Rd\{0}) →

V ) solves the d-dimensional wave equation �u = 0, thus by abuse of notation
we can write u(t, x) = u(t, |x|) and consider u = u(t, r) now as a function from
R× (0,∞) → C. Conclude the radial field v ∈ C2

t,x(R× (Rd+2\{0}) → V ) defined
(again abusing notation) by v(t, r) := 1

r∂ru(t, r) solves the d+ 2-dimensional wave
equation. Thus in the radial case at least, it is possible to construct solutions to
the d+ 2-dimensional equation out of the d-dimensional equation.

Exercise 2.13 (1 + 1 waves). Show that if the field u ∈ C∞
t,x(R × R → V )

solves the one-dimensional wave equation ∂2
t u− ∂2

xu = 0 with initial data u(0, x) =
u0(x), ∂tu(0, x) = u1(x), then

u(t, x) :=
u0(x + t) + u0(x− t)

2
+

1
2

∫ x+t

x−t
u1(y) dy

for all t, x ∈ R. This is a rare example of a PDE which can be solved entirely by
elementary means such as the fundamental theorem of calculus.

Exercise 2.14 (Conformal invariance). Let Γ+ ⊂ R1+d be the forward light
cone {(τ, ξ) ∈ R1+d : τ > c|ξ|}, and let u ∈ C2

t,x(Γ+ → V ) be a field. Let
ũ ∈ C2

t,x(Γ+ → V ) be the conformal inversion of u, defined by

ũ(t, x) := (t2 − |x|2)−(d−1)/2u(
t

t2 − |x|2 ,
x

t2 − |x|2 ).

Establish the identity

�ũ(t, x) = (t2 − |x|2)− d−1
2 −1�u(

t

t2 − |x|2 ,
x

t2 − |x|2 ).

In particular u solves the wave equation (2.9) with c = 1 if and only if ũ does. (One
can use in fact hyperbolic polar coordinates to recast the wave equation as a wave
equation on hyperbolic space Hd, in such a way that conformal inversion amounts
simply to time reversal. Another approach is to observe that Kelvin inversion
(t, x) �→ 1

t2−|x|2 (t, x) is a conformal transformation of Minkowski space.)

2.1. The Fourier transform

His life oscillates, as everyone’s does, not merely between two poles,
such as the body and the spirit, the saint and the sinner, but
between thousands, between innumerable poles. (Herman Hesse,
“Steppenwolf”)

The spatial Fourier transform, and the closely related spacetime Fourier trans-
form, is an exceptionally well-suited6 tool to analyze constant coefficient linear
dispersive equations such as (2.1). This is ultimately due to the invariance of these
equations under translations in either space or time. A brief summary of the proper-
ties of the Fourier transform that we shall need (as well as other notation appearing
here, such as the Sobolev spaces Hs

x(R
d)) can be found in Appendix A.

One hint that the Fourier transform will be useful for solving equations such as
(2.1) comes from the simple observation that given any frequency ξ0 ∈ Rd and any

6In some ways, it is too well suited; there are a number of results in this field which are
so easily proven using the Fourier transform, that non-Fourier-based alternative proofs have not
been adequately explored, and as such one encounters difficulty extending those results to variable-
coefficient, curved space, or nonlinear settings in which the Fourier transform is less useful.
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P : Rd → R, the plane wave eix·ξ0+ith(ξ0) solves the equation (2.1) with L = ih(D)
(see Exercise 2.4). From the principle of superposition for linear equations, we thus
see that we can construct solutions to (2.1) as superpositions of plane waves.

In order to obtain an adequate wellposedness theory for dispersive equations,
it is often necessary to restrict attention to solutions which not only have some
smoothness, but also some decay. To get some idea of the problems involved,
consider the complex scalar field u : (−∞, 0) × Rd → C defined by

u(t, x) :=
1

|t|d/2 e
im|x|2/2�t.

This field can be verified to be a smooth solution to the Schrödinger equation (2.3)
for all negative times, but becomes singular at time t = 0. The problem is that
while this solution is smooth, it does not decay at all as x → ∞. For an even
worse example of bad behaviour of the Schrödinger equation - namely breakdown
of uniqueness even for smooth solutions - see Exercise 2.22.

To avoid these issues, we begin by restricting attention to the Schwartz space
Sx(Rd). To simplify the discussion, let us now only consider scalar equations, so
that the dispersion relation h : Rd → R is now real-valued; the vector-valued case
introduces a number of interesting new technical issues which we will not discuss
here. If u ∈ C1

t Sx(R × Rd) is a classical solution to (2.1), then by taking Fourier
transforms of (2.1) we conclude

∂tû(t)(ξ) = ih(ξ)û(t)(ξ)

which has the unique solution

(2.11) û(t)(ξ) = eith(ξ)û0(ξ).

Note that as h(ξ) is real and û0 is Schwartz, the function eith(ξ)û0(ξ) is then also
Schwartz for any t ∈ R. We may thus apply the Fourier inversion formula and
obtain the solution

(2.12) u(t, x) =
∫
Rd

eith(ξ)+ix·ξû0(ξ) dξ;

because of this, we shall let etL = eith(D) denote the linear propagator

etLu0(x) :=
∫
Rd

eith(ξ)+ix·ξû0(ξ) dξ.

This propagator is defined initially for Schwartz functions, but can be extended
by standard density arguments to other spaces. For instance, Plancherel’s theorem
allows one to extend etL to be defined on the Lebesgue space L2

x(R
d), or more

generally to the inhomogeneous Sobolev space7 Hs
x(Rd) for any s ∈ R, as well

as the homogeneous Sobolev spaces Ḣs
x(R

d) (see Appendix A). It is clear that
etL is a unitary operator on these spaces, and in particular on L2

x(Rd) (which by
Plancherel’s identity is equivalent to H0

x(R
d) = Ḣ0

x(R
d), except for an inessential

factor of (2π)d/2):

‖etLf‖Hs
x(Rd) = ‖f‖Hs

x(Rd); ‖etLf‖Ḣs
x(Rd) = ‖f‖Ḣs

x(Rd) ‖etLf‖L2
x(Rd) = ‖f‖L2

x(Rd).

One can of course also extend these propagator to tempered distributions by duality.

7In the notation of the next chapter, the function u(t) = etLu0 is the unique strong Hs
x(Rd)

solution to the Cauchy problem (2.1). As a rule of thumb, as long as one restricts attention to
strong solutions in a space such as Hs

x, the linear evolution is completely non-pathological.
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Propagators are examples of Fourier multipliers and as such, they commute
with all other Fourier multipliers, including constant coefficient differential oper-
ators, translations, and other propagators. In particular they commute with the
fractional differentiation and integration operators 〈∇〉s for any s ∈ R.

The Fourier transform can also be defined8 on the torus Td. If f ∈ C∞(Td →
C) is smooth, the Fourier transform f̂ : Zd → C is defined by

f̂(k) :=
1

(2π)d

∫
Td

f(x)e−ik·x dx.

One can show that f̂(k) is a rapidly decreasing function of k, and the inversion
formula is given by

f(x) =
∑
k∈Zd

f̂(k)eik·x.

Much of the preceding discussion extends to the periodic setting, with some minor
changes; we leave the details to the reader. One advantage of the periodic setting
is that the individual Fourier modes eik·x are now themselves square-integrable
(and more generally lie in all the Sobolev spaces Hs

x(R
d/2πZd)), thus for instance

‖eik·x‖Hs
x(Rd/2πZd) = 〈k〉s. This makes it easier to talk about the evolution of

individual Fourier modes, as compared to the non-periodic case in which the Fourier
modes lie in a continuum.

The spatial Fourier transform f(x) �→ f̂(ξ) brings into view the oscillation of a
function in space. In the analysis of dispersive PDE, it is also important to analyze
the oscillation in time, which leads to the introduction of the spacetime Fourier
transform. If u : R×Rd → C is a complex scalar field, we can define its spacetime
Fourier transform ũ : R × Rd → C formally as

ũ(τ, ξ) :=
∫
R

∫
Rd

u(t, x)e−i(tτ+x·ξ) dtdx.

To begin with, this definition is only sensible for sufficiently nice functions such as
those which are Schwartz in both space and time, but one can then extend it to
much more general functions and to tempered distributions by density arguments
or duality. Of course, in such case one does not always expect ũ to be well-behaved,
for instance it could be a measure or even a tempered distribution. Formally at
least, we have the inversion formula

u(t, x) =
1

(2π)d+1

∫
R

∫
Rd

ei(tτ+x·ξ)ũ(τ, ξ) dτdξ.

The advantage of performing this transform is that it not only diagonalises the
linear operator L in (2.1), but also diagonalises the time derivative ∂t. Indeed, if
u is any tempered distributional solution to (2.1) (which will in particular include
classical solutions which grow at most polynomially in space and time) with L =
P (∇) = ih(∇/i) as before, then on taking the spacetime Fourier transform we
obtain

iτ ũ(τ, ξ) = ih(ξ)ũ(τ, ξ)

8Of course, the Fourier transform can in fact be defined on any reasonable abelian group,
and even (with some modifications) on most non-abelian groups; but we will not pursue these
issues here. Also, completely integrable PDE often come with a “scattering transform” which can
be viewed as a nonlinear version of the Fourier transform, but again we will not discuss this here.
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and thus
(τ − h(ξ))ũ(τ, ξ) = 0.

The theory of distributions then shows that ũ(τ, ξ) is supported in the characteristic
hypersurface {(τ, ξ) : τ = h(ξ)} of the spacetime frequency space R × Rd, and in
fact takes the form

ũ(τ, ξ) = δ(τ − h(ξ))a(ξ)
for some spatial tempered distribution a, where δ is the Dirac delta. In the case of
the Schwartz solution (2.12), we have a = û0, thus

ũ(τ, ξ) = δ(τ − h(ξ))û0(ξ).

For comparison, if we consider u0 as a function of spacetime via the trivial extension
u0(t, x) := u0(x), then we have

ũ0(τ, ξ) = δ(τ)û0(ξ).

Thus in the spacetime frequency space, one can think of the linear solution u
to (2.1) as the time-independent field u0, twisted by the transformation (τ, ξ) �→
(τ + h(ξ), ξ).

In applications to nonlinear PDE, it is often not feasible to use the spacetime
Fourier transform to the solution u directly, because often u is only defined on a
spacetime slab I×Rd instead of the entire spacetime R1+d. This necessitates some
sort of artificial extension9 of the solution u from I to R in order to take advantage
of the features of the spacetime Fourier transform. Nevertheless, the spacetime
Fourier transform (and in particular the Sobolev spaces Xs,b = Xs,b

τ=h(ξ) adapted
to the characteristic hypersurface) has been proven to be a very useful tool in both
the study of linear and nonlinear dispersive equations; see Section 2.6.

Another approach to analyzing these PDE proceeds by taking the Fourier trans-
form in the time variable only, keeping the spatial variable untouched. This ap-
proach is well suited for settings in which the operator L has variable-coefficients, or
has a domain which is curved or has a boundary, and leads to spectral theory, which
analyzes the behaviour of propagators such as etL in terms of resolvents (L− z)−1,
as well as the closely related spectral measure of L. This perspective has proven
to be immensely useful for the linear autonomous setting, but has had less success
when dealing with non-autonomous linear systems or with autonomous nonlinear
systems, and we will not pursue it here.

We summarise some of the above discussion in Table 1, as well as in the fol-
lowing principle.

Principle 2.1 (Propagation of waves). Suppose that a solution u solves a scalar
dispersive equation (2.1) with initial datum u0. If u0 has spatial frequency roughly
ξ0 (in other words, the Fourier transform û0 is concentrated near ξ0), then u(t)
will have spatial frequency roughly ξ0 for all times, and u will also oscillate in time
with frequency roughly h(ξ0). In physical space, u will travel with velocity roughly
−∇h(ξ0). These heuristics are only valid to accuracies consistent with the spatial
and frequency uncertainty of u; the wave is initially coherent, but as time progresses,
the frequency uncertainty (and hence velocity uncertainty) overwhelms the spatial

9One could also work with various truncated variants of the Fourier transform, such as
cosine bases or the Laplace transform. However, the advantages of such tailored bases are minor,
and are usually outweighed by the loss of algebraic structure and established theory incurred by
abandoning the Fourier transform.
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uncertainty, leading to dispersion. (In particular, the uncertainty principle itself is
a mechanism for dispersion over time.)

Thus for instance, fields of frequency ξ0 will propagate at velocities �ξ/v under
the Schrödinger evolution, −3ξ2 for the Airy evolution, and ξ/|ξ| for the wave
evolution, subject to limitations given by the uncertainty principle. See Exercise
2.4 for a partial verification of this principle. One can also use techniques from
oscillatory integrals, in particular the method of stationary phase, to make rigorous
formulations of the above principle, but we will prefer to leave it as an informal
heuristic. The situation for systems (as opposed to scalar equations) can be more
complicated; one usually has to decompose h(ξ) (which is now an operator) into
eigenspaces, and thus decompose the wave of frequency ξ into polarised components,
each of which can propagate in a different direction. We will not discuss this here.

Table 1. Some different perspectives to analyzing an evolution
equation, and the coordinates used in that analysis. This list is not
intended to be exhaustive, and there is of course overlap between
the various perspectives.

Approach Sample tools
Spatial variable (x) Elliptic theory, gauge fixing, coercivity estimates
Causality (t) Gronwall inequality, bootstraps, Duhamel formula, time subdivision
Physical space (x, t) Integration by parts, substitutions, fundamental solution
Spacetime geometry (xα) Vector fields, finite propagation speed, conformal transformation
Frequency space (ξ, t) Littlewood-Paley theory, Fourier multipliers, paraproducts
Spectral theory (x, τ) Spectral measure, resolvents, eigenfunctions
Spacetime frequency (ξ, τ) Xs,b spaces, dispersion relation, null structure
Phase space (x, ξ, t) Bicharacteristics, pseudodifferential operators, FIOs
Geometric optics (x, ξ, t, τ) Eikonal and Hamilton-Jacobi equations, WKB approximation
Hamiltonian (D, t) Noether’s theorem, nonsqueezing, normal forms
Lagrangian (u) Stress-energy tensor, symmetries, variational methods

Exercise 2.15 (Translation operators). Show that for any x0 ∈ Rd, the prop-
agator exp(−x0 · ∇) is the operation of translation by x0, thus exp(−x0 · ∇)f(x) =
f(x− x0). Compare this with Taylor’s formula in the case that f is real analytic.

Exercise 2.16 (Wave propagators). Using the spatial Fourier transform, show
that if u ∈ C2

t Sx(R × Rd) is a field obeying the wave equation (2.9) with c = 1,
then

û(t)(ξ) = cos(t|ξ|)û0(ξ) +
sin(t|ξ|)

|ξ| û1(ξ)

for all t ∈ R and ξ ∈ Rd; one can also write this as

u(t) = cos(t
√−∆)u0 +

sin(t
√−∆)√−∆

u1

or using the spacetime Fourier transform as

ũ(τ, ξ) = δ(|τ | − |ξ|)(1
2
û0(ξ) +

sgn(τ)
2i|ξ| û1(ξ))
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(note that some care is required to ensure that the product of δ(τ − |ξ|) and sgn(τ)
actually makes sense). Thus the characteristic hypersurface for the wave equation is
the light cone {(τ, ξ) : |τ | = |ξ|}. As these formulae make sense for any distributions
u0, u1, we shall refer to the function or distribution u(t) generated by these formulae
as the solution to the wave equation with this specified data. Show that if (u0, u1) ∈
Hs
x(R

d)×Hs−1
x (Rd) for some s ∈ R, then we have u ∈ C0

tH
s
x(R×Rd)∩C1

tH
s−1
x (R×

Rd), and in fact we have the bounds

‖∇u(t)‖Hs−1
x (Rd) + ‖∂tu(t)‖Hs−1

x (Rd) �d,s ‖u0‖Hs
x(Rd) + ‖u1‖Hs−1

x (Rd))

and

‖u(t)‖Hs
x(Rd) �d,s 〈t〉(‖u0‖Hs

x(Rd) + ‖u1‖Hs−1
x (Rd))

for all times t ∈ R. Thus the solution u stays bounded to top order, but lower
order norms of u can grow linearly in time.

Exercise 2.17 (Klein-Gordon propagators). If u ∈ C2
t Sx(R×Rd) is a classical

solution to the Klein-Gordon equation (2.10) with c = m = 1, then

û(t)(ξ) = cos(t〈ξ〉)û0(ξ) +
sin(t〈ξ〉)

〈ξ〉 û1(ξ)

for all t ∈ R and ξ ∈ Rd; one can also write this as

u(t) = cos(t
√

1 − ∆)u0 +
sin(t

√
1 − ∆)√

1 − ∆
u1

or

ũ(τ, ξ) = δ(|τ | − 〈ξ〉)(1
2
û0(ξ) +

sgn(τ)
2i〈ξ〉 û1(ξ)).

Thus the characteristic hypersurface here is the two-sheeted hyperboloid {(τ, ξ) :
|τ |2 − |ξ|2 = 1}. Again we extend this formula to distributions to define the notion
of a distributional solution to the Klein-Gordon equation. Show that if (u0, u1) ∈
Hs
x(R

d) ×Hs−1
x (Rd), then we have u ∈ C0(R → Hs(Rd)) ∩ C1(R → Hs−1

x (Rd)),
and in fact we have the bounds

‖u(t)‖Hs
x(Rd) + ‖∂tu(t)‖Hs−1

x (Rd) ≤ C(‖u0‖Hs
x(Rd) + ‖u1‖Hs−1

x (Rd))

for all times t ∈ R and some constant C depending only on n and s. Thus the
Klein-Gordon equation has slightly better regularity behaviour in (inhomogeneous)
Sobolev spaces than the wave equation.

Exercise 2.18 (Geometry of characteristic surfaces). Interpret Exercises 2.3-
2.11 using either the spatial Fourier transform or the spacetime Fourier transform,
viewing each of these exercises as an assertion that one dispersion relation can
be approximated by or transformed into another. Several of the exercises should
correspond to a specific geometric approximation or transformation (e.g. approxi-
mating a cubic by a quadratic or a polynomial by a tangent, or a hyperboloid by
two paraboloids; or by relating a cone to its conic sections). The exercises involving
vector equations such as Dirac’s equation are a little trickier to interpret this way,
as one also needs to analyze the eigenspaces of the dispersion relation h(ξ).
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Exercise 2.19 (Duhamel formula). Let I be a time interval. Suppose that
u ∈ C1

t Sx(I ×Rd) and F ∈ C0
t Sx(I ×Rd) solve the equation ∂tu = Lu+F , where

L = ih(D) is skew-adjoint. Establish the Duhamel formula

(2.13) u(t) = e(t−t0)Lu(t0) +
∫ t

t0

e(t−s)LF (s) ds

for all t0, t ∈ I (compare with (1.46)).

Exercise 2.20 (Wave Duhamel formula). Let I be a time interval. Suppose
that u ∈ C2

t Sx(I × Rd) and F ∈ C0
t Sx(I × Rd) are fields such that �u = F .

Establish the Duhamel formula
(2.14)

u(t) = cos((t−t0)
√−∆)u(t0)+

sin((t− t0)
√−∆)√−∆

∂tu(t0)−
∫ t

t0

sin((t− s)
√−∆)√−∆

F (s) ds

forall t0, t ∈ I (compare with Exercise 1.49).

Exercise 2.21 (Conformal energy). Show that if u ∈ C2
t Sx(Rd) is a classical

solution to the wave equation with c = 1, then the quantity ‖u(t)‖2

Ḣ
1/2
x (Rd)

+

‖∂tu(t)‖2

Ḣ
−1/2
x (Rd)

is independent of the choice of time t. Furthermore, it is also

invariant under the Lorentz transformation in Exercise 2.6. (Hint: you may wish to
rewrite this quantity using the spacetime Fourier transform, and using the Lorentz-
invariant measure δ(τ2 − |ξ|2).)

Exercise 2.22 (Illposedness of Schrödinger in C∞). Give an example of a
smooth solution u : R × R → C to the Schrödinger equation i∂tu + ∂2

xu = 0
which vanishes on the upper half-plane t ≥ 0 but is not identically zero; this shows
that one no longer has a satisfactory uniqueness theory once we allow our solutions
to grow arbitrarily large (so that the theory of tempered distributions no longer
applies); thus infinite speed of propagation, combined with extremely large reserves
of “energy” at infinity, can conspire to destroy uniqueness even in the smooth
category. (Hint: Find a function f(z) which is analytic10 on the first quadrant
{Re(z), Im(z) ≥ 0}, which decays fast enough on the boundary γ of this quadrant
(which is a contour consisting of the positive real axis and upper imaginary axis) so
that

∫
γ f(z)eixz+itz

2
dz converges nicely for any x ∈ R and t ∈ R, is equal to zero

for t ≥ 0 by Cauchy’s theorem, but is such that
∫
γ f(z)eitz

2
dz is not identically

zero. For the latter fact, you can use one of the uniqueness theorems for the Fourier
transform.)

Exercise 2.23. Let u ∈ C0
tH

1
x(R

1+d)∩C1
t L

2
x(R

1+d) be an energy class solution
to the wave equation with c = 1. Show that for any bounded time interval I we
have the bound

‖
∫
I

u(t, x) dt‖Ḣ2
x(Rd) �d ‖u(0)‖Ḣ1

x(Rd) + ‖∂tu(0)‖L2
x(Rd).

(This can be done either by direct integration by parts in physical space, or by the
spatial Fourier transform.) Thus integrating a solution in time leads to a gain of

10The author thanks Jared Wunsch, John Garnett, and Dimitri Shlyakhtenko for discussions
which led to this example. A key point is that the functions involved grow so fast that they are not
tempered distributions (despite being smooth), and thus beyond the reach of the distributional
Fourier transform.
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regularity in space. This phenomenon is a consequence of the oscillation of u in
time, and fails if one places absolute values inside the time integral on the left-hand
side; see however the Strichartz estimates discussed in Section 2.3, which are also
a kind of smoothing effect formed by averaging in time. (Thanks to Markus Keel
for this problem.)

2.2. Fundamental solution

The wide wings flap but once to lift him up. A single ripple starts
from where he stood. (Theodore Roethke, “The Heron”)

In the previous section, we have given the solution u(t) to the linear disper-
sive equation (2.1) as a spatial Fourier multiplier applied to the initial datum u0,
see (2.11). For simplicity let us take u to be a complex scalar field and u0 to
be Schwartz. Since multiplication on the Fourier transform side intertwines with
convolution on the spatial side, we thus have

u(t, x) = u0 ∗Kt(x) =
∫
Rd

u0(x− y)Kt(y) dy

where the fundamental solution (or Riemann function) Kt is the (distributional)
inverse Fourier transform of the multiplier eith(ξ):

(2.15) Kt(x) :=
1

(2π)d

∫
Rd

ei(x·ξ+th(ξ)) dξ.

One can also think of Kt as the propagator etL applied to the Dirac delta function
δ.

The integral in (2.15) is not absolutely convergent, and thus does not make
sense classically. However in most cases one can solve this problem by a limiting
procedure, for instance writing

(2.16) Kt(x) = lim
ε→0

1
(2π)d

∫
Rd

ei(x·ξ+th(ξ))e−ε|ξ|
2
dξ.

The integrals on the right-hand side are absolutely convergent, and the limit often
also exists in the sense of (tempered) distributions. For instance, in the case of the
Schrödinger equation (2.3), with h(ξ) = �

2m |ξ|2, we have

(2.17) Kt(x) = eit�∆/2mδ =
1

(2πi�t/m)d/2
eim|x|2/(2�t)

for all t �= 0, where one takes the standard branch of the complex square root with
branch cut on the negative real axis (see Exercise 2.24). Thus we have the formula

(2.18) u(t, x) =
1

(2πi�t/m)d/2

∫
Rd

eim|x−y|2/(2�t)u0(y) dy

for t �= 0 and all Schwartz solutions to the free Schrödinger equation (2.3) with ini-
tial datum u(0, x) = u0(x). This simple formula is even more remarkable when one
observes that it is not obvious11 at all that u(t, x) actually does converge to u0(x)
in the limit t → 0. It also has the consequence that the Schrödinger evolution is
instantaneously smoothing for localised data; if u0 is so localised as to be absolutely
integrable, but is not smooth, then from (2.18) shows that at all other times t �= 0,

11Indeed, the problem of establishing pointwise convergence back to u0 when u0 is only
assumed to lie in a Sobolev space Hs

x(Rd) is still a partially unsolved problem, and is considered
to be quite difficult. See for instance [Sjo], [Veg].
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the solution u(t) is smooth (but not localised). Thus the Schrödinger evolution can
instantaneously trade localisation for regularity (or vice versa, since the equation is
time reversible). This effect is related to the local smoothing phenomenon, which we
discuss later in this chapter. It can also be explained using the heuristic of Heisen-
berg’s law mv = �ξ (from Principle 2.1); the high frequencies of u travel very fast
and radiate quickly away from the origin where they are initially localised, leaving
only the low frequencies, which are always smooth, to remain near the origin.

Remark 2.2. The instantaneous smoothing effect is also closely related to
the infinite speed of propagation for the Schrödinger equation; a solution which is
compactly supported at time t = 0 will instantly cease to be compactly supported
at any later time, again thanks to (2.18). Indeed, one can heuristically argue that
any equation which is both time reversible and enjoys finite speed of propagation
(as well as some sort of uniqueness for the evolution), such as the wave and Klein-
Gordon equations, cannot enjoy any sort of fixed-time smoothing effect (though
other nontrivial fixed-time estimates may well be available).

Next we consider the fundamental solution Kt(x) for the Airy equation (2.4).
Here we have h(ξ) = ξ3, and thus we have

Kt(x) =
1
2π

∫
R

ei(xξ+tξ
3) dξ.

A simple rescaling argument then shows

Kt(x) = t−1/3K1(x/t−1/3)

where we adopt the convention that (−t)1/3 = −(t1/3). The function K1 is essen-
tially the Airy function, and is known to be bounded (see Exercise 2.28). Thus we
see that Kt = O(t−1/3). This should be compared with the decay of O(t−1/2) which
arises from the one-dimensional Schrödinger equation. The difference in decay is
explained by the different dispersion relations of the two equations (h(ξ) = ξ3 for
Airy, h(ξ) = 1

2ξ
2 for Schrödinger). From Exercise 2.4 or Principle 2.1, the relation-

ship between group velocity and frequency for the Airy equation is v = −3ξ2, as
opposed to v = ξ for Schrödinger. Thus high frequencies move even faster in Airy
than in Schrödinger (leading to more smoothing), but low frequencies move more
slowly12 (leading to less decay).

Now we turn to the wave equation with c = 1, for which the situation is more
complicated. First of all, as the equation is second-order in time, there are two
fundamental solutions of importance, namely

K0
t (x) := cos(t

√−∆)δ(x) =
1

(2π)d

∫
Rd

cos(2πt|ξ|)eix·ξ dξ
and

K1
t (x) :=

sin(t
√−∆)√−∆

δ =
1

(2π)d

∫
Rd

sin(2πt|ξ|
|ξ| eix·ξ dξ

(see Exercise 2.16, 2.20). In principle, this is not a difficulty, as one can easily
verify (e.g. using the Fourier transform) that the two solutions are related by the
formula K0

t = ∂tK
1
t . However, in this case the fundamental solutions are only

12The reader may wonder at this point whether the vague heuristics from Principle 2.1 can be
placed on a more rigorous footing. This is possible, but requires the tools of microlocal analysis,
and in particular the principle of stationary phase and the wave packet decomposition. We will
not attempt a detailed description of these tools here, but see for instance [Stei2].
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distributions rather than smooth functions, because one now only has finite speed
of propagation (see Section 2.5) and hence no fixed-time smoothing effects exist.
Nevertheless, the above formulae do give some insight as to the character of these
distributions. Indeed one easily sees that K0

t and K1
t are radially symmetric, real,

and verify the scaling rules

K0
t (x) =

1
|t|dK

0
1 (
x

t
); K1

t (x) =
sgn(t)
|t|n−1

K1
1(
x

t
).

In the case when d is odd, one can describe K0
t and K1

t explicitly (see Exercise
2.29), and then one can then use the method of descent (as in Exercise 2.31) to
obtain a formula for even dimensions n. It will however be more important for
us not to have explicit formulae for these fundamental solutions, but instead to
obtain good estimates on the solutions and on various smoothed out versions of
these solutions. A typical estimate is as follows. Let φ ∈ Sx(Rd) be a Schwartz
function, and for any λ > 0 let φλ := λnφ(λx); thus for large λ this resembles an
approximation to the identity. Then we have the pointwise estimates

(2.19) |K0
t ∗ φλ(x)| �φ,d λ

d〈λt〉−(d−1)/2

and

(2.20) |K1
t ∗ φλ(x)| �φ,d λ

d−1〈λt〉−(d−1)/2

for all t ∈ R and x ∈ Rd. These estimates can be proven via the Fourier transform
and the principle of stationary phase; we shall indicate an alternate approach using
commuting vector fields in Exercise 2.63. Roughly speaking, these estimates assert
that K0

t and K1
t decay like t−(d−1)/2, but only after integrating K0

t and K1
t
d+1
2

times and d−1
2 times respectively.

The situation for the Klein-Gordon equation (2.10) is even more complicated;
formulae for the explicit solution are in principle obtainable from the method of
descent (see Exercise 2.31) but they are not particularly simple to work with. It
is convenient to split the frequency domain into the nonrelativistic region, when
�|ξ| � mc, and the relativistic region, when �|ξ| � mc. The basic rule of thumb
here is that the Klein-Gordon equation behaves like the Schrödinger equation in the
non-relativistic region and like the wave equation in the relativistic region. For some
more precise formulations of this heuristic, see [MN] and the references therein.

One can also construct fundamental solutions for these equations on the torus
Td = Rd/2πZd. In the case of the wave and Klein-Gordon equations, which have
finite speed of propagation, there is little difference between the two domains (for
short times at least). However, the fundamental solution for dispersive equations
such as the Schrödinger equation become significantly more complicated to con-
trol on torii, with some very delicate number theoretic issues arising; as such, the
concept of a fundamental solution has only limited importance in these settings.

Exercise 2.24 (Gaussian integrals). Use contour integration to establish the
identity ∫ ∞

−∞
e−αx

2
eβx dx =

√
π

α
eβ

2/4α

whenever α, β are complex numbers with Re(α) > 0, where one takes the standard
branch of the square root. Use this and (2.16) to establish (2.17). (You may wish
to first reduce to the case when n = 1 and �

2m = 1. With a rescaling trick one can
also assume t = 1.)
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Exercise 2.25 (Schrödinger fundamental solution). Show that up to multipli-
cation by a constant, the fundamental solution (2.17) for the Schrödinger equation
is the only tempered distribution which is invariant under spatial rotations, Galilean
transforms, time reversal symmetry, and the scaling u(t, x) �→ λ−nu( t

λ2 ,
x
λ ). This

can be used to give an alternate derivation of the fundamental solution (except for
the constant).

Exercise 2.26 (Pseudoconformal transformation). Let u ∈ C1
t Sx(R×Rd) be

a complex scalar field, and define the field v : R × Rd → C by

v(t, x) :=
1

(it)d/2
u(

1
t
,
x

t
)ei|x|

2/2t,

with the convention
v(0, x) =

1
(2π)d/2

û0(x).

Establish the identity

(i∂tv + ∆v)(t, x) =
1
t2

1
(it)d/2

(i∂tu+ ∆u)(
1
t
,
x

t
)ei|x|

2/2t

for t �= 0. In particular, show that if u solves the Schrödinger equation (2.3) with
� = m = 1, then v also solves the Schrödinger equation (even at time t = 0). Thus
the pseudoconformal transformation manages the remarkable feat of swapping the
initial datum u0(x) with its Fourier transform û0(x) (up to constants). Also verify
that the psedoconformal transformation u �→ v is its own inverse. For an additional
challenge, see if you can link this transformation to the conformal transformation
in Exercise 2.14 using Exercise 2.11.

Exercise 2.27 (Van der Corput lemma). Let I ⊂ R be a bounded interval.
If φ ∈ C2(I → R) is either convex or concave, and |∂xφ(x)| ≥ λ for all x ∈ I
and some λ > 0, establish the estimate | ∫

I
eiφ(x) dx| ≤ 2

λ . (Hint: write eiφ(x) =
1

iφ′(x)∂xe
iφ(x) and integrate by parts.) From this and induction, conclude that if

k ≥ 2 and φ ∈ Ck(I → R) is such that |∂kxφ(x)| ≥ λ for all x ∈ I and some λ > 0,
then | ∫

I
eiφ(x) dx| �k λ

−1/k. Obtain a similar estimate for integrals of the form∫
R
eiφ(x)ψ(x) dx when ψ has bounded variation.

Exercise 2.28 (Airy fundamental solution). Let Kt(x) be the fundamental
solution of the Airy function. Establish the bounds K1(x) = ON (〈x〉−N ) for any
N ≥ 0 and x > 0, and K1(x) = O(〈x〉−1/4) for any x ≤ 0. (Hint: when x ≥ 1, use
repeated integration by parts. When x is bounded, use van der Corput’s lemma.
When x ≤ −1, split the integral up into pieces and apply van der Corput’s lemma
or integration by parts to each.) Explain why this disparity in decay is consistent
with Principle 2.1.

Exercise 2.29 (Wave fundamental solution). Let n ≥ 3 be odd and c = 1,
and consider the fundamental solutions K0

t = cos(t
√−∆)δ and K1

t = sin(t
√−∆)√−∆

δ

for the wave equation. Show that these distributions are given by∫
R3
K0
t (x)φ(x) dx = cd∂t(

1
t
∂t)(d−3)/2(td−2

∫
Sd−1

φ(tω)dω);∫
R3
K1
t (x)φ(x) dx = cd(

1
t
∂t)(d−3)/2(td−2

∫
Sd−1

φ(tω)dω)
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for all test functions φ, where dω is surface measure on the sphere Sd−1, and cd
is a constant depending only on d. (Hint: since K0

t and K1
t are radial, it suffices

to establish this when φ is also radial. Now apply Exercise 2.12 and Exercise 2.13.
Alternatively, one can compute the Fourier transforms of the distributions listed
above and verify that they agree with those of K0

t and K1
x. Yet another approach is

to show that the expressions given above solve the wave equation with the specified
initial data.) What happens in the case d = 1? (Use Exercise 2.13.)

Exercise 2.30 (Sharp Huygens’ principle). Let n ≥ 3 be odd, and let u ∈
C2
t Sx(R × Rd) be a classical solution to the wave equation (2.9), such that the

initial data u0, u1 is supported on a closed set Ω ⊆ Rd. Show that for any time t,
u(t) is supported on the set Ωt := {x ∈ Rd : |x− y| = ct for some y ∈ Ω}.

Exercise 2.31 (Klein-Gordon fundamental solution). Let n ≥ 1 and c = � = 1,
let K0

t and K1
t be the fundamental solutions for the Klein-Gordon equation in d

dimensions, and let K̃0
t and K̃1

t be the fundamental solutions for the wave equation
in d+ 1 dimensions. Establish the distributional identities

Kj
t (x1, . . . , xn) =

∫
R

K̃j
t (x1, . . . , xn, xd+1)eimxd+1 dxd+1

for j = 0, 1. (Hint: use Exercise 2.10). In principle, this gives an explicit description
of the fundamental solution of the Klein-Gordon equation, although it is somewhat
unwieldy to work with in practice.

2.3. Dispersion and Strichartz estimates

Like as the waves make towards the pebbled shore, so do our minutes
hasten to their end. (William Shakespeare, Sonnet 60)

In order to be able to perturb linear dispersive equations such as (2.1) to
nonlinear dispersive equations, it is crucial that we have some efficient ways to
control the size of solutions to the linear problem in terms of the size of the initial
datum (or of the forcing term, if one exists). Of course, to do this, one has to
quantify the notion of “size” by specifying a suitable function space norm. It turns
out for semilinear equations such as NLS and NLW, the mixed Lebesgue norms
LqtL

r
x(I × Rd), and more generally the mixed Sobolev norms LqtW

s,r
x (I × Rd), are

particularly useful13.
To make the discussion more concrete, let us consider the Schrödinger equation

(2.3) in Rd with � = m = 1, so the propagator operator is simply14 eit∆/2. We first
ask what fixed-time estimates are available: if we fix a time t �= 0, and we know
the initial datum u0 lies in some Sobolev space, what do we learn about the size of
the solution u(t) = eit∆/2u0? To avoid technicalities let us take the solution to be
Schwartz; the general case can usually be handled by limiting arguments.

Since eit∆/2 is unitary, we obtain the L2
x conservation law

(2.21) ‖eit∆/2u0‖L2
x(Rd) = ‖u0‖L2

x(Rd)

13There are also Besov refinements of the Strichartz spaces which convey slightly more precise
information on the distribution of the solution among low, medium, and high frequencies, as well
as Lorentz refinements that extend a little more control over the distribution of large and small
values in physical space, but this is a more technical topic which we will skip lightly over here.

14The factor of 1/2 in the exponent is not particularly important, and all the estimates in
this section hold if it is omitted; we retain it for compatibility with other sections of the book.
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and then (since eit∆/2 commutes with other Fourier multipliers)

‖eit∆/2u0‖Hs
x(Rd) = ‖u0‖Hs

x(Rd);

one can also obtain this from Plancherel’s identity. From the fundamental solution
(2.18) and the triangle inequality we also have the dispersive inequality

(2.22) ‖eit∆/2u0‖L∞
x (Rd) �d t

−d/2‖u0‖L1
x(Rd).

This shows that if the initial datum u0 has suitable integrability in space, then
the evolution will have a power-type decay in time; the L2

x mass of the solution
is conserved, but is dispersed over an increasingly larger region as time progresses
(see Exercise 2.32). We can interpolate this (see e.g. [Sad]; one can also modify
the arguments from Exercise A.5) with (2.21) to obtain the further estimate

(2.23) ‖eit∆/2u0‖Lp′
x (Rd)

�d t
−d( 1

p− 1
2 )‖u0‖Lp

x(Rd)

for all 1 ≤ p ≤ 2, where p′ is the dual exponent of p, defined by the formula
1
p + 1

p′ = 1. These are the complete range of Lpx to Lqx fixed-time estimates available
(see Exercise 2.33). In particular, the Schrödinger flow does not preserve any Lpx
norm other than the L2

x norm. We can insert fractional differentiation operators as
before and conclude

‖eit∆/2u0‖W s,p′
x (Rd)

�d t
−d( 1

p− 1
2 )‖u0‖W s,p

x (Rd)

for all s ∈ R. By using Sobolev embedding, one can trade some of the regularity
on the left-hand side for integrability, however one cannot hope for any sort of
smoothing effect that achieves more regularity on the left-hand side than on the
left (see Exercise 2.34). This is in contrast with the smoothing effects of dissipative
propagators such as the heat kernels et∆.

These decay estimates are useful in the long-time asymptotic theory of nonlin-
ear Schrödinger equations, especially when the dimension d is large and the initial
datum u0 has good integrability properties. However in many situations, the initial
data is only assumed to lie in an L2

x Sobolev space such as Hs
x(R

d). Fortunately,
by combining the above dispersive estimates with some duality arguments, one can
obtain an extremely useful set of estimates, known as Strichartz estimates, which
can handle this type of data:

Theorem 2.3 (Strichartz estimates for Schrödinger). [GV], [Yaj], [KTao] Fix
n ≥ 1 and � = m = 1, and call a pair (q, r) of exponents admissible if 2 ≤ q, r ≤ ∞,
2
q + d

r = d
2 and (q, r, d) �= (2,∞, 2). Then for any admissible exponents (q, r) and

(q̃, r̃) we have the homogeneous Strichartz estimate

(2.24) ‖eit∆/2u0‖Lq
tL

r
x(R×Rd) �d,q,r ‖u0‖L2

x(Rd)

the dual homogeneous Strichartz estimate

(2.25) ‖
∫
R

e−is∆/2F (s) ds‖L2
x(Rd) �d,q̃,r̃ ‖F‖Lq̃′

t L
r̃′
x (R×Rd)

and the inhomogeneous (or retarded) Strichartz estimate

(2.26) ‖
∫
t′<t

ei(t−t
′)∆/2F (t′) ds‖Lq

tL
r
x(Rd) �d,q,r,q̃,r̃ ‖F‖Lq̃′

t L
r̃′
x (R×Rd)
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The non-endpoint version of this theorem (when q, q̃ �= 2) had been established
in [GV], [Yaj], and of course the original work of Strichartz [Stri] (which in turn
had precursors in [Seg3], [Tomas]). The more delicate endpoint cases are treated
in [KTao]. The estimates are known to fail in a number of ways at the endpoint
(q, r, d) = (2,∞, 2), see [Mon], although the homogeneous estimate can be salvaged
if one assumes spherical symmetry [Stef], [Tao2], [MNNO]. As before, one can
take advantage of the commutativity of eit∆ with other Fourier multipliers to insert
derivatives into the above estimate. The exponents in the homogeneous estimates
are best possible (Exercise 2.40), but some additional estimates are available in the
inhomogeneous case [Kat8], [Fos].

Because the Schrödinger evolution commutes with Fourier multipliers such as
|∇|s or 〈∇〉s, it is easy to convert the above statements into ones at regularities
Hs
x(R

d) or Ḣs
x(R

d). In particular, if u : I ×Rd → C is the solution to an inhomo-
geneous Schrödinger equation

i∂tu+
1
2
∆u = F ; u(0) = u0 ∈ Hs

x(R
d),

given by Duhamel’s formula (2.13) on some time interval I containing 0, then by
applying 〈∇〉s to both sides and using the above theorem, we obtain the estimates

‖u‖Lq
tW

s,r
x (I×Rd) �d,q,q̃,r̃,s ‖u0‖Hs

x(Rd) + ‖F‖
Lq̃′

t W
s,r̃′
x (I×Rd)

for any admissible (q, r) and (q̃, r̃), though one has to take some care with the
endpoint r̃ = ∞ because of issues with defining Sobolev spaces there. Similarly if
we replace the Sobolev spaces Hs

x, W
s,r
x , W s,r̃

x by their homogeneous counterparts
Ḣs
x, Ẇ

s,r
x , Ẇ s,r̃

x . One can also use Sobolev embedding and (if I is bounded) Hölder’s
inequality in time to increase the family of exponents for which Strichartz estimates
are available; see Figure 1 for some examples.

We shall give a proof of this non-endpoint cases of this theorem shortly, but we
first give an abstract lemma, the Christ-Kiselev lemma [CKis] which is very useful
in establishing retarded Strichartz estimates. A proof of the lemma as formulated
here can be found in [SSog] or [Tao2].

Lemma 2.4 (Christ-Kiselev lemma). Let X,Y be Banach spaces, let I be a time
interval, and let K ∈ C0(I×I → B(X → Y )) be a kernel taking values in the space
of bounded operators from X to Y . Suppose that 1 ≤ p < q ≤ ∞ is such that

‖
∫
I

K(t, s)f(s) ds‖Lq
t (I→Y ) ≤ A‖f‖Lp

t (I→X)

for all f ∈ Lpt (I → X) and some A > 0. Then one also has

‖
∫
s∈I:s<t

K(t, s)f(s) ds‖Lq
t (I→Y ) �p,q A‖f‖Lp

t (I→X).

The principle that motivates this lemma is that if an operator is known to
be bounded from one space to another, then any reasonable “localisation” of that
operator (in this case, to the causal region s < t of time interactions) should also
be bounded. The hypothesis that p < q is unfortunately necessary; see Exercise
2.38.

We can now prove the non-endpoint cases of the Strichartz estimate.

Partial proof of Theorem 2.3. We shall only prove the non-endpoint cases
when q, q′ �= 2, which can be established by the TT ∗ method (as was carried out for
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1/r
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D’

B
1

B

A

Figure 1. The Strichartz “game board” for Schrödinger equations
in Ḣ1

x(R
3). The exponent pairs are A = L∞

t L
2
x, B = L10

t L
30/13
x ,

D = L2
tL

6
x, A1 = L∞

t L
6
x, B1 = L10

t,x, C1 = L4
tL

∞
x , A′ = L1

tL
2
x,

D′ = L2
tL

6/5
x . If the initial datum u0 lies in Ḣ1

x(R
3), and one

derivative of the forcing term F lies in a space the closed interval
between A′ and D′, then one derivative of the solution u lies in
every space in the closed interval between A and D. Endpoint
Sobolev embedding can then “move left”, place the solution it-
self in any space between A1 and C1 (though the endpoint C1

requires a Besov modification to the Strichartz spaces due to fail-
ure of endpoint Sobolev embedding; see [CKSTT11]). If I is
bounded, Hölder in time can also “move up”, lowering the r index
to gain a power of |I|. If one is working with H1

x instead of Ḣ1
x

(or is restricting to high frequencies), then non-endpoint Sobolev
embedding is also available, allowing one to enter the pentagonal
region between AD and A1C1. If one restricts to low frequencies,
then Bernstein’s inequality (A.5) can move further to the left than
A1C1.

the closely related restriction problem in harmonic analysis in [Tomas]). Let (q, r)
be admissible. Applying Minkowski’s inequality, (2.23) and the Hardy-Littlewood-
Sobolev theorem of fractional integration (see (A.10)), we conclude that

‖
∫
R

ei(t−s)∆/2F (s) ds‖Lq
tL

r
x(R×Rd) ≤ ‖

∫
R

‖ei(t−s)∆/2F (s)‖Lr
x(Rd) ds‖Lq

t (R)

�d,r ‖‖F‖Lr′
x (Rd) ∗

1
|t|d( 1

2− 1
r )
‖Lq

t (R)

�d,q,r ‖F‖Lq′
t L

r′
x (R×Rd)
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whenever 2 < r ≤ ∞ and 2 < q ≤ ∞ are such that 2
q + d

r = d
2 , and for any Schwartz

function F in spacetime. Applying Hölder’s inequality, we conclude that

|
∫
R

∫
R

〈ei(t−s)∆/2F (s), F (t)〉 dsdt| �d,q,r ‖F‖2

Lq′
t L

r′
x (R×Rd)

,

where 〈F,G〉 =
∫
Rd F (x)G(x) dx is the usual inner product. But the left-hand side

factorises as ‖ ∫
R e

−is∆/2F (s) ds‖2
L2

x(Rd), and thus we obtain the dual homogeneous
Strichartz estimate

‖
∫
R

e−is∆/2F (s) ds‖L2
x(Rd) �d,q,r ‖F‖Lq′

t L
r′
x (R×Rd)

which is (2.25). By duality we then obtain (2.24). Composing those two estimates,
we conclude

‖
∫
R

e−is∆/2F (s) ds‖Lq
tL

r
x(Rd) �d,q,r,q̃,r̃ ‖F‖Lq̃′

t L
r̃′
x (R×Rd)

and (2.26) then follows from the Christ-Kiselev lemma. �

Strichartz estimates can be viewed in two ways. Locally in time, they describe
a type of smoothing effect, but reflected in a gain of integrability rather than
regularity (if the datum is in L2

x, the solution u(t) is in Lrx with r > 2 for most of
the time), and only if one averages in time. (For fixed time, no gain in integrability
is possible; see Exercise 2.33.) Looking globally in time, they describe a decay effect,
that the Lrx norm of a solution u(t) must decay to zero as t→ ∞, at least in some
Lqt -averaged sense. Both effects of the Strichartz estimate reflect the dispersive
nature of the Schrödinger equation (i.e. that different frequencies propagate in
different directions); it is easy to verify that no such estimates are available for the
dispersionless transport equation (2.2), except with the trivial pair of exponents
(q, r) = (∞, 2).

Remark 2.5. Readers who are familiar with the uncertainty principle (Prin-
ciple A.1) can interpret the Strichartz estimates for the homogeneous Schrödinger
equation as follows. Consider a solution u to the homogeneous Schrödinger equa-
tion with L2

x norm O(1), and with frequency ∼ N (i.e. the Fourier transform is
supported in the region |ξ| ∼ N), for each time t. The uncertainty principle shows
that at any given time t, the most that the solution u(t) can concentrate in physical
space is in a ball of radius ∼ 1/N ; the L2

x normalisation then shows the solution can
be as large as Nd/2 on this ball. However, the Strichartz estimates show (roughly
speaking) that such a strong concentration effect can only persist for a set of times
of measure ∼ 1/N2; outside of this set, the solution must disperse in physical space
(compare with Proposition A.4). Note that this is also very consistent with Prin-
ciple 2.1, since concentration in a ball of radius 1/N would induce the frequency
uncertainty of ∼ N , hence a velocity uncertainty of ∼ N , which should disperse
the ball after time ∼ 1/N2.

Similar Strichartz estimates can be established for any linear evolution equation
which enjoys a dispersive estimate, such as the Airy equation. The wave equation
also obeys a dispersive inequality, see (2.19), (2.20), but the presence of the regular-
izing factor φλ means that one requires some more harmonic analysis (in particular,
some Littlewood-Paley theory and the theory of complex analytic interpolation) in



2.3. DISPERSION AND STRICHARTZ ESTIMATES 75

order to utilise this estimate properly. Nevertheless, it is still possible to establish
suitable Strichartz estimates for the wave equation. Indeed, we have

Theorem 2.6 (Strichartz estimates for wave equation). Let I be a time interval,
and let u : I × Rd → C be a Schwartz solution to the wave equation �u = F with
c = 1, and with initial data u(t0) = u0, ∂tu(t0) = u1 for some t0 ∈ I. Then we
have the estimates

‖u‖Lq
tL

r
x(I×Rd) + ‖u‖C0

t Ḣ
s
x(I×Rd) + ‖∂tu‖C0

t Ḣ
s−1
x (I×Rd)

�q,r,s,n

(
‖u0‖Ḣs

x(Rd) + ‖u1‖Ḣs−1
x (Rd) + ‖F‖

Lq̃′
t L

r̃′
x (I×Rd)

)
whenever s ≥ 0, 2 ≤ q, q̃ ≤ ∞ and 2 ≤ r, r̃ <∞ obey the scaling condition

(2.27)
1
q

+
d

r
=
d

2
− s =

1
q̃′

+
d

r̃′
− 2

and the wave admissibility conditions

1
q

+
d− 1
2r

,
1
q̃

+
d− 1
2r′

≤ d− 1
4

.

For a proof of this theorem, see [Kat8], [GV2], [Kap], [LSog], [Sog], [SStru2],
[KTao]. Again, the exponents are sharp for the homogeneous version of these
estimates (i.e. with F = 0; see Exercise 2.41) but not the inhomogeneous; see [Har],
[Obe], [Fos] for some inhomogeneous estimates not covered by the above theorem.
The endpoint case r = ∞ contains a number of subtleties, see [FW] for some
discussion. As with the Schrödinger equation, the Strichartz estimates for the wave
equation encode both local smoothing properties of the equation (the estimates
obtained from Strichartz lose fewer derivatives than the fixed-time estimates one
would get from Sobolev embedding), as well as global decay estimates, though
when the wave equation compared against the Schrödinger equation in the same
dimension, the estimates are somewhat inferior; this is due to the weaker dispersion
in the wave equation (different frequencies move in different directions, but not in
different speeds), the finite speed of propagation, and the concentration of solutions
along light cones. This estimate only controls the homogeneous Sobolev norm, but
the lower order term in the inhomogeneous Sobolev norm can often be obtained by
an integration in time argument.

An important special case of the wave equation Strichartz estimates is the
energy estimate
(2.28)
‖∇u‖C0

tH
s−1
x (I×Rd)+‖∂tu‖C0

tH
s−1
x (I×Rd) � ‖∇xu0‖Hs−1

x (Rd)+‖u1‖Hs−1
x (Rd)+‖F‖L1

tH
s−1
x (I×Rd)

which can also be proven by other means, for instance via the Fourier transform
(Exercise 2.43), or by using the stress energy tensor (see Exercise 2.57). This
estimate has the useful feature of gaining a full degree of regularity; the forcing
term F is only assumed to have s− 1 degrees of regularity, but the final solution u
has s degrees of regularity. One also has the useful variant
(2.29)
‖u‖C0

tH
s
x(I×Rd)+‖∂tu‖C0

tH
s−1
x (I×Rd) �s 〈|I|〉(‖u0‖Hs

x(Rd)+‖u1‖Hs−1
x (Rd)+‖F‖L1

tH
s−1
x (I×Rd)).

The other Strichartz estimates gain fewer than one full degree of regularity, but
compensates for this by improving the time and space integrability. One specific
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Figure 2. The Strichartz “game board” for wave equations in
Ḣ1
x(R

3). The exponent pairs are A = L∞
t L

2
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tL
∞
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L∞
t L

6
x, F1 = L4

tL
12
x , A′ = L1

tL
2
x, E

′ = L2
tL

1
x, A

′
1 = L1

tL
6/5
x . If

the initial data (u0, u1) lies in Ḣ1
x(R3) × L2

x(R3), and a suitable
derivative of the forcing term F on a space between A′ and E′

(excluding E′), then a certain derivative of u lies in every space
between A and E (excluding E), and so by Sobolev u itself lies in
every space between A1 and E (excluding E). At the endpoint A′,
no derivatives on F are required. Also by Sobolev embedding, it
would have sufficed to place ∇F in any space between A′

1 and E
(excluding E). Other moves, similar to those discussed in Figure
1, are available.

Strichartz estimate of interest (and one which was discovered in the original paper
[Stri]) is the conformal Strichartz estimate for the wave equation
(2.30)
‖u‖

L
2(d+1)/(d−1)
t,x (R×Rd)

�d ‖u(0)‖
Ḣ

1/2
x (Rd)

+‖∂tu(0)‖
Ḣ

−1/2
x (Rd)

+‖�u‖
L

2(d+1)/(d+3)
t,x (R×Rd)

,

valid for d ≥ 2.
Strichartz estimates also exist for the Klein-Gordon equation but are more

difficult to state. See [MSW], [Nak4], [MN]; for short times one can just rely
on the wave equation Strichartz estimates (treating the lower order mass term as a
perturbation), while for long times it is easiest to proceed by treating the relativistic
and non-relativistic regimes separately. Some Strichartz estimates are also known
in periodic settings, but primarily of L4

tL
4
x or L6

tL
6
x type, and are proven using the

spacetime Fourier transform, as one cannot exploit dispersion in these settings (as
one can already see by considering plane wave solutions). See Section 2.6. More
generally, Strichartz estimates are closely related to restriction estimates for the
Fourier transform; see [Tao11] for a survey of the restriction phenomenon, which
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has been used to obtain a number of refinements (such as bilinear refinements) to
the Strichartz inequalities.

Exercise 2.32 (Asymptotic Lpx behaviour of Schrödinger). Let u0 ∈ Sx(Rd)
be a non-zero Schwartz function whose Fourier transform û0(ξ) is supported in the
ball |ξ| ≤ 1. Show that we have the estimate |eit∆u0(x)| �N,u0 〈t〉−N for all times
t, all N > 0, and all x such that |x| ≥ 5t. (Hint: use the Fourier representation
of eit∆u0(x), followed by repeated integration by parts in the x direction.) In
the region |x| < 5t, obtain the estimate |eit∆u0(t)| �u0 〈t〉−d/2. Conclude that
‖eit∆u0‖Lp

x(Rd) ∼d,u0,p 〈t〉n( 1
p− 1

2 ) for all 1 ≤ p ≤ ∞. (Hint: first establish this for
p = 2, obtain the upper bound for all p, and then use Hölder’s inequality to obtain
the lower bound.)

Exercise 2.33 (Necessary conditions for fixed-time Schrödinger). Suppose 1 ≤
p, q ≤ ∞ and α ∈ R are such that the fixed-time estimate

‖eit∆/2u0‖Lq
x(Rd) ≤ Ctα‖u0‖Lp

x(Rd)

for all u0 ∈ Sx(Rd) and t �= 0, and some C independent of t and u0. Using
scaling arguments, conclude that α = d

2 (1
q − 1

p ). Using (2.32) (and time translation
invariance), conclude that q ≥ p and q = p′ (and thus 1 ≤ p ≤ 2). In particular the
Schrödinger operators are not bounded on any Lpx(R

d) space except when p = 2.
Indeed, a good rule of thumb is that dispersive evolution operators only preserve
“L2

x-based” spaces and no others (with the notable exception of the one-dimensional
wave evolution operators, which are not dispersive).

Exercise 2.34 (Schrödinger Strichartz cannot gain regularity). Using Galilean
invariance (Exercise 2.5), show that no estimate of the form

‖ei∆/2u0‖W s2,q
x (Rd) ≤ C‖u0‖W s1,p

x (Rd)

or
‖eit∆/2u0‖Lq

tW
s2,r
x ([0,1]×Rd) ≤ C‖u0‖W s1,p

x (Rd)

can hold with C independent of u0, unless s2 ≤ s1.

Exercise 2.35 (Decay of finite energy Schrödinger solutions). Show that the
admissible space L∞

t L
2
x which appears in Theorem 2.3 can be replaced by the

slightly smaller space C0
t L

2
x. Similarly, if u0 ∈ H1

x(R
3) and u : R × R3 → C

is the solution to the Schrödinger equation, show that limt→±∞ ‖u(t)‖Lp
x(R3) for

2 < p ≤ 6 and that

lim
t→±∞ ‖〈x〉−εu(t)‖L2

x
+ ‖〈x〉−ε∇u(t)‖L2

x
= 0

for any ε > 0 (see [Tao8] for an application of these estimates to nonlinear
Schrödinger equations).

Exercise 2.36 (Pseudoconformal invariance of Strichartz). (Pieter Blue, pri-
vate communication) Show that if q, r are Schrödinger-admissible exponents, then
the space LqtL

r
x(R × Rd) is preserved under the pseudoconformal transformation

(Exercise 2.26). Conclude that Theorem 2.3 is invariant under the pseudocon-
formal transformation. (It is also invariant under space and time translations,
homogeneity, scaling, phase rotation, time reflection, spatial rotation and Galilean
transformations.)
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Exercise 2.37 (Conformal invariance of Strichartz). Show that the conformal
Strichartz estimate (2.30) is invariant under space and time translations, homogene-
ity, scaling, phase rotation, time reflection, spatial rotation, Lorentz transformation
(Exercise 2.6), and conformal inversion (Exercise 2.14).

Exercise 2.38. Show that Lemma 2.4 fails at the endpoint p = q, even when
X and Y are scalar. (Hint: take p = q = 2 and consider truncated versions of the
Hilbert transform Hf(t) = p.v.

∫ f(s)
t−s ds.)

Exercise 2.39. Using Exercise 2.28, establish some Strichartz estimates for
the Airy equation. (As it turns out, when it comes to controlling equations of
Korteweg-de Vries type, these estimates are not as strong as some other estimates
for the Airy equation such as local smoothing and Xs,b estimates, which we shall
discuss later in this chapter.)

Exercise 2.40. Using the scale invariance from Exercise 2.9, show that the
condition 2

q + d
r = d

2 is necessary in order for (2.24). Next, by superimposing
multiple time-translated copies of a single solution together (thus replacing u(t, x)
by

∑N
j=1 u(t − tj , x) for some widely separated times t1, . . . , tN ) show that the

condition q ≥ 2 is also necessary. (The double endpoint (q, r, d) = (2,∞, 2) is
harder to rule out, and requires a counterexample constructed using Brownian
motion; see [Mon]). Note that similar arguments will establish the necessity of
(2.27), as well as the requirements q, q̃ ≥ 2 in Theorem 2.6.

Exercise 2.41 (Knapp example). Consider the solution u : R1+d → C to the
wave equation with c = 1 given by

u(t, x) :=
∫

1≤ξ1≤2;|ξ2|,...,|ξn|≤ε
eix·ξeit|ξ| dξ

where 0 < ε < 1 is a small number. Show that u(t, x) is comparable in magnitude
to εd−1 whenever |t| � 1/ε, |x1 − t| � ε and |x2|, . . . , |xn| � 1. Use this to
conclude that the condition 1

q + d−1
2r ≤ d−1

4 in Theorem 2.6. One can also obtain
essentially the same example by starting with a bump function initial datum, and
applying a Lorentz transform (see Exercise 2.6) with velocity v := (1 − ε2)e1; the
strange rectangular region of spacetime obtained above is then explainable using
the familiar phenomena of time dilation and length contraction in special relativity.

Exercise 2.42 (Stein example). Let 1/2 < α ≤ 1, and let g ∈ L2
x(R

3) be the
function

g(x) :=
1B(2e3,2)\B(e3,1)(x)

|x|2〈log |x|〉α ,

where e3 is the third unit vector of R3 and B(x, r) denotes the ball of radius r
centred at x. Show that ‖g‖L2

x(R3) = Oα(1), but that the solution u(t) := sin(t
√−∆√−∆

g

to the homogeneous wave equation with initial position 0 and initial velocity g obeys
u(te3, t) = ∞ for all 1 ≤ t ≤ 2. (Hint: use Exercise 2.29.) In particular, Theorem
2.6 fails at the endpoint (q, r) = (2,∞), a fact first observed (with a more indirect
proof) in [KM].

Exercise 2.43. Prove the energy estimate (2.28) using (2.14), the Fourier
transform, and Minkowski’s inequality. Note that the implied constant in the �
notation is absolute (not depending on s or d). Then deduce (2.29).
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Exercise 2.44 (Besov version of Strichartz estimates). Let PN be the Littlewood-
Paley multipliers, as defined in Appendix A. By means of complex interpolation,
establish the inequalities

‖u‖Lq
tL

r
x(I×Rd) �q,r (

∑
N

‖PNu‖2
Lq

tL
r
x(I×Rd))

1/2

whenever 2 ≤ q, r ≤ ∞ (so in particular whenever q, r are admissible exponents for
Strichartz estimates), as well as the “dual” estimate

(
∑
N

‖PNF‖2

Lq′
t L

r′
x (I×Rd)

)1/2 �q,r ‖F‖Lq′
t L

r′
x (I×Rd)

for the same range of q, r. (Note that to apply interpolation properly for the first
inequality, you will need to write u as an appropriate linear operator applied to
the functions uN = PNu.) By exploiting the fact that PN commutes with the
Schrödinger operator i∂t + ∆, establish the estimate

(
∑
N

‖PNeit∆/2u0‖2
Lq

tL
r
x(R×Rd))

1/2 �d,q,r ‖u0‖L2
x(Rd)

for all Schrödinger-admissible q, r. Similarly establish analogues of (2.25) and
(2.26).

2.4. Conservation laws for the Schrödinger equation

Knowledge about life is one thing; effective occupation of a place
in life, with its dynamic currents passing through your being, is
another. (William James, “The Varieties of Religious Experience”)

In Hamiltonian ODE, one often encounters conserved quantities E(t) of the flow
such as energy, momentum, mass, and so forth. One has similar conserved quan-
tities in Hamiltonian PDE, but they come with additional structure. Namely, the
typical conserved quantity E(t) that one encounters is not just a scalar quantity, but
is also an integral of some density e0(t, x), thus for instance E(t) =

∫
Rd e0(t, x) dx.

The conservation of E(t) can then be manifested in a more local form by the point-
wise conservation law15

(2.31) ∂te0(t, x) + ∂xjej(t, x) = 0

for some vector-valued16 quantity ej , which is thus the current associated to the
density e0. The conservation of E then follows (formally, at least) by integrating
the continuity equation in space and using the divergence theorem (assuming some
suitable spatial decay on the current, of course). Thus in PDE, conservation laws
come in both integral and differential forms. The differential form of the conserva-
tion law is significantly more flexible and powerful than the integral formulation, as
it can be localised to any given region of spacetime by integrating against a suitable
cutoff function (or contracting against a suitable vector field). Of course, when one
does so, one may no longer get a perfectly conserved quantity, but one often obtains
a quantity which is almost conserved (the derivative in time is small or somehow
“lower order”) or perhaps monotone. Thus from a single conservation law one can

15Roman indices such as j and k will be summed over the spatial indices 1, . . . , d in the usual
manner; Greek indices such as α and β will be summed over 0, . . . , d.

16In some cases E and e0 are themselves vector-valued instead of scalar, in which case ej

will be tensor-valued.
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generate a variety of useful estimates, which can serve to constrain the direction of
propagation of a solution, or at least of various components of that solution (e.g.
the high frequency components).

These conservation laws are particularly useful for controlling the long-time
dispersive behaviour, or short-time smoothing behaviour, of nonlinear PDE, but
to illustrate the concepts let us just work first with the linear analogues of these
PDE. To make the discussion concrete, we focus on the Schrödinger equation (2.3)
with � = m = 1, thus

(2.32) i∂tu+
1
2
∆u = 0;

to avoid technicalities we consider only smooth solutions u ∈ C∞
t Sx(Rd). In prac-

tice one can usually extend the estimates here to rougher solutions by limiting
arguments or duality.

Before we discuss the differential form of the conservation laws, let us first
recall the integral form of the conservation laws and their connection (via Noether’s
theorem) to various symmetries (cf. Table 1 from Chapter 1); we will justify their
conservation later when considering the differential form of these laws, and also
more informally in Exercise 2.45 below. The symmetry of phase rotation, u(t, x) �→
eiθu(t, x), leads to the scalar conserved quantity

M(t) :=
∫
Rd

|u(t, x)|2 dx,

which is variously referred to as the total probability, charge, or mass in the lit-
erature. The symmetry of space translation, u(t, x) �→ u(t, x − x0), leads to the
vector-valued conserved quantity �p(t), defined in coordinates as

pj(t) :=
∫
Rd

Im(u(t, x)∂xju(t, x)) dx,

which is known as the total momentum. The symmetry of time translation, u(t, x) �→
u(t− t0, x), leads to the conserved quantity

E(t) :=
1
2

∫
Rd

|∇u(t, x)|2 dx,

known as the total energy or Hamiltonian. The symmetry of Galilean invariance
(Exercise 2.5) leads to the conserved quantity∫

Rd

x|u(t, x)|2 dx− t�p(t),

which is the normalised centre-of-mass. The pseudo-conformal symmetry (Exercise
2.26) does not directly lead to a conserved quantity, as it is a discrete symmetry
rather than a continuous one. However, it can be used to conjugate some of the pre-
ceding symmetries and generate new ones. The pseudo-conformal symmetry leaves
the mass invariant, as that symmetry commutes with phase rotation; it also swaps
momentum conservation with the conservation of normalised centre-of-mass, as the
pseudo-conformal symmetry intertwines spatial transation and Galilean invariance.
The energy conjugates to the pseudo-conformal energy

(2.33)
1
2
‖(x+ it∇)u(t)‖2

L2
x(Rd)
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which is also conserved. In particular, we see from the triangle inequality and
conservation of energy that

(2.34) ‖xu(t)‖L2
x(Rd) ≤ ‖xu(0)‖L2

x(Rd) + t‖∇u(0)‖L2
x(Rd),

which is an estimate establishing a kind of approximate finite speed of propagation
result for finite energy solutions. See also Exercise 2.47.

Now we analyze the local versions of these conserved quantities. It is convenient
to introduce the pseudo-stress-energy tensor Tαβ , defined for α, β = 0, 1, . . . , n and
on the spacetime R × Rd by

T00 = |u|2
T0j = Tj0 = Im(u∂xju)

Tjk = Re(∂xju∂xk
u) − 1

4
δjk∆(|u|2)

for all j, k = 1, . . . , d, where δjk is the Kronecker delta (thus it equals 1 when j = k
and zero otherwise). A direct computation using (2.32) then verifies (for smooth
fields u, at least) the local conservation laws

(2.35) ∂tT00 + ∂xj T0j = 0; ∂tTj0 + ∂xk
Tjk = 0.

The quantity T00 is known as the mass density, the quantity T0j = Tj0 is known
as both the mass current and the momentum density, and the quantity Tjk is the
momentum current or stress tensor. For smooth, rapidly decreasing solutions u,
this verifies the conservation of mass and momentum asserted earlier, since

M(t) =
∫
Rd

T00(t, x) dx; pj(t) = −
∫
Rd

T0j(t, x) dx.

Conservation of energy also has a local formulation, though not one related to the
pseudo-stress-energy tensor17 Tαβ (Exercise 2.46).

By multiplying first equation in (2.35) by a smooth function a(x) of at most
polynomial growth, integrating in space, and then integrating by parts, we obtain
the identity

(2.36) ∂t

∫
Rd

a(x)|u(t, x)|2 dx =
∫
Rd

∂xja(x)Im(u(t, x)∂xju(t, x)) dx.

This identity can be used to control the local rate of change of mass by quantities
such as the energy (see Exercises 2.48, 2.49).

One can also obtain a useful identity by differentiating (2.36) in time again and
using (2.35) to obtain the useful identity

∂2
t

∫
Rd

a(x)|u(t, x)|2 dx = ∂t

∫
Rd

∂xja(x)Im(u(t, x)∂xju(t, x)) dx

= −
∫
Rd

∂xja(x)∂xk
Tjk(t, x) dx

=
∫
Rd

(∂xj∂xk
a(x))Tjk(t, x) dx

=
∫
Rd

(∂xj∂xk
a(x))Re(∂xju∂xk

u) dx− 1
4

∫
Rd

|u(t, x)|2∆2a(x) dx.

(2.37)

17See however Exercise 3.30.
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This identity has some useful consequences for various values of a. For instance,
letting a(x) = 1 we recover mass conservation, and letting a(x) = xj we recover
the conservation of normalised centre of mass. Setting a(x) = |x|2, we obtain the
virial identity

(2.38) ∂2
t

∫
Rd

|x|2|u(t, x)|2 dx = 2
∫
Rd

|∇u(t, x)|2 dx = 4E(t)

which shows that the energy controls the convexity of the quantity
∫
Rd |x|2|u(t, x)|2 dx;

compare with the classical counterpart in Example 1.31. (Actually, this identity
can easily be seen to be equivalent to the pseudo-conformal conservation law after
using mass and momentum conservation.) Setting18 a(x) = |x|, we obtain
(2.39)

∂t

∫
Rd

Im(u(t, x)
x

|x| ·∇u(t, x)) dx =
∫
Rd

(∂xj∂xk
a(x))Re(∂xju∂xk

u) dx−1
4

∫
Rd

|u(t, x)|2∆2a(x) dx.

Now observe that

(∂xj∂xk
a(x))Re(∂xju∂xk

u) = |∇/ u|2/|x|,
where |∇/ u|2 := |∇u|2 − | x|x| · ∇u|2 is the angular component of the gradient. If we
specialise to three dimensions, we also have ∆2a = −4πδ. If we integrate in time,
we thus obtain the Morawetz identity

∫ T

−T

∫
R3

|∇/ u(t, x)|2
|x| dxdt + 4π

∫ T

−T
|u(t, 0)|2 dt

=
∫
R3

Im(u(T, x)
x

|x| · ∇u(T, x)) dx−
∫
R3

Im(u(−T, x) x|x| · ∇u(−T, x)) dx

(2.40)

for any time T > 0. Using Lemma A.10, and observing (using the Fourier trans-
form) that ‖u(±T )‖

Ḣ
1/2
x (R3)

= ‖u(0)‖
Ḣ

1/2
x (R3)

, we conclude the Morawetz estimate

(2.41)
∫
R

∫
R3

|∇/ u(t, x)|2
|x| dxdt+

∫
R

|u(t, 0)|2 dt � ‖u(0)‖2

Ḣ
1/2
x (R3)

.

This estimate can be thought of as a variant of a Strichartz estimate, obtaining
some smoothing and decay near the spatial origin x = 0; it should be compared
with Example 1.32. It has a significant advantage over the Strichartz estimate, in
that it extends with only minor modification to the case of defocusing nonlinear
Schrödinger equations; see Section 3.5, in which we also discuss an interaction
version of the above estimate. One can also extend this three-dimensional estimate
to higher dimensions. For lower dimensions there are some additional subtleties;
see [Nak2].

Exercise 2.45. Let us formally consider L2
x(R

d → C) as a symplectic phase
space with symplectic form ω(u, v) = −2

∫
Rd Im(u(x)v(x)) dx. Show that the

Schrödinger equation (2.3) with � = m = 1 is then the formal Hamiltonian flow
associated to the (densely defined) Hamiltonian H(u) := 1

2

∫
Rd |∇u|2 dx. Also use

this flow to formally connect the symmetries and conserved quantities mentioned
in this section via Noether’s theorem (ignoring irrelevant constants such as factors

18Strictly speaking, (2.37) does not directly apply here because a is not smooth, but this can
be fixed by a regularisation argument; see Exercise 2.55.
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of 2). See [Kuk3] for a more rigorous treatment of this infinite-dimensional Hamil-
tonian perspective, and [SSul] for a Lagrangian perspective of the material in this
section.

Exercise 2.46. Obtain a local conservation law (2.31) for the energy density
e0 = 1

2 |∇u|2 for the Schrödinger equation.

Exercise 2.47. Let u ∈ C∞
t Sx(R×Rd) be a smooth solution to the Schrödinger

equation (2.32) with � = m = 1. By using mass conservation and the pseudo-
conformal conservation law, establish the bound

‖∇u(t)‖L2
x(BR) �d

〈R〉
|t| ‖〈x〉u(0)‖L2

x(Rd)

for all t �= 0 and R > 0, where BR := {x ∈ Rd : |x| ≤ R} is the spatial ball of radius
R. This shows that localisation of initial data leads to a local gain of regularity
(by a full derivative, in this case) at later times, together with some local decay in
time.

Exercise 2.48 (Local near-conservation of mass). Let u ∈ C∞
t Sx(R×Rd) be

a smooth solution to the Schrödinger equation (2.32) with � = m = 1, and with
energy E = 1

2‖∇u(0)‖2
L2

x(Rd). Show that for any R > 0 and t �= 0 we have

(
∫
|x|≤R

|u(t, x)|2 dx)1/2 ≤ (
∫
|x|≤2R

|u(0, x)|2 dx)1/2 +
CE1/2|t|

R
.

(Hint: apply (2.36) with a(x) = φ2(x/R), where φ is a bump function adapted
to the ball of radius 2 which equals 1 on the ball of radius 1.) This estimate
is particularly useful (and the generalisation in Exercise 2.49 below) is especially
useful for the energy-critical nonlinear Schrödinger equation, as the error term of
CE1/2|t|

R depends only on the energy of u and not on other quantities such as the
mass; see [Gri5], [Bou7], [Bou9], [Tao9] for some applications of this estimate.

Exercise 2.49 (Local near-conservation of mass, II). [Bou7], [Bou9] Let the
notation and assumptions be as in Exercise 2.48. Prove the more general inequality

(
∫
|x|≤R

|u(t, x)|2 dx)1/2 ≤ (
∫
|x|≤2nR

|u(0, x)|2 dx)1/2 +
CE1/2|t|
Rn1/2

for any integer n ≥ 1; this improves the error term at the cost of enlarging the ball
in the main term. (Hint: We may use time reversal symmetry to take t > 0. Use
conservation of energy and the pigeonhole principle to locate an integer 1 ≤ j ≤ n

such that
∫ t
0

∫
2jR≤|x|≤2j+1R |∇u(t, x)|2 dxdt � t/n. Then apply the argument used

to establish Exercise 2.48, but with R replaced by 2jR.) This example shows that
one can sometimes exploit the pigeonhole principle to ameliorate “boundary effects”
caused by cutoff functions; for another instance of this idea, see [CKSTT11].

Exercise 2.50 (Weighted Sobolev spaces). For any integer k ≥ 0, define the
weighted Sobolev space Hk,k

x (Rd) be the closure of the Schwartz functions under
the norm

‖u‖Hk,k
x (Rd) :=

k∑
j=0

‖〈x〉ju‖Hk−j
x (Rd).
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Establish the estimate

‖eit∆/2f‖Hk,k
x (Rd) �k,d 〈t〉k‖f‖Hk,k

x (Rd)

for all Schwartz f , either using the Fourier transform or by using mass conser-
vation laws (and higher order variants of these laws, exploiting the fact that the
Schrödinger equation commutes with derivatives). (Hint: it may help to first work
out the k = 1 case.)

Exercise 2.51 (Local smoothing for Schrödinger). [Sjo],[Veg],[CS] Let u ∈
C∞
t Sx(R × R3) be a smooth solution to the Schrödinger equation (2.32) with � =

m = 1. Establish the homogeneous local smoothing estimate∫
R

∫
R3

〈x〉−1−ε|∇u(t, x)|2 + 〈x〉−3−ε|u(t, x)|2 dxdt �ε ‖u(0, x)‖2

Ḣ
1/2
x (R3)

for all ε > 0. (Hint: One can take ε to be small. Then adapt the Morawetz
argument in the text with a(x) := 〈x〉 − ε〈x〉1−ε.) This shows a local gain of half a
derivative for the homogeneous Schrödinger equation. Give an informal explanation
as to why this estimate is consistent with the Heisenberg law v = ξ that arises from
Principle 2.1; compare it also with Example 1.33.

Exercise 2.52 (Local smoothing for Schrödinger, II). Let u ∈ C∞
t Sx(R×R3)

be a smooth solution to the inhomogeneous Schrödinger equation

i∂tu+ ∆u = F.

Establish the dual local smoothing estimate

sup
t∈R

‖u(t)‖
Ḣ

1/2
x (R3)

�ε ‖u(0)‖
Ḣ

1/2
x (R3)

+
∫
R

∫
R3

〈x〉1+ε|F (t, x)|2 dxdt

for any ε > 0. (Hint: use Exercise 2.51 and Duhamel’s formula.) Then establish
the retarded local smoothing estimate∫

R

∫
R3

〈x〉−1−ε|∇u(t, x)|2 + 〈x〉−3−ε|u(t, x)|2 dxdt

�ε ‖u(0, x)‖2

Ḣ
1/2
x (R3)

+
∫
R

∫
R3

〈x〉1+ε|F (t, x)|2 dxdt.

(Hint: use the same argument19 as in Exercise 2.51. An additional interaction term
between u and F will appear, and can be controlled using Cauchy-Schwarz.) This
shows a local gain of a full derivative for the in homogeneous Schrödinger equation.

Exercise 2.53 (Local smoothing for Airy equation). [Kat2], [KF] Show that
smooth solutions u ∈ C∞

t Sx(R×R → R) to the Airy equation ∂tu+ ∂3
xu = 0 obey

the conservation law

(2.42) ∂t(u2) = −1
2
∂3
x(u

2) +
3
2
∂x(u2

x)

and use this to conclude the local smoothing estimate

(2.43)
∫ T

0

∫
|x|≤R

u2
x dxdt � T +R3

R2

∫
R

u(0, x)2 dx

for all T > 0 and R > 0. (Hint: first integrate (2.42) against the constant function
1 to establish L2

x conservation, and then integrate instead against a suitable cutoff

19We thank Jared Wunsch for pointing out this simple argument.
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function which equals 1 for x > 2R, zero for x < −2R, and increases steadily for
−R < x < R).

Exercise 2.54 (Sharp local smoothing for Airy equation). [KPV2] With the
notation as in the preceding exercise, prove the sharper estimate∫

R

ux(t, x0)2 dt �
∫
R

∫
(0, x)2 dx

for any x0 ∈ R, so that the factor T+R3

R2 in (2.43) can be replaced with R. (Hint: use
translation invariance to set x0 = 0, and use the Fourier representation of ux(t, 0),
followed by Plancherel’s theorem. Unlike (2.43), it seems difficult to establish this
estimate purely using conservation law techniques, thus suggesting some limitations
to that method.) Give an informal explanation as to why (2.43) is consistent
with the dispersion relation v = −3ξ2 that arises from Principle 2.1. What is the
analogous estimate for the one-dimensional Schrödinger equation?

Exercise 2.55. Justify the derivation of (2.39) from (2.37) (for C∞
t Sx solutions

u to the Schrödinger equation) by applying (2.37) with a(x) :=
√
ε2 + |x|2 and then

taking limits as ε→ 0. These types of regularisation arguments are quite common
in the theory of linear and nonlinear PDE, and allow one to extend the validity of
many formal computations well beyond the regularities that would be needed to
justify them classically.

2.5. The wave equation stress-energy tensor

A man must drive his energy, not be driven by it. (William Fred-
erick Book)

Having considered conservation laws for the Schrödinger equation, we turn to
the wave equation

(2.44) ∂α∂αu = F,

where we take smooth scalar fields u ∈ C∞
t Sx(R1+d → C) for simplicity. In

particular u has sufficient regularity and decay at infinity to justify all integration
by parts computations.

While it is possible to view the wave equation as a Hamiltonian system (see
Exercise 2.56), the geometry of Minkowski space suggests that one can also alter-
nately view the wave equation (and the associated conservation laws) in a more
Lorentz-invariant way; thus our perspective here will be slightly different from
that in the preceding section. Indeed, one can view the wave equation in a La-
grangian manner instead, viewing u as a formal critical point of the Lagrangian
functional 1

2

∫
R1+d ∂

αu∂αu dg. This functional is formally invariant under diffeo-
morphic changes of variable; by considering the variation of the functional along
an infinitesimal such change of variable (see Exercise 2.58) one can then construct
a stress-energy tensor Tαβ for this equation, which in this case is

(2.45) Tαβ := Re(∂αu∂βu) − 1
2
gαβRe(∂γu∂γu).
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In coordinates with the normalisation c = 1, we have

T00 = T00 =
1
2
|∂tu|2 +

1
2
|∇u|2

T0j = −T0j = −Re(∂tu∂xju)

Tjk = Tjk = Re(∂xju∂xk
u) − δjk

2
(|∇u|2 − |∂tu|2).

This tensor is real and symmetric. The quantity T00 is known as the energy den-
sity, the quantity T0j is the energy current or momentum density, and Tjk is the
momentum current or stress tensor. The similarity with the Schrödinger pseudo-
stress-energy tensor is not accidental; see Exercise 3.30.

The tensor Tαβ is clearly symmetric, and a quick computation using (2.44)
yields the divergence equation

(2.46) ∂αTαβ = Re((∂βu)F ).

Henceforth we consider the homogeneous equation F ≡ 0, so that T is divergence
free. In coordinates, we thus have

∂tT00 + ∂xjT
0j = 0; ∂tT0j + ∂xk

Tjk = 0

(compare with (2.35)). This already yields conservation of the total energy

E[u(t)] = E(t) :=
∫
Rd

T00(t, x) dx

and the total momentum

pj(t) :=
∫
Rd

T0j(t, x) dx,

assuming sufficient spatial decay of course on the solution u and its derivatives.
It turns out that these conservation laws can be nicely localised in spacetime

by exploiting the positivity property

(2.47) Tαβvαvβ ≥ 0

whenever vα is a time-like or light-like vector (so vαvα ≤ 0). Indeed from (2.45) we
have

Tαβvαvβ = (vα∂αu)2 − 1
2
(vαvα)(∂γu)(∂γu)

which is clearly non-negative in the light-like case vαvα = 0, and in the timelike
case one can check positivity by dividing the gradient ∂αu into the component
parallel to v and the component Minkowski-orthogonal to v (on which the metric
g is spacelike, hence non-negative); alternatively one can use Lorentz invariance to
reduce to the case20 v = ∂t. More generally we have Tαβvαwβ ≥ 0 whenever v, w
are time-like or light-like, and both future-oriented (see Exercise 3.41). To exploit
this positivity, we can use Stokes’ theorem to obtain the identity

(2.48)
∫

Σ1

TαβXαnβdS =
∫

Σ0

TαβXαnβdS +
∫

Σ

∂β(TαβXα)dg

for an arbitrary smooth vector field Xα, where Σ is an open region in spacetime
bounded below by a spacelike hypersurface Σ0 and above by a spacelike hypersur-
face Σ1, nβ is the positive timelike unit normal and dS is the induced measure from

20We of course equate a vector field Xα with the associated first-order differential operator
Xα∂α in the usual manner.
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the metric g (which is positive on the spacelike surfaces Σ0, Σ1); if Σ is unbounded
then of course we need to assume suitable decay hypotheses on u or X . For in-
stance, if Σ0 = {(t, x) : t = 0}, Σ1 = {(t, x) : t = t1} and X = ∂t for some arbitrary
time t1 ∈ R we obtain the conservation of energy E(t1) = E(0), while if we instead
take X = ∂xj we obtain conservation of momentum pj(t1) = pj(0). Now suppose
that T∗ > t1 > 0, and we take Σ0 to be the disk {(t, x) : t = 0, |x| ≤ T∗} and Σ1 to
be the truncated cone21

Σ1 := {(t, x) : 0 < t < t1, |x| = T∗ − t} ∪ {(t, x) : t = t1, |x| ≤ T∗ − t1}.
Setting X = ∂t, we conclude the energy flux identity

(2.49)
∫
|x|≤T∗−t1

T00(t1, x) dx+ FluxT∗ [0, t1] =
∫
|x|≤T∗

T00(0, x) dx

where FluxT∗ [t0, t1] is defined for 0 ≤ t0 < t1 < T∗ by

FluxT∗ [t0, t1] :=
∫
t0<t<t1,|x|=T∗−t

TαβXαnβdS.

Intuitively, this identity asserts that the energy at the top of the truncated cone,
plus the energy flux escaping the sides of the cone, is equal to the original energy
at the base of the cone. From (2.47) we see that FluxT∗ [0, t1] is non-negative, and
so we have the localised energy monotonicity formula∫

|x|≤T∗−t1
T00(t1, x) dx ≤

∫
|x|≤T∗

T00(0, x) dx

In particular, we conclude the finite speed of propagation property: if u solves the
wave equation, and vanishes on the ball |x| ≤ T∗ at time t = 0, then it vanishes on
the smaller ball |x| ≤ T∗ − t1 for all times 0 < t1 < T∗; this reflects the well-known
fact that solutions to wave equations cannot propagate faster than the speed of light
(which has been normalised to c = 1 here). Also, from the energy flux identity and
energy conservation we have

(2.50) FluxT∗ [0, t1] ≤ E(0);

thus if the solution has finite energy, then FluxT∗ [0, t1] is monotone increasing in
T and is also bounded. It therefore converges22 to some limit as t1 → T∗; since
FluxT∗ [t0, t1] = FluxT∗ [0, t1]−FluxT∗ [0, t0], we conclude in particular the flux decay
property

lim
t0,t1→T∗

FluxT∗ [t0, t1] = 0.

This shows that near the tip (T∗, 0) of the cone, an asymptotically vanishing amount
of energy will escape the sides of the cone. There is however still the possibility of
energy concentration, in which the energy stays inside the cone and concentrates to
the tip as t→ T∗; we shall discuss this possibility further in Section 5.1.

21Strictly speaking, Σ1 is not quite spacelike, which causes dS to degenerate to zero and nβ

to elongate to infinity. But the area form nβdS remains well defined in the limit; we omit the

standard details.
22This innocuous statement from basic real analysis - that every monotone bounded sequence

converges - is surprisingly useful in the analysis of PDE, as it allows one to convert a monotonicity

formula (say for a sequence an) into a decay estimate (for the Cauchy differences an − am). The
drawback is that the decay is qualitative only; there is no uniform control on the decay of the
an − am, although one can see that these differences cannot be too large for too many disjoint
intervals [n,m].
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To exploit (2.48) and (2.47) further, it is of interest to understand the diver-
gence23 of vector fields of the form TαβXβ. Indeed we see from (2.46) and the
symmetry of T that the vector field TαβXβ has divergence

(2.51) ∂α(TαβXβ) =
1
2
Tαβπαβ

where παβ is the deformation tensor

(2.52) παβ := ∂αXβ + ∂βXα = LXgαβ ,
where LX denotes the Lie derivative. In particular, if the vector field X is a
Killing vector field (i.e. the diffeomorphism induced by X preserves the metric),
then LXgαβ = 0 and hence TαβXβ is divergence-free. In particular, we obtain
conservation of the quantity ∫

Rd

T0βXβ(t, x) dx

For instance, the vector fields ∂t and ∂xj , which correspond to time translation and
spatial translation respectively, yield the conservation of energy and momentum
respectively. If instead we take the rotation vector field xj∂xk

− xk∂xj for some
fixed 1 ≤ j < k ≤ n, which is clearly Killing, we obtain the conservation of angular
momentum∫

Rd

xjT0k(t, x) − xkT0j(t, x) dx = Re
∫
Rd

∂tu(t, x)(xk∂xj − xj∂xk
)u(t, x) dx.

Taking instead the Lorentz vector field xj∂t + t∂xj , which is also Killing, we obtain
conservation of normalised centre-of-mass∫

Rd

xjT00(t, x) − tT0j(t, x) dx =
∫
Rd

xjT00(t, x) dx− tpj .

Thus Lorentz invariance plays the role in the wave equation that Galilean invariance
does for the Schrödinger equation.

Unfortunately, there are no further Killing vector fields for Minkowski space
(other than taking linear combinations of the ones listed above); this is the hyper-
bolic analogue of the well-known fact that the only orientation-preserving isometries
of Euclidean space (i.e. the rigid motions) are the translations and rotations, and
combinations thereof; see Exercise 2.60. However, there is a slightly larger class of
conformal Killing vector fields, where the deformation tensor παβ does not vanish,
but is instead a scalar multiple of gαβ , thus παβ = Ωgαβ for some scalar function
Ω. Inserting this and (2.45) into (2.51), and observing that gαβgαβ = (d + 1), we
conclude that for a conformal Killing field we have

∂α(TαβXβ) = −d− 1
4

ΩRe(∂γu∂γu).

Using the equation (2.44), we can rewrite this further as

∂α(TαβXβ) = −d− 1
8

Ω∂γ∂γ(|u|2),
which rearranges as

(2.53) ∂αP
α = −d− 1

8
|u|2�Ω

23We thank Markus Keel and Sergiu Klainerman for sharing some unpublished notes on this
topic, which were very helpful in preparing the material in this section.
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where Pα is the vector field

Pα := TαβXβ +
d− 1

8
(Ω∂α(|u|2) − (∂αΩ)|u|2).

This is quite close to being a conservation law; note that Pα contains terms which
are quadratic in the first derivatives of u, but the divergence of Pα only contains
terms of zeroth order in u.

To give some examples of (2.53), let us first consider the Morawetz vector field
X associated to (t2+|x|2)∂t+2txj∂xj (i.e. X0 = −(t2+|x|2) and Xj = 2txj); this is
the pullback of the time translation vector field −∂t under the conformal inversion
in Exercise 2.14. This vector field is easily verified to be conformal Killing with
Ω = 4t. Since �(4t) = 0, we thus see that the vector field

Pα := −(t2 + |x|2)Tα0 + 2txjTαj + (d− 1)tReu∂αu− d− 1
2

gα0|u|2

is divergence free. In particular we see that the conformal energy
(2.54)

Q[u[t], t] :=
∫
Rd

(t2+|x|2)T00(t, x)−2txjT0j(t, x)+(d−1)tReu∂tu(t, x)−d− 1
2

|u(t.x)|2 dx

is preserved in time, and in particular is equal to

Q[u[0], 0] =
∫
Rd

|x|2T00(t, x) − d− 1
2

|u|2(0, x) dx.

This conservation law is the analogue of the conservation of pseudo-conformal en-
ergy (2.33) for the Schrödinger equation (cf. the last part of Exercise 2.26). The
quantity Q[u[t], t] inot obviously non-negative, but it can eventually be rearranged
using the null frame vector fields L := ∂t + x

|x| · ∇x, L := ∂t − x
|x| · ∇x as

1
4

∫
Rd

|(t+ |x|)Lu + (d− 1)u|2 + |(t− |x|)Lu+ (d− 1)u|2 + 2(t2 + |x|2)|∇/ u|2 dx;

see for instance [Kla3] (for a related computation, see Exercise A.16). One thus
obtains the decay laws

‖(t+ |x|)Lu(t) + (d− 1)u(t)‖L2
x(Rd), ‖(t− |x|)Lu(t) + (d− 1)u(t)‖L2

x(Rd),

‖(t+ |x|)|∇/ u|‖L2
x(Rd) � ‖|x|∇x,tu(0)‖L2

x(Rd)

(compare with (2.34)). On one hand, these estimates are somewhat weak compared
with the decay of t−(d−1)/2 ordinarily expected for the wave equation; the decay
obtained here is more of the order of 1/t (although near the light cone one does
not obtain any decay in the L direction). On the other hand, the argument here
is extraordinarily robust and in particular extends to very rough manifolds; see
[Kla3] for some further discussion.

Another application of (2.53) arises by taking the scaling vector field xα∂α,
which is conformal Killing with Ω = 2. This shows that the vector field

(2.55) Tαβxβ +
d− 1

2
Reu∂αu

is divergence free, and thus∫
Rd

tT00 − xjT0j − d− 1
2

Reu∂tu dx
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is a conserved quantity. This particular conservation law is not of much direct use,
as the top order terms tT00 − xjT0j do not have a definite sign24. However, if one
localises this law to the cone {|x| ≤ t}, then one recovers some positivity (at least
to top order), and one can obtain a useful estimate, especially in the context of
establishing non-concentration for the semilinear wave equation. See Section 5.1.

Another use of Killing vector fields Xα (introduced by Klainerman [Kla]) lies
in the fact that they commute with the d’Lambertian �, in the sense that

�(Xα∂αu) = Xα∂α(�u)

for all smooth u. This can be seen by direct computation (using Exercise 2.60)
or by noting that the d’Lambertian is determined entirely by the metric g, and
is hence preserved by the infinitesimal diffeomorphism associated to Xα. We can
iterate this and obtain

�(K1 . . .Kku) = K1 . . .Kk�u
whenever K1, . . . ,Kk are one of the Killing first order differential operators ∂t, ∂xj ,
xj∂xk

− xk∂xj , or t∂xj + xj∂t. In particular, if u is a smooth solution to the wave
equation (2.44), then so does K1 . . .Kku. In particular we have energy conservation

E[K1 . . .Kku](t) = E[K1 . . .Kku](0).

given sufficient decay of u and its derivatives, of course.
Let us apply this to a smooth solution with initial data u(0), ∂tu(0) supported

in the ball {|x| ≤ 1}; by finite speed of propagation we then conclude that for future
times t > 0, the solution is supported in the cone {|x| ≤ 1 + t}. Then we see that

(2.56) E[K1 . . .Kku](t) �k,u 1

for all k ≥ 0 and all Killing vector fields K1, . . . ,Kk. This can be used to establish
some decay of the solution u. Let us fix a time t ≥ 1 and look at the region
t/2 < |x| ≤ 1 + t using polar coordinates x = rω for some t/2 < r ≤ 1 + t and
ω ∈ Sd−1. We can then conclude from (2.56) (using the Killing vector fields ∂xj

and xj∂xj − xk∂xj ) that∫
Sd−1

∫
t/2<r≤1+t

|∇l
ω∂

m
r ∇x,tu(t, rω)|2 rd−1drdω �l,m,u 1

for all l,m ≥ 0. Note that we may replace rd−1 by td−1 since r is copmarable to t.
If in particular we define the spherical energies

f(r) :=
∑

0≤l≤d
(
∫ Sd−1

|∇l
ω∇x,tu(t, rω)|2 dω)1/2

then a simple application of Cauchy-Schwarz and Minkowski’s inequality yields∫
t/2<r≤1+t

|∂mr f(r)|2 dr �u t
−1−d

for m = 0, 1. Using the Poincaré inequality

|f(x)|2 �
∫
I

|f(y)|2 dy +
∫
I

|f ′(y)|2 dy

24A general principle is that if the top order terms in an expression are ill-behaved, then no
amount of structure arising from the lower-order terms will rescue this. Thus one should always
attend to the top order terms first.
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whenever x ∈ I and I is an interval of length at least 1, we conclude that

|f(r)|2 �u t
−1−d

for all t/2 < r ≤ 1+ t. Applying the Sobolev embedding theorem on the sphere (or
by using Poincaré type inequalities) we then conclude the pointwise bound

|∇t,xu(t, x)| �u t
−(d−1)/2

for all t ≥ 1 and t/2 < r ≤ 1 + t. If we combine this with both the finite speed of
propagation and some Lorentz transforms (see Exercise 2.6) to cover the interior
region r ≤ t/2, we conclude the more global estimate

(2.57) ‖∇t,xu(t)‖L∞
x (Rd) �u 〈t〉−(d−1)/2.

This can be used for instance to establish the dispersive bounds in (2.19), (2.20)
(Exercise 2.63). In fact, more precise estimates than (2.57) are available, which
establish more concentration properties near the light cone; see [Sog] for a more
detailed treatment of this method (which is especially useful for establishing global
solutions of semilinear and quasilinear wave equations from small, rapidly decaying
initial data).

Exercise 2.56. Let us formally consider Ḣ1/2
x (Rd → R) × Ḣ

−1/2
x (Rd → R)

as a symplectic phase space with symplectic form ω((u0, u1), (v0, v1)) =
∫
Rd u0v1 −

u1v0. Show that u is a formal solution to the wave equation (2.32) if and only if
the curve t �→ (u(t), ∂tu(t)) follows the formal Hamiltonian flow associated to the
(densely defined) Hamiltonian

H(u0, u1) :=
1
2

∫
Rd

|∇u0|2 + |u1|2 dx.

Exercise 2.57. Let u ∈ C∞
t Sx(R1+d → C) be a Schwartz solution to the

inhomogeneous wave equation �u = F , and let Tαβ be as above. By analyzing the
energies E(t) :=

∫
Rd T00(t, x) dx, establish the energy identity

(2.58) ∂t

∫
Rd

T00(t, x) dx = −
∫
Rd

∂tu(t, x)F (t, x) dx

and conclude the energy estimate (2.28) with s = 1. Then use the commutativity
of the wave equation with Fourier multipliers to establish this estimate for gen-
eral values of s. This is an example of the energy method ; see also the proof of
Proposition 3.3 for another instance of this technique.

Exercise 2.58. In this exercise we shall work formally, ignoring issues of differ-
entiability or integrability, and will assume familiarity with (pseudo-)Riemannian
geometry. Given any Lorentian metric gαβ on R1+d, and any scalar field u : R1+d →
R, define the Lagrangian functional

S(u, g) :=
∫
R1+d

L(u, g) dg

where dg =
√− det(g)dxdt is the usual measure induced by g, and L(u, g) is a local

quantity which is invariant under diffeomorphic changes of variable. Let X be an
arbitrary vector field on R1+d, and let gs be the deformation of the metric g for
s ∈ R along the vector field X , thus

(gs)αβ |s=0 = gαβ;
d

ds
(gs)αβ |s=0 = LXgαβ = παβ ,
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where LX is the Lie derivative, and παβ = ∇αXβ + ∇βXα is the deformation
tensor (here ∇ denotes the Levi-Civita covariant derivative). Similarly, let us be
the deformation of u along X , thus

us|s=0 = u;
d

ds
us|s=0 = LXu = −Xα∂βu.

As L is invariant under diffeomorphic changes of variable, we have that d
dsS(us, gs) =

0. Use this fact to conclude that if for fixed g, u is a critical point of the Lagrangian
S(u, g), then we have the integral conservation law∫

R1+d

Tαβπαβ dg = 0,

where the stress-energy tensor Tαβ is defined by

Tαβ :=
∂L

∂gαβ
− 1

2
gαβL.

Conclude that Tαβ is divergence-free. In the special case L(u, g) := gαβ∂αu∂βu,
with g equal to the Minkowski metric, show that this definition of the stress-energy
tensor co-incides with (2.45). See [SStru2] for further discussion of the Lagrangian
approach to wave equations.

Exercise 2.59. Obtain an angular momentum conservation law for the Schrödinger
equation.

Exercise 2.60. Show that if Xα is a Killing vector field for Minkowski space
R1+d, then ∂α∂βXγ = 0. (Hint: consider various permutations of the identity
∂απβγ = 0.) Conclude that the only Killing vector fields are the linear combinations
of the ones given in the text.

Exercise 2.61. Show that for any smooth initial data u0 ∈ C∞(Rd), u1 ∈
C∞(Rd) (with no decay assumptions at infinity) there exists a unique smooth
solution u ∈ C∞(R1+d) to the wave equation (2.44) with initial data u(0, x) =
u(x), ∂tu(0, x) = u1(x). (Hint: use finite speed of propagation, and the existence
and uniqueness theory in the Schwartz class.) This should be contrasted with the
breakdown of uniqueness in the smooth category in the case of infinite speed of
propagation, see Exercise 2.22.

Exercise 2.62. Let u : R1+3 → R be a smooth solution to the wave equation
(2.32) with finite energy E(t) = E < ∞. By contracting the stress-energy tensor
against the radial vector field X associated x

|x| · ∇x, conclude the identity

∂α(TαβXβ) = 2
|∇/ u|2
|x| − 1

2|x|�(|u|2)

and then conclude the Morawetz inequality∫
R1+3

|∇/ u(t, x)|2
|x| dxdt+

∫
R

|u(t, 0)|2 dt � E.

(Hint: multiply the previous identity by a smooth cutoff in time to a large interval
[−T, T ], then integrate by parts, and use the energy bound to control all error
terms. You will have to deal with the singularity at x = 0 in some fashion (e.g. by
approximating |x| by (ε2 + |x|2)1/2, or by removing a small neighbourhood of the
origin.) Compare this with (2.41).
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Exercise 2.63. Use (2.57) to prove (2.19), (2.20). (Hint: first use (2.57) and
a scaling argument to establish (2.19), (2.20) when φ is itself the derivative of
a compactly supported bump function, then use translation invariance to replace
“compactly supported bump function” with “Schwartz function”. Finally, use some
form of dyadic decomposition (e.g. Littlewood-Paley decomposition) to handle the
general case.)

Exercise 2.64. Obtain a conserved stress-energy tensor for the Klein-Gordon
equation, which collapses to the one given for the wave equation above when c = 1
and m = 0, and collapses instead to the pseudo-stress-energy tensor given for the
Schrödinger equation in the limit c → ∞ and � = m = 1, using the connection in
Exercise 2.7.

Exercise 2.65. Obtain conserved stress-energy tensors for the Maxwell and
abelian Yang-Mills equations with c = 1, in such a way that the conserved energies
are 1

2

∫
R3 |E|2+|B|2 dx, and 1

2

∫
Rd |F0i|2+|Fij |2 respectively. For the Dirac equation

with m = 0, show that the rank three stress-energy tensor

Tλαβ := {∂αu, γλ∂βu} − 1
2
gαβ{∂µu, γλ∂µu}

is divergence-free in all three variables. Is there an analogue of this tensor in the
massive case m �= 0?

Exercise 2.66 (Equipartition of energy). Suppose that u is a C∞
t Sx solution

to the Klein-Gordon equation �u = m2u, thus the energy E :=
∫
Rd

1
2 |∇u|2 +

1
2 |∂tu|2 + m2

2 |u|2 dx is conserved in time. By considering the time derivative of the
expression

∫
Rd u(t, x)∂tu(t, x) dx, establish the estimate∫

I

∫
Rd

|∂tu|2 − |∇u|2 −m2|u|2 dxdt = O(E/m)

for arbitrary time intervals I. Thus in a time-averaged sense, the energy in E will
be equally split between the kinetic component 1

2

∫
Rd |∂tu|2 dx and the potential

component 1
2

∫
R2 |∇xu|2 +m2|u|2.

Exercise 2.67 (Carleman inequality). Let u ∈ C∞
0 (Rd → R) obey the Poisson

equation ∆u = F , and define the stress-energy tensor

Tαβ := ∂αu∂βu− 1
2
gαβ∂γu∂γu = ∂αu∂βu− 1

4
gαβ∆(u2) +

1
2
gαβuF

where gαβ now denotes the Euclidean metric on Rd instead of a Minkowski metric.
Establish the divergence identity

∂αTαβ = F∂βu.

Now contract this against the vector field e2txj∂xj for some j = 1, . . . , d and t �= 0
and integrate by parts to obtain the identity∫

Rd

2t|∂xj(e
txju)|2 = −

∫
Rd

etxjF∂xj(e
txju)

and conclude the Carleman-type inequality

‖∂xj(e
txju)‖L2

x(Rd) ≤
1

2|t| ‖e
txjF‖L2

x(Rd).
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Conclude the following unique continuation property: if u is a scalar or vector field
on Rd which is smooth and compactly supported with ∆u = O(|u|), then u vanishes
identically. (Hint: if u is compactly supported, then ‖etxju‖L2

x
can be controlled by

a bounded multiple of ‖∂xj(etxju)‖L2
x
. Now let t→ ±∞.) This shows, for instance,

that Schrödinger operators −∆+V with smooth bounded potentials V cannot have
any compactly supported eigenfunctions (bound states); we shall also use it to show
a rigidity property of harmonic maps in Exercise 6.40. For a different proof, see
Exercise B.6.

2.6. Xs,b spaces

I dreamed a thousand new paths... I woke and walked my old one.
(Chinese proverb)

Let us now return to a general scalar constant-coefficient dispersive linear equa-
tion

∂tu = Lu

where L = ih(∇/i) for some real-valued polynomial h; again, the vector-valued
case is more complicated and will not be treated here. As discussed in Section
2.1, the spacetime Fourier transform ũ of solutions to this equation will be sup-
ported on the hypersurface {(τ, ξ) : τ = h(ξ)}. If one then localises the solution in
time (for instance by multiplying u by some smooth cutoff function η(t)), then the
uncertainty principle (or the intertwining of multiplication and convolution by the
Fourier transform) then suggests that the Fourier transform η̃u will be concentrated
in the region {(τ, ξ) : τ = h(ξ) +O(1)}.

Now consider a nonlinear perturbation of the above equation, such as

∂tu = Lu+N(u).

At first glance one may expect the presence of the nonlinearity to distort the Fourier
support of the solution substantially, so that ũ or η̃u now has a substantial portion
which lies far away from the characteristic hypersurface τ = h(ξ). Certainly one has
a significant distortion if one does not localise in time first (indeed, the nonlinear
solution need not even exist globally in time). However, if one applies a suitably
short time cutoff η, then it turns out that for many types of nonlinearities u,
and for surprisingly rough classes Hs

x(Rd) of initial data, the localised Fourier
transform η̃u still concentrates near the characteristic hypersurface. The reason
for this is a “dispersive smoothing effect” for the operator ∂t − L away from the
hypersurface τ = h(ξ), which can be viewed as the analogue of the more familiar
“elliptic regularity” phenomenon for elliptic equations (if Lu = f and L is elliptic,
then u is smoother than f).

There are a number of ways to capture this dispersive smoothing effect, but one
particularly convenient way is via the Xs,b-spaces (also known as Fourier restriction
spaces, Bourgain spaces, or dispersive Sobolev spaces). The full name of these
spaces25 is Xs,b

τ=h(ξ)(R × Rd), thus these spaces take R × Rd as their domain and
are adapted to a single characteristic hypersurface τ = h(ξ). Roughly speaking,
these spaces are to dispersive equations as Sobolev spaces are to elliptic equations.
In a standard Sobolev space Hs

x(Rd), one can differentiate the function using the

25The terminology Hs,θ = Hs,θ
τ=h(ξ)

(R1+d) is also occasionally used in the literature, as these

spaces resemble product Sobolev spaces.
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Figure 3. A solution to a linear dispersive equation (such as
the Airy equation ∂tu + ∂xxxu = 0) will have its spacetime
Fourier transform concentrated perfectly on the characteristic sur-
face τ = h(ξ). Solutions to nonlinear perturbations of that disper-
sive equation (such as the KdV equation ∂tu + ∂xxxu = 6u∂xu)
will typically, after localisation in time, have spacetime Fourier
transform supported near the characteristic surface; thus the non-
linearity does not significantly alter the spacetime Fourier “path”
of the solution, at least for short times. The Xs,b spaces are an
efficient tool to capture this clustering near the characteristic sur-
face.

elliptic derivative 〈∇〉 s times and still remain square-integrable; for the space
Xs,b(R × Rd), one can differentiate s times using the elliptic derivative 〈∇〉 and
b times using the dispersive derivative ∂t − L, and still remain square-integrable.
The precise definition is as follows.

Definition 2.7 (Xs,b spaces). Let h : Rd → R be a continuous function, and
let s, b ∈ R. The space Xs,b

τ=h(ξ)(R×Rd), abbreviated Xs,b(R×Rd) or simply Xs,b

is then defined to be the closure of the Schwartz functions St,x(R×Rd) under the
norm

‖u‖Xs,b
τ=h(ξ)(R×Rd) := ‖〈ξ〉s〈τ − h(ξ)〉bũ(τ, ξ)‖L2

τL
2
ξ(R×Rd).

These spaces in their modern form were introduced by Bourgain [Bou], al-
though they appear in the context of one-dimensional wave equations in earlier
work of Beals [Bea] and Rauch-Reed [RR], and implicitly in the work of Klainer-
man and Machedon [KM]. A good survey of these spaces and their applications
can be found in [Gin]. Multilinear estimates for these spaces were systematically
studied in [Tao4].

In the case b = 0, the choice of dispersion relation τ = h(ξ) is irrelevant,
and the Xs,b space is simply the space L2

tH
s
x, as can be seen by an application

of Plancherel’s theorem in time. In the case h = 0, the Xs,b space becomes the
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product space Hb
tH

s
x, and for general h it is a conjugate of this space (Exercise

2.68). The spatial domain Rd can be replaced with other abelian groups such as
the torus Td with minimal modification (just as Sobolev spaces and similarly be
defined for the torus), indeed we have

‖u‖Xs,b
τ=h(k)(R×Td) := ‖〈k〉s〈τ − h(ξ)〉bũ(τ, k)‖L2

τ l
2
k(R×Zd)

where ũ is the spatially periodic, temporally non-periodic Fourier transform

ũ(τ, k) :=
1

(2π)d

∫
R

∫
Td

u(t, x)e−i(tτ+k·ξ) dxdt.

Most of the results stated here for the non-periodic setting will extend without any
difficulty to the periodic setting; we leave the verification of these details to the
reader.

The spaces Xs,b
τ=h(ξ) are well adapted to the solutions u(t) = etLu(0) of the

linear dispersive equation ∂tu = Lu, where L := ih(D) = ih(∇/i), as the following
lemma shows:

Lemma 2.8 (Free solutions lie in Xs,b). Let f ∈ Hs
x(R

d) for some s ∈ R, and
let L = ih(∇/i) for some polynomial h : Rd → R. Then for any Schwartz time
cutoff η ∈ Sx(R), we have

‖η(t)etLf‖Xs,b
τ=h(ξ)(R×Rd) �η,b ‖f‖Hs

x(Rd).

Proof. A computation shows that the spacetime Fourier transform of η(t)etLf
at (τ, ξ) is simply η̂(τ − h(ξ))f̂(ξ). Since η̂ is rapidly decreasing, the claim follows.

�

We now discuss the basic properties of the Xs,b spaces. We first observe the
easily verified fact that the Xs,b spaces are Banach spaces. We have the trivial
nesting

Xs′,b′

τ=h(ξ) ⊂ Xs,b
τ=h(ξ)

whenever s′ ≤ s and b′ ≤ b. From Parseval’s identity and Cauchy-Schwarz we have
the duality relationship

(Xs,b
τ=h(ξ))

∗ = X−s,−b
τ=−h(−ξ).

Also, these spaces interpolate nicely in the s and b indices, as can be seen using the
Stein complex interpolation theorem (see e.g. [Stei2]). These two facts can save
some effort when proving certain estimates regarding the Xs,b spaces, particularly
the multilinear estimates.

Now we study the invariance and stability properties of these spaces. The Xs,b

spaces are invariant under translations in space and time, but they are usually not
invariant under frequency modulations (e.g. multiplication by a spatial phase eix·ξ

or a temporal phase eitτ ). The behaviour under complex conjugation is given by
the identity

‖u‖Xs,b
τ=−h(−ξ)

= ‖u‖Xs,b
τ=h(ξ)

and thus one has conjugation invariance when h is odd, but not necessarily other-
wise.

When b > 1/2, one can view the Xs,b spaces as being very close to free solutions
(i.e. solutions to the equation ∂tu = Lu). This is formalised in the following lemma:
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Lemma 2.9. Let L = iP (∇/i) for some polynomial P : Rd → R, let s ∈ R,
and let Y be a Banach space of functions on R × Rd with the property that

‖eitτ0etLf‖Y � ‖f‖Hs
x(Rd)

for all f ∈ Hs
x(Rd) and τ0 ∈ R. Then we have the embedding

‖u‖Y �b ‖u‖Xs,b
τ=h(ξ)(R×Rd).

Conversely, free solutions will lie in Xs,b once suitably truncated in time; see
Lemma 2.11.

Proof. By Fourier inversion we have

u(t, x) =
1

(2π)d+1

∫
R

∫
Rd

ũ(τ, ξ)eitτ eix·ξ dξdτ.

If we write τ = h(ξ) + τ0, and set

fτ0(x) :=
1

(2π)d

∫
Rd

ũ(h(ξ) + τ0, ξ)eix·ξ dξ

we have

etLfτ0(x) =
1

(2π)d

∫
Rd

ũ(h(ξ) + τ0, ξ)eith(ξ)eix·ξ dξ

and thus have the representation

u(t) =
1
2π

∫
R

eitτ0etLfτ dτ0.

Taking Y norms and using Minkowski’s inequality and the hypothesis on Y , we
obtain

‖u‖Y �
∫
R

‖fτ0‖Hs
x(Rd) dτ0,

and hence by Cauchy-Schwarz and the hypothesis b > 1/2

‖u‖Y �b (
∫
R

〈τ0〉2b‖fτ0‖2
Hs

x(Rd) dτ0)
1/2.

Using Plancherel’s theorem, the right-hand side rearranges to equal Cb‖u‖Xs,b, and
the claim follows. �

Observe that the same argument applies when P is merely a continuous function
rather than a polynomial, though in this case L will be a Fourier multiplier rather
than a differential operator. Applying this to Y = C0

tH
s
x, we obtain the immediate

corollary

Corollary 2.10. Let b > 1/2, s ∈ R, and h : Rd → R be continuous. Then
for any u ∈ Xs,b

τ=h(ξ)(R × Rd) we have

‖u‖C0
tH

s
x(Rd) �b ‖u‖Xs,b

τ=h(ξ)(R×Rd).

Furthermore, the Xs,b spaces enjoy the same Sobolev embeddings that free
solutions to the equation ut = Lu do. For instance, by combining Lemma 2.9 with
(2.24) (and observing that the spaces LqtL

r
x are invariant under multiplication by

phases such as eitτ0), one concludes that

‖u‖Lq
tL

r
x(R×Rd) �q,r,b ‖u‖X0,b

τ=|ξ|2(R×Rd)
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for all Schrödinger-admissible (q, r).
It turns out that the Xs,b spaces are only well suited to analyzing nonlinear

dispersive equations when one localises in time. Fortunately, these spaces are easy
to localise:

Lemma 2.11 (Xs,b is stable wrt time localisation). Let η ∈ St(R) be a Schwartz
function in time. Then we have

‖η(t)u‖Xs,b
τ=h(ξ)(R×Rd) �η,b ‖u‖Xs,b

τ=h(ξ)(R×Rd)

for any s, b ∈ R, any h : Rd → R, and any field u ∈ St,x(R × Rd). Furthermore,
if −1/2 < b′ ≤ b < 1/2, then for any 0 < T < 1 and σ > 0 we have

‖η(t/T )u‖
Xs,b′

τ=h(ξ)(R×Rd)
�η,b,b′ T

b−b′‖u‖Xs,b
τ=h(ξ)(R×Rd).

The second estimate in this lemma is useful in the large data theory, as it allows
one to keep certain Xs,b norms of a solution small by localizing to a sufficiently
small time interval.

Proof. Let us first understand how the Xs,b spaces behave with respect to
temporal frequency modulation u(t, x) �→ eitτ0u(t, x). From the crude estimate

〈τ − τ0 − h(ξ)〉b �b 〈τ0〉|b|〈τ − h(ξ)〉b

and elementary Fourier analysis, we conclude that

‖eitτ0u‖Xs,b
τ=h(ξ)(R×Rd) �b 〈τ0〉|b|‖u‖Xs,b

τ=h(ξ)(R×Rd).

If we now use Fourier expansion in time to write η(t) =
∫
R
η̂(τ0)eitτ0 dτ0 and use

Minkowski’s inequality, we conclude

‖η(t)u‖Xs,b
τ=h(ξ)(R×Rd) �b (

∫
R

|η̂(τ0)|〈τ0〉|b| dτ0)‖u‖Xs,b
τ=h(ξ)(R×Rd).

Since η is Schwartz, η̂ is rapidly decreasing, and the first claim follows.
Now we prove the second claim. By conjugating by 〈∇〉s we may take s = 0.

By composition it suffices to treat the cases 0 ≤ b′ ≤ b or b′ ≤ b ≤ 0; by duality
we may then take 0 ≤ b′ ≤ b. By interpolation with the trivial case b′ = b we may
take b′ = 0, thus we are now reduced to establishing

‖η(t/T )u‖L2
tL

2
x(R×Rd) �η,b T

b‖u‖X0,b
τ=h(ξ)(R×Rd)

for 0 < b < 1/2. By partitioning frequency space we can divide into two cases, one
where ũ is supported on the region 〈τ−h(ξ)〉 ≥ 1/T , and one where 〈τ−h(ξ)〉 ≤ 1/T .
In the former case we will have

‖u‖X0,0
τ=h(ξ)(R×Rd) ≤ T b‖u‖X0,b

τ=h(ξ)(R×Rd)
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and the claim then follows from the boundedness of η. In the latter case, we use a
variant of Corollary 2.10, noting for any time t that

‖u(t)‖L2
x(Rd) � ‖û(t)(ξ)‖L2

ξ(Rd)

� ‖
∫
〈τ−h(ξ)〉≤1/T

|ũ(τ, ξ)| dτ‖L2
ξ(Rd)

�b T
b−1/2‖(

∫
〈τ − h(ξ)〉2b|ũ(τ, ξ)|2 dτ)1/2‖L2

ξ(Rd)

= T b−1/2‖u‖Xs,b
τ=h(ξ)(R×Rd)

thanks to Plancherel, the triangle inequality, Cauchy-Schwarz, and the localisation
of ũ. Integrating this against η(t/T ), the claim follows. �

The Xs,b spaces react well to Fourier multipliers, in much the same way that
ordinary Sobolev spaces Hs do. If Dk is a Fourier multiplier of order k, in the sense
that

D̂kf(ξ) = m(ξ)f(ξ)

for all Schwartz functions f ∈ Sx(Rd) and some measurable multiplier m : Rd → C
obeying the growth condition |m(ξ)| � 〈ξ〉k, then D can be extended to spacetime
functions by acting on each time separately, thus (Du)(t) = D(u(t)), or in terms of
the spacetime Fourier transform

D̃ku(τ, ξ) = m(ξ)ũ(τ, ξ)

and then one easily verifies that D maps Xs,b
τ=h(ξ) continuously to Xs−k,b

τ=h(ξ) for any
s, b ∈ R and any h:

‖Dku‖Xs−k,b
τ=h(ξ)

� ‖u‖Xs,b
τ=h(ξ)

.

This is analogous to the well-known estimate ‖Dku‖Hs−k � ‖u‖Hs for Sobolev
spaces. In the case when k is a non-negative integer, we have the converse

(2.59) ‖u‖Xs,b
τ=h(ξ)

� ‖u‖Xs−k,b
τ=h(ξ)

+ ‖∇k
xu‖Xs−k,b

τ=h(ξ)
,

which is proven by repeating the above arguments. Similarly, if h : Rd → R is a
polynomial and L := ih(∇/i), then we have

˜(∂t − L)u(τ, ξ) = i(τ − h(ξ))ũ(τ, ξ)

and hence
‖(∂t − L)u‖Xs,b−1

τ=h(ξ)
� ‖u‖Xs,b

τ=h(ξ)
.

It is natural to ask whether there is a converse inequality, in the spirit of (2.59).
This is indeed the case:

Proposition 2.12 (Xs,b energy estimate). Let h : Rd → R be a polynomial,
let L := ih(∇/i), and let u ∈ C∞

t Sx(R × Rd) be a smooth solution to the equation
ut = Lu + F . Then for any s ∈ R and b > 1/2, and any compactly supported
smooth time cutoff η(t), we have

‖η(t)u‖Xs,b
τ=h(ξ)(R×Rd) �η,b ‖u(0)‖Hs

x(Rd) + ‖F‖Xs,b−1
τ=h(ξ)(R×Rd).
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Proof. To abbreviate the notation we shall write Xs,b
τ=h(ξ)(R×Rd) simply as

Xs,b. Let [−R,R] be a time interval containing the support of η. By truncating F
smoothly in time, using a compactly supported cutoff that equals 1 on [−R,R] we
may assume (using Lemma 2.11) that F is supported on [−2R, 2R] and is Schwartz
in spacetime. Also, by applying 〈∇〉s to both u and F if necessary, we may take
s = 0.

Let us first suppose that u vanishes at time −2R, thus u(−2R) = 0. By
Duhamel’s formula (2.13) (with t0 = −2R) we thus have

η(t)u(t) = η(t)
∫ t

−∞
e(t−s)LF (s) ds = η(t)

∫
R

η̃(t− s)1[0,+∞)(t− s)e(t−s)LF (s) ds

where η̃ is a smooth compactly supported function which equals 1 on [−3R, 3R].
By Lemma 2.11, it would thus suffice to show that

‖
∫
R

η̃(t− s)1[0,+∞)(t− s)e(t−s)LF (s) ds‖X0,b �η̃,b ‖F‖X0,b−1 .

A routine computation shows that the spacetime Fourier transform of
∫
R η̃(t −

s)1[0,+∞)(t− s)e(t−s)LF (s) ds at (τ, ξ) is equal to

(
∫
R

η̃(t)1[0,+∞)(t)e−it(τ−h(ξ))dt)F̃ (τ, ξ).

The expression inside the parentheses can be shown (via integration by parts) to
be at most Oη̃(〈τ − ξ〉−1). The claim then follows.

Now we handle the general case. We split u(t) = (u(t) − e(t+2R)Lu(−2R)) +
etLe2RLu(−2R). For the first term, the preceding argument applies, and we have

‖η(t)(u(t) − e(t+2R)Lu(−2R))‖X0,b(R×Rd) �η,b ‖F‖X0,b .

Thus it will suffice to control the remaining term. Applying Lemma 2.8, it thus
suffices to show that

‖e2RLu(−2R)‖L2
x

�η̃,b ‖u(0)‖L2
x

+ ‖F‖X0,b−1 .

From Duhamel’s formula and the support of F we have

e2RLu(−2R) = u(0) +
∫
R

η̃(s)1(−∞,0](s)e−sLF (s) ds

where η̃ is as before. Thus by the triangle inequality it suffices to show that

‖
∫
R

η̃(s)1(−∞,0](s)e−sLF (s) ds‖L2
x

�η̃,b ‖F‖X0,b−1 .

Applying Parseval’s identity, the left-hand side can be written as

‖
∫
R

(
∫
R

η̃(s)1(−∞,0](s)eis(τ−h(ξ)) ds)F̃ (τ, ξ) dτ‖L2
ξ
.

An integration by parts yields the bound∫
R

η̃(s)1(−∞,0](s)eis(τ−h(ξ)) ds| �η 〈τ − h(ξ)〉−1

and hence by Cauchy-Schwarz and the hypothesis b > 1/2 we have

|
∫
R

(
∫
R

η̃(s)1(−∞,0](s)eis(τ−h(ξ)) ds)F̃ (τ, ξ) dτ | �η,b |
∫
R

〈τ−h(ξ〉2(b−1)|F̃ (τ, ξ)|2 dτ)1/2,
and the claim follows. �
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As observed earlier, Xs,b spaces enjoy all the Strichartz estimates that free
solutions do. However, in some cases, particularly in periodic settings, it is not
always easy to obtain Strichartz estimates, as dispersive inequalities are typically
not available in periodic settings. (When the domain is compact, L∞

x decay is
inconsistent with L2

x conservation.) However, if one is interested in L4
t,x or L6

t,x

type inequalities, one can sometimes establish the Strichartz estimate by a direct
Fourier-analytic approach. A typical result, which is of application to the periodic
Schrödinger equation26 is as follows.

Proposition 2.13 (Periodic Schrödinger estimate). [Bou] We have

‖u‖L4
tL

4
x(R×T) � ‖u‖

X
0,3/8
τ=k2(R×T)

.

for any u ∈ St,x(R × T).

Proof. We use an argument of Nikolay Tzvetkov. Split u =
∑

M uM , where
M ranges over integer powers of 2, and uM is the portion of u localised to the
spacetime frequency region 2M ≤ 〈τ − k2〉 < 2M+1. From Plancherel’s theorem we
have ∑

M

M3/4‖uM‖2
L2

tL
2
x(R×T) � ‖u‖2

X
0,3/8
τ=k2(R×T)

Squaring both sides of the desired inequality and using the triangle inequality, we
reduce to proving that∑ ∑

M≤M ′
‖uMuM ′‖L2

tL
2
x(R×T) �

∑
M

M3/4‖uM‖2
L2

tL
2
x(R×T).

Setting M ′ = 2mM , it thus suffices by the triangle inequality to prove that∑
M

‖uMu2mM‖L2
tL

2
x(R×T) � 2−εm

∑
M

M3/4‖uM‖2
L2

tL
2
x(R×T)

for all m ≥ 0 and some absolute constant ε > 0; by Cauchy-Schwarz it thus suffices
to establish that

‖uMu2mM‖L2
tL

2
x(R×T) � 2−εmM3/8‖uM‖L2

tL
2
x(R×T)(2

mM)3/8‖u2mM‖L2
tL

2
x(R×T).

Let us now normalise uM and u2mM to have L2
tL

2
x norm one. We use Plancherel

and reduce to showing

‖
∑

k1+k2=k

∫
τ1+τ2=τ

ũM (τ1, k1)ũ2mM (τ2, k2) dτ1‖L2
τ l

2
k(R×Z) � 2(3/8−ε)mM3/4.

On the other hand, from the normalisation and Fubini’s theorem we have

‖(
∑

k1+k2=k

∫
τ1+τ2=τ

|ũM (τ1, k1)|2|ũ2mM (τ2, k2)|2 dτ1)1/2‖L2
τ l

2
k(R×Z) = 1

so by Cauchy-Schwarz and the support of ũM , ũ2mM it will suffice to show that∑
k1+k2=k

∫
τ1+τ2=τ ;τ1=k2

1+O(M);τ2=k2
2+O(2mM)

1 dτ1 � 2(3/4−2εm)M3/2

for all k, τ .

26Depending on the choice of normalisation used for the Schrödinger equation, the dispersion
relation τ = h(k) may differ from τ = k2 by an absolute constant, but this makes no difference
to this Strichartz estimate. Note however that for bilinear estimates one needs to distinguish the
Xs,b space associated to τ = k2 from the conjugate Xs,b space, associated with τ = −k2.
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Fix k, τ . Observe that for the integral to be non-empty, we must have τ =
k2
1 + k2

2 + O(2mM), in which case the integral is O(M). Thus it suffices to show
that ∑

k1+k2=k;τ=k2
1+k2

2+O(2mM)

1 � 2(3/4−2ε)mM1/2.

But if τ = k2
1 +k2

2 +O(2mM) and k1 +k2 = k, then (k1−k2)2 = 2τ −k+O(2mM),
and hence k1 − k2 is constrained to at most two intervals of length O(2m/2M1/2).
The claim then follows with ε = 1/8. �

In Section 4.1 we shall encounter some bilinear and trilinear Xs,b estimates in
a spirit similar to the above (see also the exercises below).

Exercise 2.68 (Xs,b vs. product Sobolev spaces). Let u ∈ S(R × Rd) be a
complex field and let h : Rd → R be a polynomial. Let U(t) := exp(ith(∇/i))
be the linear propagators for the equation ut = Lu, where L = ih(∇/i). Let
v : R × Rd → C be the function v(t) := U(−t)u(t), thus v is constant in time if
and only if u solves the equation ut = Lu. Show that

‖v‖Xs,b
τ=h(ξ)(R×Rd) = ‖u‖Hb

tH
s
x(R×Rd)

for all s, b ∈ R.

Exercise 2.69 (Endpoint Xs,b spaces). Show that Lemma 2.9, Corollary 2.10,
Lemma 2.11, and Proposition 2.12 all break down at the endpoint b = 1/2. (But
see the next exercise.)

Exercise 2.70 (Endpoint Xs,b spaces, II). Let h : Zd → R, and let s, b be
real numbers. Define the space Y s,bτ=h(k)(R × Td) to be the closure of the Schwartz
functions under the norm

‖u‖Y s,b
τ=h(k)(R×Td) := ‖〈k〉s〈τ − h(k)〉bũ‖l2kL1

τ (R×Zd).

Establish the embeddings

‖u‖
Y

s,b−1/2−ε

τ=h(k) (R×Td)
�ε ‖u‖Xs,b

τ=h(k)(R×Td)

and
‖u‖C0

tH
s
x(R×Td) � ‖u‖Y s,0(R×Td)

for all Schwartz functions u and all ε > 0; show that the former embedding breaks
down at ε = 0. With the notation of Proposition 2.12, establish the energy estimate

‖η(t)u‖Y s,0
τ=h(ξ)(R×Td) + ‖η(t)u‖

X
s,1/2
τ=h(ξ)(R×Td)

�η,b (‖u(0)‖Hs
x(Td) + ‖F‖Y s,−1

τ=h(ξ)(R×Td) + ‖F‖
X

s,−1/2
τ=h(ξ)(R×Td)

).

In the periodic theory, these estimates allow one to use the endpoint space Xs,1/2

(which is otherwise very badly behaved, as the preceding exercise showed) by aug-
menting it with the additional space Y s,0.

Exercise 2.71 (Xs,b spaces for the wave equation). Let us work in Minkowski
space R1+d with c = 1. Define the norm ‖u‖s,b := ‖u‖Xs,b

|τ|=|ξ|(R
1+d) by

‖u‖s,b := ‖〈ξ〉s〈|τ | − |ξ|〉bũ‖L2(R1+d).
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Also define the slightly stronger norm X s,b by

‖u‖X s,b := ‖u‖s,b + ‖∂tu‖s−1,b.

Develop analogues of Corollary 2.10 and Lemma 2.11. Establish that

‖�u‖s−1,b−1 �s,b,d ‖u‖X s,b

for all u ∈ St,x(R1+d), and conversely that one has the energy estimate

‖η(t)u‖X s,b �s,b,η (‖u(0)‖Hs
x(Rd) + ‖∂tu(0)‖Hs−1

x (Rd) + ‖�u‖s−1,b−1)

for all compactly supported bump functions η, all u ∈ St,x(R1+d), all s ∈ R, and
all b > 1/2. Typically, in applications one would place the solution u in the space
X s,b and the nonlinearity �u in Xs−1,b−1

|τ |=|ξ| . What is the counterpart of Lemma 2.9?

Exercise 2.72. Let u ∈ St,x(R × T2) solve the inhomogeneous Schrödinger
equation i∂tu+ ∆u = F . Show that

‖η(t)u‖C0
tL

4
x(R×T2) + ‖η(t)u‖L4

t,x(R×T2) �η ‖u(0)‖L2
x(T2) + ‖F‖

L
4/3
t,x (R×T2)

for all compactly supported cutoff functions η. (Hint: use Proposition 2.13 and the
Christ-Kiselev lemma, Lemma 2.4.)

Exercise 2.73 (Bilinear refinement to Strichartz’ inequality). [Bou9], [CKSTT11]
Let u, v ∈ St,x(R ×Rd) be fields whose spacetime Fourier transforms ũ, ṽ are sup-
ported on the sets |ξ| ≤ M and |ξ| ≥ N respectively for some N,M ≥ 1. If n = 1,
let us impose the additional hypothesis N > 2M . Show that

‖uv‖L2
tL

2
x(R×Rd) �b

M (d−1)/2

N1/2
‖u‖X0,b

τ=|ξ|2(R×Rd)‖v‖X0,b

τ=|ξ|2(R×Rd).

(Hint: use Lemma 2.9 twice to reduce u and v to free solutions of the Schrödinger
equation, and compute using Plancherel explicitly. In the case d = 2 and N ≤ 2M ,
one can use Strichartz estimates.)

Exercise 2.74 (Divisor bound). Show that a positive integer d has at most
Oε(nε) divisors for any ε > 0. (Hint: first show that if d is the power of a prime
p, then d has at most Oε(nε) divisors, and in fact has at most nε divisors if p is
sufficiently large depending on ε. For the general case, factorise d into the product
of prime powers.)

Exercise 2.75 (Periodic Airy L6
t,x estimate). [Bou] Using Exercise 2.74 and

the identity

(k1 + k2 + k3)3 − k3
1 − k3

2 − k3
3 = 3(k1 + k2)(k2 + k3)(k3 + k1),

show that for any integers k, t that the number of integer solutions to the system
k1 + k2 + k3 = k, k3

1 + k3
2 + k3

3 = t with k1, k2, k3 = O(N) is at most Oε(Nε) for
any N ≥ 1 and ε > 0. Use this to conclude the estimate

‖
∑
k∈Z

ake
ikx+ik3t‖L2

tL
2
x(T×T) �ε (

∑
k∈Z

〈k〉εa2
k)

1/2

for any complex numbers ak and any ε > 0, and use this in turn to conclude the
Strichartz estimate

‖η(t)u‖L6
tL

6
x(R×T) �ε,b ‖u‖Xε,b

τ=k3(R×T)
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for any ε > 0 and b > 1/2 and any field u. It would be of interest to know if this
estimate holds for ε = 0, or with the exponent p = 6 replaced by a larger exponent
such as p = 8.

Exercise 2.76 (Periodic Airy L6 estimate, II). [Bou] Show that for any in-
tegers k, t that the number of integer solutions to the system k1 + k2 − k3 = k,
k2
1 +k2

2 −k2
3 = t with k1, k2, k3 = O(N) is at most Oε(Nε) for any N ≥ 1 and ε > 0.

(Hint: use the first equation to eliminate k3 from the second, and then obtain an
identity of the form (k1 + a)(k2 + b) = c for some a, b, c given explicitly in terms of
k, t.) By arguing as in the preceding exercise, show that

‖η(t)u‖L6
tL

6
x(R×T) �ε,b ‖u‖Xε,b

τ=k2(R×T)

for any ε > 0 and b > 1/2 and any field u. It is known that the ε cannot be set
to zero in this case, though perhaps if the exponent p = 6 were lowered slightly
then this could be possible. See also [CKSTT3], [CKSTT12] for some trilinear
refinements of this estimate in which the ε loss can be eliminated.



CHAPTER 3

Semilinear dispersive equations

Come what come may,
Time and the hour runs through the roughest day.
(William Shakespeare, “Macbeth”)

In this chapter we turn at last to the main subject of this monograph, namely
nonlinear dispersive equations. Specifically, we now study the local and global
low-regularity wellposedness of the following two Cauchy problems: the nonlinear
Schrödinger equation (NLS)1

iut +
1
2
∆u = µ|u|p−1u

u(t0, x) = u0(x) ∈ Hs
x(R

d)
(3.1)

and the nonlinear wave equation (NLW)

�u = µ|u|p−1u

u(t0, x) = u0(x) ∈ Hs
x(R

d)

∂tu(t0, x) = u1(x) ∈ Hs−1(Rd).

(3.2)

In this chapter we have normalised c = � = m = 1, so that � = −∂2
t + ∆. We

will often also take advantage of time translation invariance to normalise t0 = 0.
In both cases, the scalar field u : R1+d → C (or u : I × Rd → C, if one only
seeks local solutions) is the desired solution, and the initial data u0 (and u1, in the
case of NLW) is specified and lies in a given Sobolev space Hs

x(Rd) (or Hs−1
x (Rd)).

The exponent 1 < p < ∞ denotes the power of the nonlinearity and is also given;
the sign µ ∈ {−1, 0,+1} denotes whether the nonlinearity is defocusing, absent, or
focusing respectively2; we will see some reasons for this terminology later in this
chapter. The cases when p is an odd integer, and in particular the cubic case p = 3
and the quintic case p = 5, are particularly important in mathematical physics,
and have the advantage that the nonlinearity z �→ |z|p−1z is smooth, indeed it is a
polynomial in z and z. We shall refer to these instances of NLS and NLW as the
algebraic NLS and NLW respectively. The periodic analogues of these problems,
when the domain is the torus Td instead of Euclidean space Rd is also of interest,
though our main focus here shall be on the non-periodic case.

1The factor of 1
2

can be easily eliminated by rescaling time by a factor of 2, and so can be

safely ignored. We retain it in order to make the dispersion relation (or de Broglie law) between
velocity and frequency as simple as possible, namely v = ξ.

2The defocusing and focusing nonlinearities are sometimes called repulsive and attractive
nonlinearities in the literature.
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For the NLW it is convenient to adopt the notation u[t] := (u(t), ∂tu(t)), thus
for instance u[t0] = (u0, u1). Thus u[t] describes the total state (both position and
velocity) of the solution u at time t.

The power-type nonlinearity function F (u) := µ|u|p−1u can be replaced by
other nonlinearities, and in many cases one obtains results similar to those stated
here. But the specific choice of power-type nonlinearity has a number of nice
properties that make it well-suited for exposition, in particular enjoying symmetries
such as the scaling and phase rotation symmetry F (zu) = |z|pF (u) for any complex
z, which will in turn lead to corresponding symmetries for NLS and NLW. It is
also naturally associated to a Hamiltonian potential V (u) := 1

p+1µ|u|p+1 via the
observation

d

dε
V (u+ εv)|ε=0 = Re(F (u)v)

for any u, v ∈ C; this will lead to a Hamiltonian formulation for NLS and NLW
(Exercise 3.1).

We will be particularly interested in the low regularity problem: whether one
still has existence and uniqueness of solutions even when the initial datum only
lies in a very low Sobolev space. There are a number of reasons why one would
want to go beyond high-regularity (classical) solutions and consider low-regularity
ones3. Firstly, a good low-regularity theory gives more control on the nature of
singularities of a solution, if they do indeed form; generally speaking, if one has
a local wellposedness theory in Hs

x, then that implies that a singularity can only
form by making the Hs

x norm go to infinity (or to concentrate at a point, if the
norm Hs

x is critical with respect to scaling). Secondly, many of the key structural
features of an equation - such as the conserved Hamiltonian, the symplectic form,
the scale invariance, or other conserved or monotone quantities - are typically as-
sociated to rather low regularities such as L2

x, H
1/2
x , or H1

x, and in order to fully
exploit these features it is often important to have a good local theory at those reg-
ularities. Thirdly, the technical challenge of working at low regularities (especially
near or at the critical regularity) enforces a significant discipline on one’s approach
to the problem - requiring one to exploit the structural properties of the equation
as efficiently and as geometrically as possible - and has in fact led to the develop-
ment of powerful and robust new techniques and insights, which have provided new
applications even for smooth solutions (for instance, in clarifying the dynamics of
energy transfer between low and high frequencies). Finally, the task of extending a
local existence result to a global existence result can (somewhat paradoxically) be
easier if one is working at low regularities than high regularities, particularly if one
is working at the scale-invariant regularity, or a regularity associated to a conserved
quantity.

The nonlinear Schrödinger and wave models (3.1), (3.2) are among the simplest
nonlinear perturbations of the free (linear) Schrödinger and wave equations4. Both
equations are semilinear (the nonlinearity is lower order than the linear terms), and

3Alternatively, one can continue to work exclusively with classical solutions so that there is
no difficulty justifying various formal computations, but demand that all estimates depend only
on low-regularity norms of the solution. In practice, the two approaches are essentially equivalent;
in most cases one can use limiting arguments to recover the former from the latter.

4Indeed, the NLS (together with the KdV equation) frequently arises in physics as the first
nonlinear approximation of a dispersive system, by performing a Taylor expansion of the nonlin-
earity and discarding all but the first term. See for instance [SSul].
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furthermore the nonlinear term contains no derivatives or non-local terms. Fur-
thermore, these nonlinear equations retain many of the symmetries and structure
of their linear counterparts; for instance, the NLS is a Hamiltonian equation with
conservation of mass (charge), momentum, energy, enjoys scaling, Galilean, trans-
lation, and (partial) pseudoconformal symmetries, and enjoys several monotonicity
formulae, including some of virial and Morawetz type. The NLW is also Hamil-
tonian with a conserved stress-energy tensor, with all its attendant consequences
such as Morawetz inequalities and finite speed of propagation, and also enjoys scal-
ing, Lorentz, translation and (partial) conformal symmetries. On the other hand,
these equations are not completely integrable (with the notable exception of the
one-dimensional cubic (p = 3) NLS, as wel as a variant of the NLW known as
the sine-Gordon equation), and so do not admit many explicit solutions (beyond
some standard solutions such as the ground state solitons). The large number
of parameters present in these equations (the dimension n, the power p, the sign
µ, the regularity s, and whether one wishes to consider periodic or non-periodic
solutions) means that these equations exhibit a wide range of phenomena and be-
haviour, and in many ways are quite representative of the much larger class of
nonlinear dispersive and wave equations which are studied in the literature. Thus
while our understanding of these equations is somewhat better than for most other
nonlinear dispersive models (particularly for subcritical and critical regularities, for
small data, and for the defocusing regularity), they are still so rich in structure and
problems that there is still plenty to be understood.

Broadly speaking, there are two major classes of techniques one can use to ana-
lyze these equations. On the one hand, one has perturbative methods, which approx-
imate the non-linear equations (3.1), (3.2) by more tractable and well-understood
equations such as5 the free (and linear) Schrödinger or wave equations. The er-
ror between the actual equation and the approximate equation is usually treated
by some sort of iteration argument (usually based on Duhamel’s formula) or by
a Gronwall inequality argument (usually based on energy estimates). Another re-
lated example of a perturbative method arises when constructing exact solutions
to NLS and NLW by first starting with an approximate solution (that solves the
equation up to a small error) and then constructing some sort of iterative scheme
or Gronwall inequality argument to convert the approximate solution to an exact
one.

As the name implies, perturbative methods only work when the solution is
very close to its approximation; typically, this requires the initial datum to be
small (or a small perturbation of a special initial datum), or the time interval to
be small (or perhaps some spacetime integral of the solution to be well controlled
on this time interval). When dealing with large solutions over long times, per-
turbative techniques no longer work by themselves, and one must combine them
with non-perturbative methods. Examples of such methods include conservation
laws, monotonicity formulae, and algebraic transformations of the equation. Such
methods are initially only justified for smooth solutions, but can often be extended
to rough solutions by means of the perturbative theory. Thus, global control of a
solution is often obtained via a collaboration between the perturbative techniques

5In some cases one will use a more complicated equation as the approximating equation. For
instance, if one is analyzing the NLS or NLW near a special solution such as a soliton solution,
one often uses the linearised equation around that soliton as the approximating equation.
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and non-perturbative techniques; typically, the perturbative theory guarantees a
well-behaved solution provided that certain integrals of the solution stay bounded,
and the non-perturbative theory guarantees control of these integrals provided that
the solution remains well-behaved (see e.g. Figure 7.). This basic division of labour
already works remarkably well in many situations, although in some recent results
(most notably in those employing the induction on energy strategy, see Chapter 5)
one has had to apply a more advanced scheme.

We conclude this introduction by describing some special (and very explicit)
solutions to both (3.1) and (3.2), in order to build some initial intuition about
these equations, though we emphasise that for generic initial data we do not expect
any similarly explicit formula for the solution. Let us begin by using the classical
method of separation of variables, using solutions of ODE to construct special
solutions to PDE. For any ξ ∈ Rd, the plane wave eix·ξ is an eigenfunction of the
Laplacian ξ, and also has magnitude one, which leads one to consider the ansatz

(3.3) u(t, x) = eix·ξv(t).

Simple calculation then shows that in order to solve the NLS (3.1), v must obey
the ODE

∂tv = −i( |ξ|
2

2
+ µ|v|p−1)v

and to solve the NLW (3.2), v must obey the ODE

(3.4) ∂2
t v = −(|ξ|2 + µ|v|p−1)v.

In the case of NLS, the ODE for v can be explicitly solved, leading to the plane
wave solutions

(3.5) u(t, x) := αeiξ·xei|ξ|
2t/2eiµ|α|

p−1t

for any α ∈ C and ξ ∈ Zd. Note how the time oscillation of ei|ξ|
2t/2 arising from

the linear evolution is augmented by the additional time oscillation eiµ|α|
p−1t. In

the defocusing case µ = +1, both time oscillations are anti-clockwise, so one can
view the defocusing nonlinearity as amplifying the dispersive effect of the linear
equation; in the focusing case the focusing nonlinearity is instead trying to cancel
the dispersive effect. If the amplitude α is small compared the frequency ξ then
the dispersive effect is stronger, but when the amplitude is large then the focusing
effect takes over. This already illustrates one useful heuristic: the focusing and
defocusing equations behave similarly when the initial data is small or when the
frequency is very large6.

As for the NLW (3.2), one can obtain a similar class of (complex) explicit
solutions

u(t, x) := αeiξ·xe±i(|ξ|
2+µ|α|p−1)1/2t

provided that |ξ|2+µ|α|p−1 ≥ 0. This latter condition is automatic in the defocusing
case µ = +1 or the linear case µ = 0, but requires either the frequency ξ to be
large or the amplitude α to be small in the focusing case µ = −1. This is again
consistent with the heuristic mentioned earlier. When the initial data is large and

6Actually, this heuristic is only valid in “subcritical” situations, in which the high frequencies

scale more favourably than the low frequencies. In critical cases, the high and low frequencies are
equally sensitive to the distinction between focusing and defocusing; the supercritical cases are
very poorly understood, but it is believed that the high frequency behaviour is radically different
in the focusing and defocusing cases.
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positive compared to the frequency, then the ODE (3.4) can blow up (this can be
seen for instance using Exercise 1.23, in the case when v is real); one explicit family
of blowup solutions in the focusing case µ = +1 (with ξ = 0) is given by

(3.6) u(t, x) := cp(t0 − t)−2/(p−1)

for t < t0, where cp := (2(p+1)
(p−1)2 )1/(p−1) and t0 ∈ R is an arbitrary parameter. In

contrast, in the defocusing or linear cases µ = −1, 0 no blowup solution of the form
(3.3) is possible, because (3.4) enjoys a coercive Hamiltonian7

H(v, ∂tv) =
1
2
|∂tv|2 +

1
2
|ξ|2|v|2 +

µ

p+ 1
|v|p+1

and thus (by Exercise 1.27) the solutions (3.3) will stay globally bounded for all
time. Similarly in the focusing case if the initial data is very small compared to the
frequency. Thus we see that the large data focusing behaviour is quite bad when
compared to the defocusing or linear cases.

The solutions of the form (3.3) have no decay in space and so will not lie in
Sobolev spaces such as Hs

x(Rd), although if the frequency ξ lies in the integer lattice
Zd then we can view these solutions as lying in the periodic Sobolev spaces Hs

x(T
d)

for any s. In the (focusing) non-periodic case it is possible to create a different class
of solutions by choosing an ansatz which oscillates in time rather than in space:

(3.7) u(t, x) = Q(x)eitτ ,

where ω ∈ R. This leads to the ground state equation

(3.8) ∆Q+ α|Q|pQ = βQ

where (α, β) := (−2µ, 2τ) for NLS and (α, β) := (−µ, τ2) for NLW. In the defocus-
ing case we can take α, β > 0 (choosing τ to be positive). From Appendix B we
then recall that if 1 < p < ∞ is energy-subcritical in the sense that d

2 − 2
p−1 < 1,

then there exists a smooth, positive, rapidly decreasing solution Q ∈ Sx(Rd) to the
equation (3.8). This leads to the standard ground state soliton solution to either
NLS or NLW associated to the temporal frequency τ > 0; it lies in every spatial
Sobolev spaceHs

x(R
d), and has a very simple behaviour in time. In the next section

we will apply the symmetries of NLW and NLS to generate further ground state
solitons. These solitons are only available in the focusing case; In Section 3.5 we
shall establish Morawetz inequalities which show that nothing remotely resembling
a soliton can occur in the defocusing equation.

Exercise 3.1. Obtain the analogue of Exercise 2.45 for the NLS, and Exercise
2.56 for the NLW, by adding the nonlinear potential energy term V (u) to the
Hamiltonian.

Exercise 3.2. Let u ∈ C2(R × Rd → V ) be a classical solution to a d-
dimensional NLS. Show that the field v ∈ C2(R × Rd+1 → V ) defined by

v(t, x1, . . . , xd, xd+1) := e−i(t+xd+1)u(
t− xd+1

2
, x1, . . . , xd)

is a classical solution to the corresponding d + 1-dimensional NLW (cf. Exercise
2.11). This correspondence may help explain why many of the algebraic expressions
defined below for the NLW have a counterpart for NLS, but with d replaced by

7The case µ = ξ = 0 is degenerate coercive, but this case can be treated by hand, leading to
solutions of linear growth in time.
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d+ 1. This correspondence is less useful for the Hs
x wellposedness theory, because

the functions v constructed above will not have finite Hs
x norm. One should also

caution that this correspondence does not link periodic NLS solutions with periodic
NLW solutions.

Exercise 3.3. By taking formal limits of the Lax pair formulation of the
periodic Ablowitz-Ladik system as discussed in Section 1.7, discover a Lax pair
formalism for the one-dimensional cubic defocusing Schrödinger equation (in either
the periodic or nonperiodic settings).

3.1. On scaling and other symmetries

It has long been an axiom of mine that the little things are infinitely
the most important. (Sir Arthur Conan Doyle)

We now describe the concrete symmetries of NLS and NLW; to avoid technical-
ities let us just work with classical solutions for now (we will discuss more general
notions of solution in the next section). The NLS (3.1) enjoys the scaling symmetry

(3.9) u(t, x) �→ λ−2/(p−1)u(
t

λ2
,
x

λ
); u0(x) �→ λ−2/(p−1)u0(

x

λ
)

for any dilation factor λ > 0 (thus time has twice the dimensionality of space), and
the Galilean invariance

(3.10) u(t, x) �→ eix·veit|v|
2/2u(t, x− vt); u0(x) �→ eix·vu0(x)

for any velocity v ∈ Rd (cf. Exercise 2.5). It also enjoys the more mundane sym-
metries of time translation invariance, space translation invariance, spatial rotation
symmetry, phase rotation symmetry u �→ eiθu, as well as time reversal symmetry

u(t, x) �→ u(−t, x); u0(x) �→ u0(x).

In the pseudo-conformal case p = pL2 := 1 + 4
d , one also use Exercise 2.26 to verify

the pseudo-conformal symmetry

(3.11) u(t, x) �→ 1
(it)d/2

u(
1
t
,
x

t
)ei|x|

2/2t

for times t �= 0. This symmetry is awkward to use directly (at least when t0 = 0)
because of the singularity at t = 0; one typically uses the time translation and time
reversal symmetries to move the singularity elsewhere (e.g. to the time t = −1).

Similarly, the NLW (3.2) enjoys the scaling symmetry
(3.12)

u(t, x) �→ λ−2/(p−1)u(
t

λ
,
x

λ
); u0(x) �→ λ−2/(p−1)u0(

x

λ
); u1(x) �→ λ−2/(p−1)−1u1(

x

λ
)

for any dilation factor λ > 0 (thus time and space have equal dimension), and (if
the solution exists globally in time) the Lorentz invariance

(3.13) u(t, x) �→ u(
t− v · x√
1 − |v|2 ,

x− vt√
1 − |v|2 )

for all sub-luminal velocities v ∈ Rd with |v| < 1 (cf. Exercise 2.6); note that the
effect of this invariance on the initial data u0, u1 is rather complicated and requires
solving the equation (3.2). The NLW also enjoys spacetime translation invariance,
spatial rotation symmetry, phase rotation symmetry, conjugation symmetry, and
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time reversal symmetry. In the conformal case p = p
Ḣ

1/2
x

= 1 + 4
d−1 , one also has

the conformal symmetry

u(t, x) �→ (t2 − |x|2)−(d−1)/2u(
t

t2 − |x|2 ,
x

t2 − |x|2 )

inside the light cone |t| < |x|, thanks to Exercise 2.14.
Unlike the Galilean invariance (3.10), the Lorentz invariance (3.13) has the

effect of time dilation - solutions which would ordinarily exhibit some special be-
haviour (e.g. blowup) at a time T will instead do so at a much later time, typically
of the order of T/

√
1 − |v|2. To compensate for this one can compose the Lorentz

transformation with the scaling transformation with λ := 1/
√

1 − |v|2, leading to
the normalised Lorentz invariance

(3.14) u(t, x) �→ (1 − |v|2)1/(p−1)u(t− v · x, x − vt).

Symmetries have many uses. Through Noether’s theorem, they indicate what
conservation laws are available (though certain symmetries, particularly discrete
ones, do not necessarily yield a conservation law). They can give guidance as to
what type of techniques to use to deal with a problem; for instance, if one is trying to
establish wellposedness in a data class which is invariant under a certain symmetry,
this suggests the use of estimates and other techniques which are also invariant
under that symmetry; alternatively, one can “spend” the symmetry by normalising
the solution, for instance in making the solution centred or concentrated at the
origin (or some other specified location) in space, time, or frequency. If the data
class is subcritical with respect to scaling, one can use the scaling symmetry to
trade between time of existence and size of initial data; thus if one establishes a
local wellposedness at a fixed time (say up to time T = 1) for data with small
norm, then one can often also establish local wellposedness at a small time for
large data; typically the time of existence will be proportional to some negative
power of the norm of the data. Conversely, if the data class is supercritical with
respect to scaling (or more generally is lower than the invariant norm associated
to another symmetry), then it is likely that there is a significant obstruction to
obtaining a wellposedness theory below that regularity, and one also expects the
wellposedness theory at that regularity to be rather delicate. The reason for this
is that if the regularity is below the invariant regularity, then one can use the
symmetry to convert bad behaviour arising from large initial data at some time
t > 0 to bad behaviour arising from small initial data at some time less than or
equal to t, where “large” and “small” are measured with respect to the regularity
Hs
x(R

d). Since large initial data would be expected to display bad behaviour very
quickly, one then expects to give examples of arbitrary small initial data which
displays bad behaviour arbitrarily quickly. This can often be used to contradict
certain types of wellposedness that one could hypothesise for this regularity. See
also Principle 3.1 below.

Let us give some sample applications of the symmetry laws. The first is a
blowup result for the pseudoconformal focusing NLS (so µ = −1 and p = pL2

x
=

1+ 4
d ). Recall that this equation has a soliton solution of the form u(t, x) = eitτQ(x)

for any τ > 0, where the ground state Q is a nonnegative Schwartz solution to the
equation

∆Q+ 2Q1+4/d = 2τQ.
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Applying the pseudoconformal transformation (2.33), we obtain the solution

(3.15)
1

(it)d/2
e−it/τei|x|

2/2tQ(x/t).

This solves the NLS equation for all times t �= 0, and in fact lies in every Sobolev
space Hs

x(R
d) for such times, but blows up in a rather dramatic way as t → 0.

Thus the pseudoconformal focusing NLS can lead to blowup even from very smooth
decaying initial data, though we will later see that this is due to the initial datum
being “large” in an L2

x(R
d) sense. This blowup occurs despite the solution being

bounded in L2
x, and despite the conservation of the L2

x norm. Thus for PDE, a
positive definite conservation law is not always sufficient to prevent blowup from
occuring, in marked contrast to the situation for ODE; note that the solution (3.15)
demonstrates rather vividly the lack of compactness of bounded subsets of L2

x(R
d).

Now consider a general NLS. Applying the pseudoconformal transformation in
Exercise 2.26, one no longer expects to recover the original equation; instead, the
transformed field v(t, x) will now obey the equation

(3.16) i∂tv + ∆v = t
d
2 (p−pL2

x
)
µ|v|p−1v

for t �= 0, where pL2
x

:= 1 + 4
d is the pseudoconformal power. We will analyze this

equation (3.16) in more detail later, but for now let us just extract a special class
of solutions to (3.16) (and hence to NLS), by considering solutions v which are
independent of the spatial variable and thus simply solve the ODE

(3.17) i∂tv = t
d
2 (p−pL2

x
)
µ|v|p−1v.

This ODE can be solved explicitly as

v(t, x) = α exp(− iµ|α|
p−1

q
tq)

for any α ∈ C and with q := d
2 (p− pL2

x
)+1, though in the critical-range case q = 0

(so p = 1 + 2
d ) we have instead the solution

v(t, x) = α exp(−i|α|p−1 log |t|).
We can of course invert the pseudoconformal transformation and obtain explicit
solutions to the original NLS for t �= 0, namely

(3.18) u(t, x) =
1

(it)d/2
α exp(

i|x|2
2t

+
iµ|α|p−1

qtq
)

when q �= 0 and

(3.19) u(t, x) =
1

(it)d/2
α exp(

i|x|2
2t

+ iµ|α|p−1 log |t|)

when q = 0. Of course when µ = 0 we recover the explicit solution u(t, x) =
1

(it)d/2α exp( i|x|
2

2t ) to the linear Schrödinger equation (essentially the fundamental
solution8 for that equation). Comparison of these solutions yields the following

8Indeed, one could view (3.18), (3.19) as the “nonlinear fundamental solution” for NLS.
However these solutions are nowhere near as useful as the fundamental solution is for the linear

equation, since we no longer have the principle of superposition in the nonlinear case and so we
cannot build general solutions by superimposing translates of the fundamental solution. Never-
theless, these explicit solutions provide some useful intuition as to the asymptotic behaviour of
the equation for general data.
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heuristic: as t → ±∞, the nonlinear Schrödinger equation should resemble the
linear Schrödinger equation when in the short-range case q > 0 (so p > 1 + 2

d ), but
not in the long-range9 case q < 0 or critical-range case q = 0 (though the divergence
between the two equations should consist primarily of a phase shift, which should
be somehow “logarithmic” in the critical-range case). We will see some justification
of this heuristic later in this chapter, though our understanding here is far from
complete.

Now we observe some applications of the Galilean invariance law (3.10). Let
us begin with a periodic NLS (with d, p and µ = ±1 arbitrary). In this periodic
setting we have the plane wave solutions

(3.20) uα,ξ(t, x) := αeiξ·xei|ξ|
2t/2eiµ|α|

p−1t

for any ξ ∈ 2πZd and α ∈ C; one can view this as the Galilean transform of the
constant-in-space solutions αeiµ|α|

p−1t. Suppose one fixes the frequency parameter
ξ to be large, and considers two distinct solutions uα,ξ, uα′,ξ of the above type with
|α| ∼ |α′|. At time zero we have

‖uα,ξ(0)‖Hs
x(Td), ‖uα′,ξ(0)‖Hs

x(Td) ∼ |α||ξ|s;
‖uα,ξ(0) − uα′,ξ(0)‖Hs

x(Td) ∼ |α− α′||ξ|s

while at any later time t we have

‖uα,ξ(t)‖Hs
x(Td), ‖uα′,ξ(t)‖Hs

x(Td) ∼ |α||ξ|s;
‖uα,ξ(t) − uα′,ξ(t)‖Hs

x
∼ |αeiµ|α|p−1t − α′eiµ|α

′|p−1t||ξ|s.
Thus the Hs

x norms of the solutions uα,ξ and uα′,ξ do not change much in time, but
the Hs

x separation of these solutions can change due to a phase decoherence effect.
Indeed we see that if |α| �= |α′|, then there exists a time t ∼ |α|1−p for which the two
phases become completely decohered, and ‖uα,ξ(t) − uα′,ξ(t)‖Hs

x(Td) ∼ |α||ξ|s. If s
is negative, then by taking α to be large and |ξ| to be comparable to (|α|/ε)−1/s, we
can construct for any δ, ε > 0, a pair of solutions uα,ξ, uα′,ξ to NLS of Hs

x(Td) norm
O(ε) and Hs

x(T
d) norm separation O(δ) at time zero, such that at some later time

t = O(ε) the Hs
x(Td) norm separation has grown to be as large as O(ε). This shows

that for negative s, a pair of solutions can separate in Hs
x(T

d) norm arbitrarily
quickly; more precisely, the solution map u0 �→ u is not uniformly continuous from
Hs
x to C0

tH
s
x([0, T ] × Td) even for arbitrarily small T and for arbitrarily small

balls in Hs
x(T

d). This is a negative result that rules out certain types of strong
wellposedness results for the periodic NLS for negative Sobolev regularities.

One can run a similar argument for nonperiodic focusing NLS, by starting with
the ground state solution eitτQ(x), rescaling it by λ and then applying a Galilean
transform to obtain the moving soliton solution

(3.21) uv,λ(t, x) �→ λ−2/(p−1)ei(x·v+it|v|
2/2+itτ/λ2

Q((x− vt)/λ)

9The terminology here signifies the long-term strength of the nonlinearity and can be justified
heuristically as follows. One can view the nonlinearity in NLS as a potential term with time-
dependent potential µ|u|p−1. Assuming that the nonlinear evolution decays at the same rate as

the linear one, dispersive estimates suggest that |u| should decay like t−d/2. Thus we expect in the
short-range case we expect the potential to be integrable in time, which suggests by Gronwall’s
inequality that the long-term effect of the nonlinearity is bounded.
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for any v ∈ Rd and λ > 0; one can use these solutions to show that the solution map
to NLS (if it exists at all) is not uniformly continuous in Hs

x for certain low s; see
Exercise 3.5. A similar result is also known for the defocusing case, replacing the
soliton solutions with another family of solutions that can be viewed as truncated
versions of the plane wave solutions (3.5); see Section 3.8.

Among all the symmetries, the scale invariance (3.9), (3.12) is particularly im-
portant, as it predicts a relationship between time of existence and regularity of
initial data. Associated to this invariance is the critical regularity sc := d

2 − 2
p−1 .

Note that the scaling (3.9) preserves the homogeneous Sobolev norm ‖u0‖Ḣsc (Rd),
and similarly (3.12) preserves ‖u0‖Ḣsc (Rd) + ‖u1‖Ḣsc−1(Rd). The relationship be-
tween scaling and the inhomogeneous counterparts to these Sobolev norms is a
little more complicated, of course. We refer to regularities s > sc above the critical
norm as subcritical, and regularities s < sc below the critical norm as supercrit-
ical. The reason for this inversion of notation is that higher regularity data has
better behaviour, and thus we expect subcritical solutions to have less pathologi-
cal behaviour than critical solutions, which in turn should be better behaved than
supercritical solutions. The other scalings also have their own associated regulari-
ties; the Galilean symmetry and pseudo-conformal symmetry preserve the L2

x(R
d)

norm, whereas the Lorentz symmetry and conformal symmetries are heuristically
associated to the Ḣ1/2(Rd) × Ḣ−1/2(Rd) norm (see Exercise 2.21).

In general, the relationship between the regularity Hs
x of the initial data, the

scale-invariant regularity Hsc of the equation, the frequencies of the solution, and
the evolution of the solution tends to follow the following informal principles10:

Principle 3.1 (Scaling heuristic). Let u be a solution to either the NLS (3.1)
or NLW (3.2), with initial position u0 in Hs

x (and initial velocity u1 in Hs−1, in
the case of the NLW).

(a) In the subcritical case s > sc, we expect the high frequencies of the solution
to evolve linearly for all time (unless a stronger obstruction than scaling
exists). The low frequencies of the solution will evolve linearly for short
times, but nonlinearly for long times.

(b) In the critical case s = sc, we expect the high frequencies to evolve linearly
for all time if their Hsc norm is small, but to quickly develop nonlinear be-
haviour when the norm is large. (Again, we are assuming that no stronger
obstruction to linear behaviour than scaling exists.) The low frequencies of
the solution will evolve linearly for all time if their Hsc norm is small, but
will eventually develop nonlinear behaviour (after a long period of time)
when the norm is large.

(c) In the supercritical case s < sc, the high frequencies are very unstable and
will develop nonlinear behaviour very quickly. The low frequencies are in
principle more stable and linear, though in practice they can be quickly

10This principle should be taken with a grain of salt. On the one hand, it gives a good
prediction for those equations in which the scaling symmetry is in some sense “dominant”, and
for which the worst types of initial data are given by bump functions. On the other hand, there are

other situations in which other features of the equation (such as Galilean or Lorentz symmetries,
or resonances) dominate, in which case instability can occur even when the scaling heuristic
predicts good behaviour. Conversely, some features of the equation, such as conservation laws or
monotonicity formulae, can provide more stability than the scaling heuristic predicts.
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disrupted by the unstable behaviour in the high frequencies. (This rela-
tively good behaviour of the low frequencies is sometimes enough to obtain
a weak solution to the equation, however, by using viscosity methods to
suppress the high frequencies; see Exercise 3.56.)

Let us now briefly give a heuristic discussion that lends some support to Prin-
ciple 3.1. Let N > 0 be a frequency; frequencies N � 1 correspond to high
frequencies, while frequencies N � 1 correspond to low frequencies. A model ex-
ample of an initial datum u0 of frequency ∼ N is a function which is supported on
a ball B of radius 1/N , does not oscillate too much on this ball, and reaches an
amplitude A on this ball. (For the NLW, one would also need to similarly specify
an initial velocity.) We will assume that this “rescaled bump function” example is
the “worst” type of initial data in the given class (i.e. bounded or small functions
in Hs

x or Hs−1); this assumption corresponds to the caveat given in the above prin-
ciple that no stronger obstructions to linear behaviour exist than the scaling one.
The L2

x norm of such a datum is roughly ∼ AN−d/2, and more generally (from
the Fourier representation of the Hs

x norm) we expect the Hs
x norm of this datum

to be ∼ ANs−d/2; thus if u0 is bounded in Hs
x then A = O(Nd/2−s), and if u0

is small in Hs
x then A � Nd/2−s. Now, both the NLS (3.1) and the NLW (3.2)

contain a linear term ∆u and a nonlinear term µ|u|p−1u. On the ball B (at least
for times close to 0), the linear term has magnitude ∼ N2A, while the nonlinear
term has amplitude ∼ Ap. If N2A � Ap, we thus expect the linear term to dom-
inate, and the solution should behave linearly (cf. Principle 1.37). If Ap � N2A,
we expect the nonlinear term to dominate and so one eventually expects nonlinear
(and unstable) behaviour. The time in which this nonlinear behaviour becomes
apparent can be predicted by comparing u against its time derivative ∂tu or its
second time derivative ∂2

t u. For instance, suppose we have an NLS in which the
nonlinear behaviour dominates, thus ∂tu will be dominated by the nonlinear term
µ|u|p−1u, which has amplitude ∼ Ap. Since u itself has amplitude ∼ A, we expect
the nonlinear behaviour to significantly affect the initial datum after time ∼ A/Ap.
Using these heuristics, one can give informal justification for all three components
(a), (b), (c) if Principle 3.1; see Exercise 3.4.

Table 1. The critical exponents for small dimension. The cases
when a critical exponent corresponds to an algebraic equation (i.e.
p is equal to 3 or 5) are of particular interest.

Dimension L2
x-critical Ḣ

1/2
x -critical Ḣ1

x-critical
1 5 ∞ –
2 3 5 ∞
3 7/3 3 5
4 2 7/3 3
5 9/5 2 7/3
6 5/3 9/5 2

A particular interesting case is when the scale-invariant regularity coincides
with one of the other special regularities, such as the Ḣ1

x norm (associated to
the energy or Hamiltonian), the Ḣ1/2

x norm (associated to the momentum in NLS
and to the symplectic structure, Lorentz invariance, and conformal invariance in
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NLW), and the L2
x norm (associated to the Galilean invariance, pseudoconformal

invariance, and mass in NLS, and being the limiting regularity in NLW to even
make sense of (3.2) distributionally); see Table 1. Thus we isolate as special cases
the Ḣ1

x-critical (or energy-critical) case sc = 1 (thus d ≥ 3 and p = 1 + 4
d−2),

the Ḣ1/2
x -critical case sc = 1/2 (thus d ≥ 2 and p = 1 + 4

d−1 ) and the L2
x-critical

case sc = 0 (thus d ≥ 1 and p = 1 + 4
d). One can also discuss the Ḣ1

x-subcritical
case sc < 1 and the Ḣ1

x-supercritical case sc > 1, etc. Another relevant regularity
in the case of NLW is the Lorentz regularity sl := d+1

4 − 1
p−1 = sc

2 + 1
4 , which is

the regularity which is heuristically associated to the normalised Lorentz invariance
(3.14), and is halfway between the scale-invariant regularity sc and the conformal
regularity 1

2 .

Exercise 3.4. Use the heuristic analysis of bump function initial data, as
described in this section, to give some informal justification to Principle 3.1. (Be
prepared to make a large number of hand-waving assumptions. The important thing
here is to develop the numerology of exponents; rigorous support for these heuristics
will be have to wait until later in this chapter.) In the subcritical case, develop a
heuristic relationship between the Hs

x norm of the initial data and the predicted
time T in which the linear behaviour dominates. (One should get T ∼ ‖u0‖2/(s−sc)

Hs

for NLS and T ∼ (‖u0‖Hs + ‖u1‖Hs−1)1/(s−sc) for the NLW.)

Exercise 3.5. [BKPSV] Let d, p be arbitrary, let µ = +1, and let s < 0 or
s < sc := d

2− 2
p−1 . Using the solutions (3.21), show that for any ε, δ > 0 there exists

a pair of classical solutions u, u′ to (3.1) with Hs
x(R

d) norm O(ε) and Hs
x(R

d) norm
separation O(δ) at time zero, such that at some later time t = O(ε) the Hs

x(Rd)
norm separation has grown to be as large as O(ε). This shows that there is no
uniform wellposedness at this regularity, at least for the focusing regularity.

3.2. What is a solution?

For every complex problem, there is a solution that is simple, neat,
and wrong. (H.L. Mencken, “The Divine Afflatus”)

Before we begin the analysis of our model problems (3.1), (3.2), let us pause to
address a rather fundamental question, namely what it actually means for a field u
to be a solution of either of these two Cauchy problems. This question may sound
philosophical in nature, but the properties associated to making a solution concept
“strong” are well worth establishing rigorously, as they become important in estab-
lishing many of the further properties of equation, such as the global existence and
asymptotics of (classical) solutions.

The question of defining exactly what a solution is is more subtle than it may
first appear, especially at low regularities. The reason for this is that in order
for a solution to a PDE to actually be useful for applications, it is not merely
enough that it exist and solve the equation in some weak sense11 (e.g. in the sense

11This is in marked contrast with the theory of linear differential equations, in which dis-
tributional solutions are very tractable, and can mostly be manipulated as if they were classical

solutions, in large part because they can be expressed as the weak limit of classical solutions. Since
weak convergence is often not preserved under basic nonlinear operations such as multiplication of
two functions, one generally requires in nonlinear applications that a solution be a strong limit of
classical solutions, which usually leads requires that one work with wellposed solutions; see below.
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of distributions), though this is certainly a minimal requirement; one also often
desires additional properties on the solution, which do not automatically follow
from the fact that the equation is solved weakly. We informally describe some of
the most important of these properties12 as follows.

• Existence: Is the solution guaranteed to exist (locally, at least) for all
initial data in a certain class (e.g. Hs

x)?
• Uniqueness: Is the solution the unique object in a certain solution class

(e.g. C0
tH

s
x(I × Rd)) which solves the equation in a suitable sense (e.g.

in a distributional sense)? Is this solution concept compatible with other
notions of solution (i.e. if two solutions to the same equation exist in two
different senses, are they equal to each other)?

• Continuous dependence on the data: Do small perturbations of the initial
datum (in some norm) lead to small perturbations in the solution (in
some other norm)? In other words, is the solution map continuous? One
can also ask for stronger continuity properties such as uniform continuity,
Lipschitz continuity, or analyticity.

• Bounds: If the initial datum is in some class, say Hs
x, can one control

the solution in some other class, e.g. C0
tH

s
x(I × Rd)? In particular, does

one have persistence of regularity: is the solution always as smooth as the
initial datum (as measured in an Hs

x sense)?
• Lifespan estimates: Is there a lower bound on the lifespan of the solution

in terms of the initial data (or in terms of some norm of the initial data,
such as an Hs

x(R
d) norm)? Equivalently, is there a blowup criterion that

gives necessary conditions for the lifespan to shrink to zero? In some cases
one has global existence, which case the lifespan is infinite.

• Approximability by smooth solutions: if the solution is rough, can it be
written as the limit (in some topology) of smoother solutions? If the
initial datum is approximated by a sequence of smooth initial data, do
the corresponding solutions necessarily converge to the original solution,
and in what sense?

• Stability: If one perturbs the equation (thus considering fields which only
solve the original equation approximately), to what extent can these near-
solutions be approximated by the exact solution with the same (or a
nearby) initial datum?

• Structures: Do the conservation laws of the equation, which can be rigor-
ously justified for classical (i.e. smooth and decaying) solutions, continue
to hold for the solution class being studied? Similarly for monotonicity
formulae, symmetries of the equation, etc.

Thus, instead of having a single unified concept of a solution class, one has
instead a multi-dimensional continuum of such classes, ranging from very weak
solution classes (in which the equation solves the equation in a weak sense, or

12For elliptic PDE, another important property that one often desires is that the solution u
is a minimiser, or at least a critical point, of the Lagrangian associated to the PDE, with respect
to various classes of perturbation. One could insist on something similar for nonlinear wave and
Schrödinger equations, but this has not proven to be as fruitful a property for these equations
as in the elliptic case, in large part because of the highly non-convex nature of the Lagrangians
involved. However, the Lagrangian formulation is (formally) linked to important properties such
as conservation laws and monotonicity formulae, which are very desirable properties for a solution
to obey.
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is perhaps a weak limit of smoother solutions or near-solutions, but not much
else), to very strong solution classes, in which one has many or all of the desirable
properties listed above. Generally speaking, it is fairly easy to show existence of
solution in a weak solution class by various limiting arguments (e.g. iteration or
weak compactness arguments), but non-trivial effort is then required to upgrade
those solutions to lie in stronger solution classes.

In this section we shall discuss five notions of solution, which in decreasing order
of strength are classical solution, wellposed Hs

x solution, strong Hs
x solution, weak

Hs
x solution, and distributional solution respectively. In fact, in this monograph we

shall largely work with wellposed and classical solutions, in order to avoid a number
of subtleties involving the weaker notions of solution.

To fix the discussion let us just work with the NLS equation (3.1), and fix
our initial data class to be a Sobolev space Hs

x(R
d). The strongest notion of a

solution is that of a classical solution. These can (broadly speaking) be defined as
solutions which have so much differentiability and decay that there is no difficulty
interpreting the problem (3.1) in a classical sense (i.e. without requiring the theory
of weak derivatives). Furthermore, one has enough regularity and decay available13

to justify all the various formal manipulations associated to the equation, such as
conservation laws, monotonicity formulae, and so forth. The amount of regularity
required to do all this can be quite large; for instance, in order to justify conser-
vation of the Hamiltonian for NLS safely, one requires as much as three orders of
differentiability on the solution, as well as some additional uniformity and decay
conditions. Because of this, one occasionally runs into issues generating a classi-
cal solution theory when the nonlinearity µ|u|p−1u is not very smooth (which can
happen when p is close to 1); in such cases one may need to regularise the non-
linearity before discussing classical solutions. However this issue does not arise for
the algebraic equations, in which p is an odd integer.

It is also easy to establish uniqueness for classical solutions (essentially because
the proof of Theorem 1.14 carries over without difficulty). Here are two typical
such results, one for NLS and one for NLW.

Proposition 3.2 (Uniqueness for classical NLS solutions). Let I be a time
interval containing t0, and let u, u′ ∈ C2

t,x(I × Rd → C) be two classical solutions
to (3.1) with the same initial datum u0 for some fixed µ and p. Assume also that we
have the mild decay hypothesis u, u′ ∈ L∞

t L
q
x(I × Rd) for q = 2,∞. Then u = u′.

Proof. By time translation symmetry we can take t0 = 0. By time reversal
symmetry we may assume that I lies in the upper time axis [0,+∞). Let us write
u′ = u + v. Then v ∈ C2

t,x(I × Rd → C), v(0) = 0, and v obeys the difference
equation

i∂tv + ∆v = µ(|u+ v|p−1(u+ v) − |u|p−1u).

Since v and |u+v|p−1(u+v)−|u|p−1u lie in L∞
t L

2
x(I×Rd), we may invoke Duhamel’s

formula (2.13) and conclude

v(t) = −iµ
∫ t

0

ei(t−s)∆/2(|u+ v|p−1(u+ v) − |u|p−1u)(s) ds

13This is a somewhat vague definition, but in practice we will always apply limiting arguments
to generalise classical solutions to a wider class of wellposed solutions, and so the exact notion of
a classical solution will not be important as long as it is dense in the class of wellposed solutions.
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for all t ∈ I. By Minkowski’s inequality, and the unitarity of ei(t−s)∆, we conclude

‖v(t)‖L2
x(Rd) ≤

∫ t

0

‖(|u+ v|p−1(u+ v) − |u|p−1u)(s)‖L2
x(Rd) ds.

Since u and v are in L∞
t L

∞
x (I × Rd), and the function z �→ |z|p−1z is locally

Lipschitz, we have the bound

‖(|u+v|p−1(u+v)−|u|p−1u)(s)‖L2
x(Rd) �p (‖u‖p

L∞
t L∞

x (I×Rd)
+‖v‖p

L∞
t L∞

x (I×Rd)
)‖v(s)‖L2

x(Rd).

Applying Gronwall’s inequality (Theorem 1.10) we conclude that ‖v(t)‖L2
x(Rd) = 0

for all t ∈ I, and hence u = u′ as desired. �
Note that Exercise 2.22 shows that some sort of decay condition is necessary

in order to establish uniqueness, even when no nonlinearity is present. For NLW
one also has uniqueness of classical solutions, and moreover one can even localise
the uniqueness by exploiting finite speed of propagation:

Proposition 3.3 (Uniqueness and finite speed of propagation for classical
NLW solutions). Let t0 = 0. Let I be a time interval containing 0, and let u, u′ ∈
C2
t,x(I × Rd → C) be two C2 solutions to (3.2) such that the initial data u[0] =

(u(0), ∂tu(0)) and u′[0] = (u′(0), ∂tu′(0)) agree on the ball {x ∈ Rd : |x− x0| ≤ R}.
Then we have u(t, x) = u′(t, x) for all t ∈ I and x ∈ Rd with |x− x0| ≤ R− |t|.

Proof. By spatial translation invariance we may take x0 = 0; by time reversal
symmetry we may restrict attention to times 0 ≤ t ≤ R. By shrinking I if necessary
we may take I to be compact. Write u′ = u + v, then v ∈ C2

t,x(I × Rd → C), v[0]
vanishes on the ball {x ∈ Rd : |x| ≤ R}, and v solves the difference equation

�v = F

where F := µ(|u+ v|p−1(u+ v) − |u|p−1u). Now let us define the local energy E[t]
for 0 ≤ t ≤ R by

E(t) :=
∫
|x|≤R−t

T00(t, x) dx

where T00 := 1
2 |∂tv|2 + 1

2 |∇xv|2 is the linear energy density, thus E(0) = 0. A
computation (which is justified when v is C2) shows that

∂tT00 + ∂jT0j = −Re(F∂tv)

where T0j := −Re(∂jv∂tv) is the energy current. From Stokes’ theorem (and the
fact that v is C2) we conclude

∂tE(t) = −
∫
|x|≤R−t

Re(F∂tv)(t, x) dx+
∫
|x|=R−t

T0jnj − T00 dS

where dS is the surface element and nj := xj/|x| is the outward normal. From
Cauchy-Schwarz we see that |T0jnj | ≤ T00, thus we have

∂tE(t) ≤
∫
|x|≤R−t

|F (t, x)||∂tv|(t, x) dx.

Now since u and v will be bounded on the compact region {(t, x) ∈ I × Rd : 0 ≤
t ≤ R; |x| ≤ R− t}, we see that F = Ou,v(|v(t, x)|). Applying Cauchy-Schwarz we
have

∂tE(t) �u,v (
∫
|x|≤R−t

|v(t, x)|2 dx)1/2(
∫
|x|≤R−t

|∂tv(t, x)|2 dx)1/2.
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By definition of energy we have (
∫
|x|≤R−t |∂tv(t, x)|2 dx)1/2 ≤ E(t)1/2. Writing

v(t, x) =
∫ t
0 ∂tv(s, x) ds and using Minkowski’s inequality and the fact that v(0, x) =

0 when |x| ≤ R, we also see that

(
∫
|x|≤R−t

|v(t, x)|2 dx)1/2 ≤
∫ t

0

E(s)1/2 ds.

Dividing out by E(t)1/2, we conclude that

∂tE(t)1/2 �u,v

∫ t

0

E(s)1/2 ds

which after integration in t (and recalling that E(0) = 0) yields

E(t)1/2 �u,v t

∫ t

0

E(s)1/2 ds.

Applying Gronwall’s inequality (Theorem 1.10) we conclude E(t) = 0 for all 0 ≤
t ≤ R, and the claim easily follows. �

The classical theory is generally sufficient for very smooth initial data (and very
smooth nonlinearities u �→ µ|u|p−1u), but for rougher data one and nonlinearities
must adopt a different approach. Because the differential formulation of the prob-
lem (3.1) requires so much differentiability, it is often better to work instead with
the integral formulation of the equation,

(3.22) u(t) = ei(t−t0)∆/2u0 − iµ

∫ t

t0

ei(t−t
′)∆/2(|u(t′)|p−1u(t′)) dt′;

for NLS and
(3.23)

u(t) = cos((t−t0)
√−∆)u0+

sin((t− t0)
√−∆)√−∆

u1−µ
∫ t

t0

sin((t− t0)
√−∆)√−∆

(|u|p−1u(t′)) dt′

for NLW; these equations can make sense even when u is a tempered distribution
which lies locally in LptL

p
x. We refer to such solutions as distributional solutions

to the equation. When u has sufficient smoothness and regularity, these solutions
coincide with classical solutions, but are more general in the case when u is rough.

Typically, the initial datum u0 will also lie in a Sobolev space such as Hs
x(Rd).

Recall (from the Fourier transform) that if u0 ∈ Hs
x(R

d), then eit∆/2u0 ∈ C0
tH

s
x(R×

Rd) ∩L∞
t H

s
x(R×Rd). Inspired by this, we distinguish two subclasses of distribu-

tional solution:
• A strong Hs

x solution to (3.22) on a time interval I is a distributional
solution which also lies in C0

tH
s
x(I × Rd).

• A weak Hs
x solution to (3.22) on a time interval I is a distributional

solution which also lies in L∞
t H

s
x(I ′ × Rd) for any compact I ′ ⊆ I.

Similarly, we can define a strong Hs
x×Hs−1

x solution to (3.23) to be a distributional
solution which also lies in C0

tH
s
x ∩ C1

tH
s−1
x , while a weak solution lies in L∞

t H
s
x

with one time derivative in L∞
t H

s−1
x .

These definitions correspond to the notions of strong and weak solutions for
ODE discussed in Section 1.1, though unfortunately in the PDE setting it is usually
not known whether these notions are equivalent to each other. Generally speaking,
the category of strong Hs

x solutions is the broadest category of solution in which we
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can hope to have a good existence and uniqueness theory; for weak Hs
x solutions

one typically can hope to have existence but not uniqueness. In some cases it is
possible to use the formula (3.22) to show that all weak solutions are automatically
strong (as in Lemma 1.3) but this generally only happens when s is large (and one
also needs the nonlinearity to be fairly smooth); see for instance Exercise 3.12. As a
rule of thumb, perturbative methods such as Duhamel iteration tend to yield strong
solutions, whereas weak compactness methods such as viscosity methods tend to
only generate weak solutions (see Exercise 3.56).

With strong Hs
x solutions, u(t) and ei(t−t0)∆/2u0 varies continuously in t and

so one can make sense of (3.22) for all times t (as opposed to almost every time
t, or in a weak distributional sense). In particular a strong Hs

x solution obeys the
initial condition u(t0) = u0 in the usual classical sense. Also, the notion of a strong
solution is stable under time translation or time reversal, and one can glue together
two strong solutions with overlapping intervals of existence; see Exercises 3.10, 3.11.

Of course, with such a low level of regularity it is not obvious at all how to
use the equation (3.22) to justify other desirable properties of a solution, such as
conservation laws or uniqueness, even when the solution is known to be a strong
Hs
x solution. To do this one often needs to strengthen the notion of a strong Hs

x

solution even further, by adding some additional properties of the solution map
u0 �→ u. One particularly successful such strengthening is the notion of a wellposed
solution.

Definition 3.4 (Wellposedness). We say that the problem (3.1) is locally well-
posed in Hs

x(Rd) if for any u∗0 ∈ Rd there exists a time T > 0 and an open ball B in
Hs
x(R

d) containing u∗0, and a subset X of C0
tH

s
x([−T, T ]×Rd), such that for each

u0 ∈ B there exists a strong unique solution u ∈ X to the integral equation (3.22),
and furthermore the map u0 �→ u is continuous from B (with the Hs

x topology)
to X (with the C0

tH
s
x([−T, T ] × Rd)). We refer to this strong solution u as the

Hs
x-wellposed solution to the Cauchy problem (3.1) with the specified initial datum

u0. If we can take X = C0
tH

s
x([−T, T ] × Rd) then we say that the wellposedness

is unconditional ; if we can take T arbitrarily large14 we say the wellposedness is
global rather than local. If the time T depends only on the Hs

x norm of the initial
datum we say the wellposedness is in the subcritical sense, otherwise it is in the
critical sense. We say that the wellposedness is uniform if the solution map u0 �→ u
is uniformly continuous from B to X ; similarly we define the notion of Lipschitz
wellposedness, Ck wellposedness for k = 1, 2, . . ., and analytic wellposedness.

One can of course adapt this definition to other equations. For the nonlinear
wave equation (3.2), the initial data class is Hs

x(R
d) × Hs−1

x (Rd) instead of Hs
x,

and the solution should lie in C0
tH

s
x ∩C1

tH
s−1
x instead of C0

tH
s
x, but otherwise the

definition is the same. One can also easily replace the Sobolev space Hs
x with other

variants such as the homogeneous Sobolev space Ḣs
x, though it is advisable to stick

to spaces which are preserved by the linear evolution, since otherwise there is very
little chance that there will be any sort of wellposedness for the nonlinear evolution.
(This is a major reason why we work with the L2

x-based Sobolev spaces Hs
x in the

first place.)

14This is strictly weaker than as asking for T = +∞, which would be a uniformly global
wellposedness assertion which would imply, among other things, that the Hs

x norm of u(t) stays
bounded as t → ∞. Obtaining such uniformly global bounds is possible for certain defocusing

equations, and is a subset of the scattering theory developed in Section 3.6.



122 3. SEMILINEAR DISPERSIVE EQUATIONS

In practice, the space X will be quite explicit; it is typically the space of all
fields in C0

tH
s
x([−T, T ] × Rd) which obey an additional integrability or regularity

condition (i.e. they lie in some additional function space). In some cases one
also imposes a smallness condition in X , though such conditions can usually be
removed by additional arguments (for instance, by shrinking the time interval to
ensure the smallness condition holds, and then using continuity arguments to re-
extend the time interval). The space X is useful for understanding the development
of singularities; typically, a solution needs to leave the space X in order for a
singularity to develop.

Wellposed solutions are highly compatible with classical solutions. If the initial
datum is smooth, then the wellposed solution and classical solution usually coincide;
this usually follows from the uniqueness theory, as well as persistence of regularity
results (which we shall discuss in the next section). If the initial datum is rough,
then by approximating this datum by smooth data and taking advantage of the
continuity properties of the solution one can usually represent the wellposed solution
as the strong limit of classical solutions15 in the C0

tH
s
x topology (and often in other

topologies also). Note that this shows that the wellposed solution is canonical - it
is the unique limit of the classical solutions generated by any sequence of smooth
data converging to the initial datum, and so two wellposed classes of solutions
corresponding to different regularities (or different spaces X) will automatically
coincide on their common domain of initial data. Furthermore, wellposed solutions
are often able to enjoy the conservation laws and other formal identities which
would normally be reserved for classical solutions, by taking appropriate limits. In
some cases one needs to regularise the nonlinearity in addition to the initial datum;
in such situations the continuity of the solution map is not quite sufficient, and
one needs to supplement it with some stability properties of the solution, so that
near-solutions to the equation can be well approximated by genuine solutions. Such
stability properties are of independent interest, both for theoretical reasons (such
as understanding the asymptotic behaviour of solutions), and for physical reasons
(because they help justify the heuristic assumptions that one used to arrive at that
model). We shall see some examples of these properties in Section 3.7.

Another common trick is to use the method of a priori estimates to obtain
control on wellposed solutions. Suppose one wants to show that all wellposed
solutions in a certain class and of a certain size are bounded in some norm Y
by some constant M . Since one can approximate wellposed solutions by classical
solutions, it typically suffices (using tools such as Fatou’s lemma) to obtain the
desired bound for classical solutions only. The Y norm then typically depends
continuously on the time interval I, and so by using a continuity argument in time
one can assume as a bootstrap hypothesis that the solution is bounded in Y by
a larger constant such as 2M . This reduces matters to establishing an a priori
estimate; the desired conclusion is the same, namely that the Y norm is bounded
by M , but now we can make the a priori assumptions that the solution is smooth,
and is already bounded in Y by 2M . These hypotheses can be immensely useful;
the former hypothesis allows one to make all formal computations rigorous, and the
latter hypothesis is often crucial in order to obtain control of nonlinear terms. Also,

15In some cases one has to regularise the nonlinearity µ|u|p−1u by smoothing it out at zero
or tempering its growth at infinity, in order to obtain good classical solutions; we will ignore these
technicalities.
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the method of a priori estimates can also exploit various delicate cancellations (such
as energy cancellations) arising from the structure of the equation, which are not
picked up in some other methods such as iteration methods (because the iterates
do not solve the exact equation and so do not exhibit these cancellations).

One common way to construct wellposed solutions is to use iterative methods,
such as Proposition 1.38. Such methods tend to yield a fairly strong type of well-
posedness, and can reduce the task of constructing solutions to that of verifying a
single multilinear or nonlinear estimate. However, when the regularity of the data
is extremely low, or equation behaves in an extremely nonlinear fashion, then such
methods can break down; indeed there are examples known where solutions still
exist, but one does not have the strong type of wellposedness implied by a iterative
argument (see for instance the discussion on the Benjamin-Ono equation in Sec-
tion 4.4, or of the wave map equation in Chapter 6). In such situations one needs
to either augment the iterative argument (using for instance some sort of gauge
transformation), or else use a completely different approach. One such approach
is the viscosity method (also known as the penalisation, weak compactness, or reg-
ularisation method). In this approach, one approximates the equation (3.1) by a
smoother equation, in which the nonlinearity is smoothed out and bounded, and an
additional dissipation term is added to ensure global existence (forward in time, at
least). This gives a sequence of approximate solutions, which one can demonstrate
to be uniformly bounded in some norm (e.g. the energy norm); the establishment
of such a priori control on the regularised solutions is usually the most difficult
task. One can then use weak compactness to extract a weak limit of these approx-
imate solutions (see for instance Exercise 3.56). This procedure typically produces
a weak solution to the original equation without much difficulty, but it is often
significantly harder to upgrade this solution to a strong solution or to establish
wellposedness properties such as uniqueness, continuous dependence on the data,
or persistence of regularity; also, the conservation laws are often not preserved by
weak limits (though one can often obtain monotonicity of the conserved quantity,
at least, by tools such as Fatou’s lemma), and it often requires a non-trivial amount
of additional effort to establish such laws16.

It is of interest to search for other ways to build solutions beyond the two stan-
dard methods of iteration and regularisation. One variant of the iteration method
which is occasionally useful is the Nash-Moser iteration method, which is a PDE
version of Newton’s method for finding roots of equations. The iterates in this
method tend to lose regularity with each iteration, but this is counteracted by the
extremely rapid convergence of the iteration scheme. For other types of PDE (no-
tably elliptic PDE), variational and topological methods have been very effective in
constructing solutions, but so far these methods have not been particularly success-
ful when applied to nonlinear dispersive or wave equations (though the induction
on energy method, which we discuss in Section 5.4, can be thought of as a type
of variational approach, while the continuity method from Section 1.3 is a crude
example of a topological approach). Another speculative possibility is that prob-
abilistic constructions of solutions, valid for almost all initial data rather than all

16To give an example, the notorious global regularity problem for the Navier-Stokes equations
remains open, despite the construction of global weak solutions by Leray over seventy years ago,
in 1934!
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initial data, may eventually be more powerful than the current deterministic meth-
ods, especially for supercritical equations where the deterministic methods appear
to be useless. This may require utilizing ideas from thermodynamics, such as the
use of invariant Gibbs measures and similar devices.

Exercise 3.6 (Preservation of reality). Show that if a classical solution to a
NLW is real-valued at one time t0, then it is real-valued for all other times for which
the classical solution exists. (Use uniqueness and conjugation invariance.)

Exercise 3.7 (Preservation of symmetry). Let I be a time interval and let
t0 ∈ I. Suppose u ∈ C2(I ×Rd → C) is a classical solution to a NLS (resp. NLW)
such that u(t0) (resp. u[t0]) is spherically symmetric. For NLS, we furthermore
require that u obey the decay conditions in Proposition 3.2. Prove that u(t) is in
fact spherically symmetric for all times t ∈ I.

Exercise 3.8 (Descent of NLS). Suppose that a periodic NLS on a torus Td+1

is locally wellposed in Hs
x(T

d+1) in either the subcritical or critical sense. Show
that the same NLS, but placed on the torus Td of one smaller dimension, is also
locally wellposed in Hs

x(T
d) in the same sense. The same statement also holds for

global wellposedness, and with NLS replaced by NLW (but of course we replace Hs
x

by Hs
x ×Hs−1

x in that case).

Exercise 3.9 (Localised blowup for focusing NLW). Show that for any defo-
cusing NLW there exists smooth compactly supported initial data (u0, u1) for which
the Cauchy problem (3.2) does not admit a global classical solution. (Hint: take
the initial data for (3.6) and truncate it smoothly to be compactly supported. Now
argue by contradiction using Proposition 3.3.)

Exercise 3.10 (Time shifting of strong solutions). Let I be a time interval
containing t0, and let u be a strong Hs

x solution to (3.1) with initial datum u(t0) =
u0. Let t1 be any other time in I, and let u1 := u(t1). Show that u is also a strong
Hs
x solution to (3.1) with initial datum u(t1) = u1. Thus the notion of a strong

solution is independent of the initial time. Obtain a similar result for the NLW
(3.2). Also, show that the field ũ(t, x) := u(−t, x) is a strong Hs

x solution to (3.1)
on the interval −I with initial datum u(−t0) = u0. (These results can fail for weak
solutions; see Exercise 3.15.)

Exercise 3.11 (Gluing of strong solutions). Let I, I ′ be intervals which in-
tersect at a single time t0. Suppose that u, u′ are strong Hs

x solutions to (3.1) on
I × Rd and I ′ × Rd respectively with initial data u(t0) = u′(t0) = u0. Show that
the combined field ũ on (I ∪ I ′)×Rd is also a strong solution to (3.1). Obtain the
similar result for the NLW equation where u and u′ have matching initial positions
and initial velocities. This exercise, combined with Exercise 3.10, shows that there
is no difficulty gluing together strong solutions on adjacent time intervals to create
a unified strong solution.

Exercise 3.12. Let p be an odd integer and s > d/2. Show that every weak
Hs
x solution to (3.1) is also a strong Hs

x solution. (You will need the fact that Hs
x

is an algebra; see Lemma A.8.)

Exercise 3.13 (Local uniqueness implies global uniqueness). Fix p, d, µ, s and
suppose that one knows that for any time t0 and initial datum u0 ∈ Hs

x(Rd), there
exists an open time interval I containing t0 such that there is at most one strong
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Hs
x solution to (3.1) on I × Rd (i.e. one has local uniqueness of strong solutions).

Show that this automatically implies global uniqueness of strong solutions, or more
precisely for any time interval J containing t0 that there is at most one strong Hs

x

solution to (3.1) on J × Rd. (Hint: prove by contradiction and use a continuity
method.)

3.3. Local existence theory

The greatest challenge to any thinker is stating the problem in a
way that will allow a solution. (Bertrand Russell)

We are now ready to construct solutions to NLS and NLW, and analyze the
strength of such solutions, in the senses discussed in Section 3.2. We will not
attempt to give the most complete results here, but instead give a sample of results
which illustrate the basic iteration method17. The underlying idea of this method is
simple - select spaces S and N in which to hold the solution u and the nonlinearity
µ|u|p−1u respectively, at which point the problem reduces to that of establishing
linear and nonlinear estimates in S and N . The selection of these spaces, however,
is something of an art rather than a science; there are some standard spaces that
work well in many situations, and one can analyze individual iterates to suggest
what spaces are likely to work, and which ones will not; however there is certainly
no “universal iteration space” that can cover all cases, and in one usually needs to
tailor the precise spaces to the equation at hand18.

A systematic study of the wellposedness theory for NLS can be found in [Caz2],
and for NLW in [Sog]. A basic heuristic for NLS is that one has local wellposed-
ness in Hs

x(R
d) if and only if s ≥ max(sc, 0), where sc := d

2 − 2
p−1 is the scale-

invariant regularity (and 0 is the Galilean-invariant regularity); the corresponding
heuristic for NLW is that one has local wellposedness in Hs

x(R
d) if and only if

s ≥ max(sc, sl, 0), where sl := d+1
4 − 1

p−1 is the regularity associated to the Lorentz
invariance. This heuristic is only partially accurate (wellposedness can break down
or become weaker when the nonlinearity becomes very rough compared to the reg-
ularity s, and in the case of the NLW there are still some very low regularities and
exponents for which the problem is not fully resolved, see [Tao].

To simplify the notation let us use the time translation invariance to fix the
initial time t0 to equal zero.

17This method seems to be the best method for solving NLS and NLW, at least in the
subcritical and critical settings, with the Strichartz estimates (possibly with some Besov-type
augmentations) being the ideal tool to close the iteration. For the less semilinear equations

studied in later chapters, which contain derivatives in the nonlinearity, the iteration method often
requires more ingenious choices of spaces and estimates, as well as some additional tricks such
as gauge transformations, and thus face some nontrivial competition from other methods such as
viscosity methods or methods based on exploiting energy cancellation to obtain a priori estimates,
which have their own strengths and weaknesses.

18One common way to proceed here is to compute the first few nonlinear iterates in the
Duhamel iteration scheme, and see what spaces one can estimate them in; if one can place them
all in a common space then this suggests what choices of S and N to use. Another way is
to work in reverse, starting with the quantity ‖u‖C0

t Hs
x

(which one needs to control to obtain

wellposedness) and estimating it in terms of other norms of u using the Duhamel formula; in
doing so it will become apparent what types of norms need to be controlled in order to have a
chance of closing the iteration. Typically, one needs to control u in those spaces in which the
linear solution is already known to be controlled in. We will use some of these heuristics when
studying the existence problem for other PDE in later chapters.
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Forcing term

Solution

Nonlinearity F
F(u) in C

in Cu 0

0

Initial datum

Linear evolution

Duhamel
operator

[energy estimates]

[Schauder or 
product estimates]

k,k

k,k
H

HHin0
u k,k

(gains O(T))

(loses O_R(1))

size O(R) size O(R)

Figure 1. The classical energy method iteration scheme; the it-
eration closes if T is sufficiently small depending on R. One can
also replace Hk,k

x by Hs
x for s > d/2 without difficulty.

Let us begin with classical solutions to NLS. It turns out that to construct clas-
sical solutions it is more convenient to work in Sobolev spaces Hs

x(R
d) or weighted

Sobolev spaces Hk,k
x (Rd) (for suitably high values of s, k) than in more classical

spaces such as Ckx(Rd); the main reason for this is that the linear propagator eit∆/2

preserves Hs
x(R

d) and are locally bounded on Hk,k
x (Rd) (see Exercise 2.50) but

does not preserve Ckx(Rd) (cf. Exercise 2.33). To avoid some technicalities, let us
restrict attention for now to algebraic nonlinearities, so that p is an odd integer19.

Proposition 3.5 (Classical NLS solutions). Let p > 1 be an odd integer, let
k > d/2 be an integer, and let µ = ±1. Then the NLS (3.1) is unconditionally
locally wellposed in Hk,k

x (Rd) in the subcritical sense. More specifically, for any R >
0 there exists a T = T (k, d, p, R) > 0 such that for all u0 in the ball BR := {u0 ∈
Hk,k
x (Rd) : ‖u0‖Hk,k

x (Rd) < R} there exists a unique solution u ∈ C0
tH

k,k
x ([−T, T ]×

Rd) to (3.1). Furthermore the map u0 �→ u from BR to C0
tH

k,k
x ([−T, T ] × Rd) is

Lipschitz continuous.
The same statements hold if Hk,k

x is replaced by Hs
x for any s > d/2 (not

necessarily an integer).

Remark 3.6. This proposition implies that for a Schwartz initial datum u0 ∈
Sx(Rd) and an odd integer p one has a maximal Schwartz solution u ∈ C∞

t Sx(I ×
Rd) to any given algebraic NLS for some open interval I containing 0, which is
unique by Proposition 3.2. Note that one can use the equation (3.1) to trade
regularity in space for regularity in time (at a two-for-one conversion ratio), and so
solutions which are Schwartz in space will also be smooth in time.

19When the nonlinearity is rough, it is often necessary to regularise it, for instance by re-
placing |u|p−1u by (ε2 + |u|2)(p−1)/2u for some ε > 0 and then setting ε → 0, in order to have

a concept of a smooth solution that one can use to approximate rough solutions to the original
equation; see for instance Exercise 3.55. In some cases one can use Schauder estimates (Lemma
A.9) as a substitute for product estimates such as (3.24). As these technical issues are rather dull,
we shall try to avoid them as much as possible.
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Proof. The key observations20 are Exercise 2.50, and the fact that the space
Hk,k
x (Rd) is a Banach space algebra:

(3.24) ‖fg‖Hk,k
x (Rd) �k,d ‖f‖Hk,k

x (Rd)‖g‖Hk,k
x (Rd).

We leave this estimate (a variant of (A.18)) as an exercise.
Let us now fix R, and let 0 < T < 1 be a small time to be chosen later. We shall

use Proposition 1.38 with S = N = C0
tH

k,k
x ([−T, T ] × Rd), with linear operator

D : N → S set equal to the Duhamel operator

DF (t) := −i
∫ t

0

ei(t−s)∆/2F (s) ds

and the nonlinear operator N : S → N set equal to

Nu(t) := µ|u(t)|p−1u(t).

(See Figure 1.) From Minkowski’s inequality and Exercise (2.50) we verify the
bound (1.49) with C0 = Ok,d(T ). From the algebra property we see that

‖Nu‖N �k,d,p,R ‖u‖S; ‖Nu−Nv‖N �k,d,p,R ‖u− v‖S
whenever u, v ∈ S are such that ‖u‖S, ‖v‖S �k,d R. If we choose T sufficiently
small depending on k, d, p, R, we can thus apply Proposition 1.38 and conclude
that for all ulin ∈ S with ‖ulin‖S � R there exists a unique solution u ∈ S to (1.48)
with ‖u‖S � R. Applying this in particular to ulin := eit∆/2u0 (and using Exercise
2.50) we obtain a solution to (3.1) (in the Duhamel integral form), with the map
u0 �→ u being Lipschitz continuous from Hk,k

x (Rd).
The above argument establishes uniqueness so long as we restrict the S norm

of solutions S to be O(R). But since the Hk,k norm of u0) is at most R at time
zero, one can in fact obtain unconditional uniqueness in S by a standard continuity
argument. Specifically, let u ∈ S be the solution constructed by the above method,
then we have ‖u‖S ≤ C1R for some absolute constant C1. Let u∗ ∈ S be another
solution. For any 0 ≤ t ≤ T let H(t) be the property that ‖u‖C0

tH
k,k
x ([−t,t]×Rd) ≤

2C1R, and let C(t) be the property that ‖u‖C0
tH

k,k
x ([−t,t]×Rd) ≤ C1R. Then the

assumptions (b),(c),(d) of Proposition 1.21 are clear, and property (a) follows from
the uniqueness theory already established (if T is suitably small). This gives the
unconditional uniqueness.

The same argument works with Hk,k
x replaced by Hs

x since one still has the
crucial algebra property

‖fg‖Hs
x(Rd) �k,d ‖f‖Hs

x(Rd)‖g‖Hs
x(Rd);

see Lemma A.8. �

Remark 3.7. This argument was completely insensitive to the sign µ of the
nonlinearity; this is a typical feature of the local existence theory. The global exis-
tence theory, however, will be much more sensitive to the sign of the nonlinearity.

The above result shows that one has unconditional local wellposedness in
Hs
x(R

d) for an algebraic NLS equation for any s > d/2. This shows (using the
argument in the proof of Theorem 1.17) that given any u0 ∈ Hs

x(Rd), there exists

20Indeed, this argument is quite abstract, and applies to any Banach algebra which is pre-
served by the linear flow. This is known as the semigroup method and has been extensively
developed, see for instance [Kat7].
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a unique maximal interval of existence I and a unique solution u ∈ C0
tH

s
x(I ×Rd).

The size of this interval can only shrink to zero if the Hs
x(Rd) norm of the data

goes to infinity. Hence if I has a finite endpoint T , then the Hs
x(R

d) norm of u(t)
will go to infinity as t approaches T . Thus the maximal interval is necessarily open,
as one cannot possibly continue a solution in C0

tH
s
x at a point where the Hs

x norm
is going to infinity. An identical result also holds in the periodic case Tn.

To rephrase the above discussion, if a solution to NLS (with algebraic nonlin-
earity) is initially in Hs

x(R
d) with s > d/2, then it can be continued in a unique

continuous manner in Hs
x(R

d) so long as the Hs
x(R

d) stays bounded. Let us infor-
mally call a norm X a controlling norm21 for this equation if the boundedness of
this X norm is enough to ensure continuation of smooth solutions. Thus we now
know that any sufficiently high regularity Sobolev norm is a controlling norm for
any algebraic NLS. It is of interest to obtain controlling norms which are as low
regularity as possible. As a rule of thumb, any reasonable norm which is subcritical,
or which is critical and involves some integration in time, has a chance of being a
controlling norm. For instance, we have

Proposition 3.8 (Persistence of regularity). Let I be a time interval contain-
ing t0 = 0, let s ≥ 0, and let u ∈ C0

tH
s
x(I × Rd) be a strong Hs

x solution to
an algebraic NLS equation. If the quantity ‖u‖Lp−1

t L∞
x (I×Rd) is finite, then u(t) is

uniformly bounded in Hs
x, indeed we have

(3.25) ‖u‖L∞
t Hs

x(I×Rd) ≤ ‖u(0)‖Hs
x
exp(Cp,s,d‖u‖pLp−1

t L∞
x (I×Rd)

).

In particular, if I has finite length |I|, then we have

‖u‖L∞
t H

s
x(I×Rd) ≤ ‖u(0)‖Hs

x
exp(Cp,s,d|I|p/(p−1)‖u‖p

L∞
t L

∞
x (I×Rd)

).

Proof. We use the energy method. By time reversal symmetry we may take
I = [0, T ] for some T > 0. From the Duhamel formula

u(t) = eit∆/2u(0) − iµ

∫ t

0

ei(t−t
′)∆/2|u(t′)|p−1u(t′) dt′

and the unitary nature of eit∆/2 on Hs
x(R

d), we conclude from Minkowski’s in-
equality that

‖u(t)‖Hs
x(Rd) ≤ ‖u(0)‖Hs

x(Rd) +
∫ t

0

‖|u(t′)|p−1u(t′)‖Hs
x(Rd) dt

′.

We expand |u(t′)|p−1u(t′) as a polynomial of degree p in u(t′) and its complex
conjugate u(t′). Applying Lemma A.8 repeatedly we have

‖|u(t′)|p−1u(t′)‖Hs
x(Rd) �p,s,d ‖u(t′)‖Hs

x
‖u(t′)‖p−1

L∞
x
.

The claim now follows from Gronwall’s inequality. �

Remark 3.9. In the converse direction, any field in C0
tH

s
x will be locally in

L∞
t L

∞
x and hence in Lp−1

t L∞
x by Sobolev embedding. Thus one can continue a

solution in Hs
x for s > d/2 if and only if the Lp−1

t L∞
x norm remains locally finite;

in particular, if the solution blows up (fails to remain smooth) at some time T∗,
then the solution must become unbounded near the blowup time T∗ (which justifies

21We shall be somewhat vague as to whether X is a spatial norm or a spacetime norm. Both
types of norms are useful types of controlling norms.
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the terminology of “blowup”). Since these blowup criteria are independent of Hs
x,

we thus observe if an initial datum u0 lies both in a lower regularity Sobolev space
Hs1
x and a higher regularity Sobolev space Hs2

x , where s2 > s1 > d/2, then the
solution can be continued in one regularity for precisely the same amount of time
as it can be continued in another; thus it is not possible to develop a singularity
which causes the Hs2

x norm to blow up while the Hs1
x norm remains bounded. This

phenomenon (known as persistence of regularity - if a solution map preserves rough
regularities, then it also preserves smooth regularities) is typical of all regularities
for which one has a strong wellposedness theory, but can fail for regularities that
are excessively low (see Exercise 3.15). Note that from the time reversal symmetry
(and uniqueness) we also see that the regularity cannot spontaneously increase: if
a solution lies in C0

tH
s1
x (I × Rd) and is not in Hs2

x at some initial time t0, then it
will also not be in Hs2

x for any later (or earlier) time. Thus regularity is neither
created nor destroyed in the Sobolev scale, so long as the solution persists. This is
in contrast to dissipative equations such as the heat equation, which is smoothing
when evolved forwards in time and illposed when evolved backwards in time.

Remark 3.10. Observe that the Lp−1
t L∞

x norm that controls the persistence
of regularity here is invariant under the scaling (3.9). This is closely related to the
fact that no factor of |I| appears in (3.25). It has the consequence that the bound
(3.25) holds even for unbounded intervals I, and thus shows that one can keep
the Hs

x norm of a solution u(t) bounded even as t → ±∞, provided that one can
somehow keep the global Lp−1

t L∞
x norm bounded also. This result is an instance of

a general principle, that scale-invariant global spacetime integrability bounds imply
good asymptotic behaviour at infinity; this philosophy will be particularly apparent
in the scattering theory in Section 3.6.

Remark 3.11. The scale-invariance of the controlling norm is a general phe-
nomenon; controlling norms are either critical (invariant with respect to scaling) or
subcritical (they only become scale-invariant if multiplied by some positive power
of the length |I| of the time interval, as is the case for instance with the L∞

t L
∞
x

norm here). All other things being equal, it is preferable to use a critical controlling
norms than a subcritical one (provided of course that a critical controlling norm
can be located in the first place) as they are generally smaller, and can yield global
control on solutions rather than just local control. Norms which are super-critical,
on the other hand, cannot possibly be controlling norms (this would lead to absurd
results, such as the spacetime bounds for large time intervals being smaller than
the bounds for small time intervals). The most famous example of this is the three-
dimensional Navier-Stokes equations, which enjoy boundedness of kinetic energy
but for which global existence of smooth solutions is a major unsolved problem,
in large part because the kinetic energy turns out to be a super-critical quantity
in three spatial dimensions and thus cannot be a controlling norm. In practice,
possession of a bound on a super-critical quantity has proven to be of little use in
the global regularity theory, unless combined with additional information such as
a bound on a subcritical quantity (so that one can interpolate between the two to
obtain critical controlling quantities). More recently, techniques have been devel-
oped to combine super-critical control with existing critical control, to obtain even
better critical control; in particular, in the energy-critical defocusing NLS, the mass
and momentum conservation laws (which are supercritical in this case) can be used
to limit the concentration behaviour of energy towards higher frequencies and thus
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yield control of other critical quantities such as certain spacetime Lebesgue norms.
See Chapter 5.

We now turn from classical solutions to less regular solutions, in particular
considering solutions in Hs

x for s ≤ d/2. In this case, we no longer expect the
solution to lie in L∞

x (Rd) for all time, sinceHs
x no longer embeds into L∞

x . However,
the Strichartz estimates in Theorem 2.3 suggest that one can still lie in time-
averaged L∞

x spaces such as Lp−1
t L∞

x (Rd) for regularities lower than d/2; intuitively,
this reflects the fact that while an Hs

x function can focus much of its “energy” at
one spatial point to create a large L∞

x norm (cf. Proposition A.4), the dispersive
effects of the Schrödinger evolution imply that this focus cannot be maintained for
more than a short period of time. Of course, this is only a heuristic, because the
Strichartz estimates only apply directly to the linear Schrödinger evolution rather
than the nonlinear one, however it does suggest that some sort of iterative argument,
using the Strichartz estimates to treat the nonlinear equation as a perturbation of
the linear one, can work.

To do this, it is convenient to create a single space Ss which captures all the
Strichartz norms at a certain regularity Hs

x simultaneously. We illustrate this first
with the L2

x theory. We introduce the Strichartz space S0(I × Rd) for any time
interval I, defined as the closure of the Schwartz functions under the norm22

‖u‖S0(I×Rd) := sup
(q,r) admissible

‖u‖Lq
tL

r
x(I×Rd),

where admissibility was defined in Theorem 2.3. In particular the S0 norm controls
the C0

t L
2
x norm. This norm is a Banach space and has a dual N0(I × Rd) :=

S0(I × Rd)∗; by construction we see that

‖F‖N0(I×Rd) ≤ ‖F‖
Lq′

t L
r′
x (I×Rd)

whenever the right-hand side is finite. The Strichartz estimates in Proposition 2.3
can then be combined into a unified estimate

(3.26) ‖u‖S0(I×Rd) �d ‖u(t0)‖L2
x(I×Rd) + ‖F‖N0(I×Rd)

whenever t0 ∈ I and iut+ 1
2∆u = F . Because of this estimate, one often expects to

place L2
x solutions of NLS in the space S0, at least provided that one has some hope

of placing the nonlinearity F = µ|u|p−1u in the companion space N0. A typical
application of this estimate is

Proposition 3.12 (Subcritical L2
x NLS solutions). [Tsu] Let p be an L2

x-
subcritical exponent (so 1 < p < 1 + 4

d) and let µ = ±1. Then the NLS (3.1)
is locally wellposed in L2

x(R
d) in the subcritical sense. More specifically, for any

R > 0 there exists a T = T (k, d, p, R) > 0 such that for all u0 in the ball
BR := {u0 ∈ L2

x(R
d) : ‖u0‖L2

x(Rd) < R} there exists a unique strong L2
x solu-

tion u to (3.1) in the space S0([−T, T ]×Rd) ⊂ C0
t L

2
x([−T, T ]×Rd). Furthermore

the map u0 �→ u from BR to S0([−T, T ]× Rd) is Lipschitz continuous.

22In the case d = 2 case, the set of admissible exponents is not compact, and so one has

to truncate the supremum, for instance restricting q ≥ 2 + ε for some ε > 0, in order for the
Strichartz constants to be uniform in the exponent. Also, in some endpoint applications it is more
convenient to strengthen the norms S0, N0 to a certain Besov-space version of themselves. We
ignore these technicalities to simplify the exposition.
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Forcing term

SolutionInitial datum

in0
u L

2
u in S0

Solution

u in C   L
0 2

Solution

u in L   L
8 4

F
[Holder]

F(u) in L   L   

Forcing term

8/3 4/3
F(u) in L   L   

8/7 4/3
[Holder in 

time]

Forcing term

F(u) in N
0

(gain power of T)

[Strichartz estimates]

Figure 2. An iteration scheme in L2
x(R) for the the one-

dimensional cubic NLS d = 1, p = 3 (which is L2
x-subcritical), so

that q = 8 and r = 4. In all the iteration schemes presented here,
the sign µ of the nonlinearity is irrelevant. The subcritical nature
of the equation allows for a gain of a power of T at some stage.
This is not the only, or even the simplest, iteration scheme avail-
able for this equation, but it is rather representative. Note that the
fact that u was a strong solution (i.e. u ∈ C0

t L
2
x) is a byproduct of

the argument but is not otherwise used in an essential way in the
proof.

Remark 3.13. One can weaken the space S0([−T, T ]×Rd) somewhat and still
obtain uniqueness (see [CWeis], [CWeis2]). However, it is not known if one can
replace S0 by C0

t L
2
x and thus obtain an unconditional wellposedness result. In the

next section we shall extend this local existence result to a global existence result.

Proof. We modify the proof of Proposition 3.5. Again we fix R and choose
T > 0 later. We will apply Proposition 1.38 for a suitable choice of norms S,N and
some ε > 0; a specific instance of our scheme in the case d = 1, p = 3 is described in
Figure 2. One such choice is to set S = S0([−T, T ]×Rd) and N = N0([−T, T ]×Rd).
In order to place the ulin in Bε/2, we see from the Strichartz estimate (3.26) that
we need to take ε = C1R for some large constant C1 > 0 (depending only on d).
The estimate (1.49) also follows from (3.26) (for some large C0 > 0 depending on
d), so it remains to verify (1.50). In other words, we need to show that

‖|u|p−1u− |v|p−1v‖N0([−T,T ]×Rd) ≤
1

2C0
‖u− v‖S0([−T,T ]×Rd)
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whenever ‖u‖S0([−T,T ]×Rd), ‖v‖S0([−T,T ]×Rd) ≤ C1R. It is convenient to introduce
the exponent pair (q, r) by solving the equations

2
q

+
d

r
=
d

2
;

p

r
=

1
r′
.

One can easily check using the hypothesis 1 < p < 1 + 4
n that we have 2 < q <

r < ∞, so in particular (q, r) is admissible. In particular, we can estimate the N0

norm by the Lq
′
t L

r′
x norm. Since q < r, we see that p

q >
1
q′ , so we may replace the

Lq
′
t norm by the Lq/pt norm by paying a factor of Tα for some α > 0. If we then

use the elementary estimate

(3.27) ||u|p−1u− |v|p−1v| �p |u− v|(|u|p−1 + |v|p−1)

and Hölder’s inequality, we conclude

‖|u|p−1u− |v|p−1v‖N0([−T,T ]×Rd)

�p T
α‖u− v‖Lq

tL
r
x([−T,T ]×Rd)(‖u‖Lq

tL
r
x([−T,T ]×Rd) + ‖v‖Lq

tL
r
x([−T,T ]×Rd))

p−1

�p,C1,R T
α‖u− v‖Lq

tL
r
x([−T,T ]×Rd)

≤ Tα‖u− v‖S0([−T,T ]×Rd)

Thus we obtain (1.50) if T is chosen sufficiently small depending on p, C1, R. We
can then apply Proposition 1.38 to construct a solution in S to (3.1) with norm
at most C1R/2, which is unique among all solutions with norm at most C1R, and
the map u0 �→ u will be Lipschitz continuous. The requirement that the norm be
at most C1R can be dropped from the uniqueness conclusion by using a continuity
argument as in Proposition 3.5. �

In the critical case p = 1 + 4
d one still has wellposedness, but in the critical

sense (so that the time of existence T depends on the profile of the datum and not
just on the norm). More precisely, we have

Proposition 3.14 (Critical L2
x NLS solutions). [Tsu] Let p be the L2

x-critical
exponent p = 1 + 4

d and let µ = ±1. Then the NLS (3.1) is locally wellposed
in L2

x(R
d) in the critical sense. More specifically, given any R > 0 there exists

ε0 = ε0(R, d) > 0, such that whenever u∗ ∈ L2
x(Rd) has norm at most R, and I is

a time interval containing 0 such that

‖eit∆/2u∗‖L2(n+2)/n
t,x (I×Rd)

≤ ε0

then for any u0 in the ball B := {u0 ∈ L2
x(R

d) : ‖u0 − u∗‖L2
x(Rd) ≤ ε0} there exists

a unique strong L2
x solution u ∈ S0(I × Rd) to (3.1), and furthermore the map

u0 �→ u is Lipschitz from B to S0(I × Rd) (of course, the Lipschitz constant will
depend on u∗).

This proposition is proven similarly to Proposition 3.12 and is left to Exercise
3.18. Note that if the initial datum is sufficiently small in L2

x norm, then this Propo-
sition, combined with Strichartz estimates, yields global existence in time. If the
initial datum is instead large, the Proposition combined with Strichartz estimates
will still give local existence, because the global L2(n+2)/n

t,x norm of eit∆/2u∗ will be
finite, and hence can be localised to be small by choosing a sufficiently small time
interval.
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u in S0

Solution
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F
[Holder]

F(u) in L   L   
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4/3

Forcing term

F(u) in N
0

4

4/3

(large norm)

(large norm)

(small norm)

(small norm)(small norm)
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[Strichartz estimates]

Figure 3. An iteration scheme in L2
x(R

2) for the two-dimensional
cubic NLS d = 2, p = 3 (which is L2

x-critical). For small data one
can simplify the scheme somewhat, but for large data it is impor-
tant that the S0 is allowed to be large, while the L4

t,x component
of the S0 kept small; thus the main loop of the iteration should
involve the L4

t,x norm more than once in order to close the argu-
ment, because no gain of a power of T is available in the critical
setting. This also makes the L4

t,x norm a controlling norm for the
evolution.

This proposition and the preceding one should be compared against Principle
3.1. It turns out that the L2

x theory becomes bad for supercritical powers p > 1+ 4
d ;

see Section 3.8 for further discussion and results.
Similar results hold for other regularities, such as H1

x. Here it is convenient to
use the norms

‖u‖S1(I×Rd) := ‖u‖S0(I×Rd) + ‖∇u‖S0(I×Rd)

and
‖u‖N1(I×Rd) := ‖u‖N0(I×Rd) + ‖∇u‖N0(I×Rd)

Note that as the Schrödinger equation commutes with derivatives, we see from
(3.26) that

(3.28) ‖u‖S1(I×Rd) �d ‖u(t0)‖H1
x(I×Rd) + ‖F‖N1(I×Rd).

Let us give two sample results in dimension d = 3, in which theH1
x-critical exponent

is the quintic one p = 5:



134 3. SEMILINEAR DISPERSIVE EQUATIONS

Initial datum

in0
u H

1
Solution

u in S

Solution
0

F

Forcing term

u in C   H

Solution
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10 1,30/13

Solution

u in L   L[Sobolev]

[Leibnitz &
Holder]

10

F(u) in L      WF(u) in N
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Forcing term Forcing term
2

F(u) in L  W
1,6/5

(gain power of T)
[Holder in time]

5

10/3 1,6/5

1

1

[Strichartz estimates]

Figure 4. An iteration scheme in H1
x(R

3) for the three-
dimensional cubic NLS d = 3, p = 3 (which is H1

x-subcritical).
This is similar to Figure 2; besides the changes in numerology,
the main new feature is the appearance of the Leibnitz rule and
(non-endpoint) Sobolev embedding to handle the additional deriv-
atives.

Proposition 3.15 (H1
x(R

3) subcritical NLS solutions). Let µ = ±1. If 2 ≤
p < 5, then the NLS (3.1) is locally wellposed in H1

x(R3) in the subcritical sense.

Remark 3.16. For this Proposition and the next, the reader may wish to
refer back to the Strichartz “game board” for Schrödinger equations on H1

x(R3)
from Figure 1 of Chapter 2, and see how the various “moves” of Leibnitz, Hölder,
Sobolev, and Strichartz affect the “game pieces” u, ∇u, F (u), etc. on this board.
(The objective of the iteration “game” is to construct a set of assumptions (thus
placing game pieces in various spaces with various norm bounds) on the solution,
such that it is possible to apply a legal sequence of moves and end up with all the
game pieces returning to the same spaces but with better estimates.)

Proof. (Sketch) We apply Proposition 1.38 with S = S1([−T, T ]×R3), N =
N1([−T, T ] × R3). By arguing as in Proposition 3.12, we will be done as soon as
we show that

‖|u|p−1u− |v|p−1v‖N1([−T,T ]×R3) �p,R T
α‖u− v‖S1

x([−T,T ]×R3)

for some α = α(p) > 0, whenever the S1
x norms of u, v are O(R) for some R > 0.

Let us omit the domain [−T, T ]× R3 from the notation for brevity. Choosing the
admissible exponents (10, 30/13) for the S1

x norm and (2, 6) for the N1 norm, it
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suffices to show that

‖∇k(|u|p−1u− |v|p−1v)‖
L2

tL
6/5
x

�p,R T
α‖u− v‖

L10
t W

1,30/13
x

for k = 0, 1. Let us just deal with the higher order case k = 1, which is the
more difficult of the two23. Observe that the gradient of |u|p−1u can be written
as F1(u)∇u + F2(u)∇u, where F1, F2 : C → C are functions which grow like
Fj(z) = Op(|z|p−1), and which have the Lipschitz bound ∇Fj(z) = Op(|z|p−2). Let
us just consider the contribution of the F1 terms to the above expression, so we
need to show

‖F1(u)∇u− F1(v)∇v‖L2
tL

6/5
x

�p,R T
α‖u− v‖

L10
t W

1,30/13
x

.

From the Lipschitz bound (and the hypothesis p ≥ 2) we have

F1(u)∇u−F1(v)∇v = Op((|u|p−1+|v|p−1)∇(u−v))+Op((|u|p−2+|v|p−2)(u−v)∇u).

We estimate the L2
tL

6/5
x norm by the L10/p

t L
6/5
x norm, gaining a power of T (here

we use the fact that p < 5), and use Hölder to estimate

‖F1(u)∇u− F1(v)∇v‖L2
tL

6/5
x

� Tα(‖u‖p−1

L10
t L

5(p−1)/2
x

‖∇(u− v)‖
L10

t L
30/13
x

+ ‖u‖p−2

L10
t L

5(p−1)/2
x

‖u− v‖
L10

t L
5/2p
x

‖∇u‖
L10

t L
30/13
x

).

From Sobolev embedding and the hypothesis 2 ≤ p < 5 we have

‖u‖
L10

t L
5(p−1)/2
x

� ‖u‖
L10

t W
1,30/13
x

and the claim then follows from the hypothesised bounds on u, v. (See Figure 4 for
an illustration of the scheme in the case p = 3.) �

There is a version of this argument available in the limit p = 5:

Proposition 3.17 (Ḣ1
x(R3) critical NLS solutions). Let µ = ±1 and p = 5.

Then the NLS (3.1) is locally wellposed in Ḣ1
x(R

3) in the critical sense. More
precisely, given any R > 0 there exists ε0 = ε0(R) > 0, such that whenever u∗ ∈
Ḣ1
x(R

3) has norm at most R, and I is a time interval containing 0 such that

‖eit∆/2u∗‖L10
t,x(I×R3) ≤ ε0

then for any u0 in the ball B := {u0 ∈ Ḣ1
x(R3) : ‖u0 − u∗‖Ḣ1

x(R3) ≤ ε0} there
exists a unique strong Ḣ1

x solution u ∈ Ṡ1(I × R3) to (3.1), and furthermore the
map u0 �→ u is Lipschitz from B to Ṡ1(I × R3). Here ‖u‖Ṡ1 := ‖∇u‖S0 is the
homogeneous counterpart to the S1 norm.

We leave the proof of this to the exercises. Note that the L10
t,x norm is controlled

(via Sobolev embedding) by the L10
t Ẇ

1,30/13
x norm, which in turn is controlled by

the Ṡ1 norm. From Strichartz estimates we thus conclude that

‖eit∆/2u∗‖L10
t,x(R×R3) � ‖u∗‖Ḣ1

x(R3),

and thus Proposition 3.17 implies global wellposedness for quintic NLS on R3 with
small energy, and local wellposedness (in the critical sense) for large energy. Again,
this proposition and the preceding one should be compared against Principle 3.1.

23A general principle in the local-in-time theory is that the highest order terms are always
the most difficult to estimate, so that once those are dealt with the lower order terms should be
treatable by a modification of the argument.
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Figure 5. An iteration scheme in H1
x for the three-dimensional

quintic NLS d = 3, p = 5 (which is H1
x-critical). This rather tricky

scheme is similar to Figure 4 but with homogeneous norms, and
with certain norms identified as being small to compensate for the
lack of a Hölder in time (cf. Figure 3). It will be important that
the smallness in L10

t,x is exploited more than once in order to close
the iteration properly.

In the supercritical case p > 5, the H1
x perturbation theory breaks down com-

pletely; again, see Section 3.8. However in the defocusing case with 5 < p < 6 one
can still construct global weak H1

x solutions by a weak compactness method; see
Exercise 3.56.

Similar wellposedness results exist for the NLW equation, and for the periodic
NLS equation; we leave this to the exercises. One can briefly summarise (and
oversimplify) the known results for local wellposedness as follows. For NLS, one
has local wellposedness in Hs

x(R
d) as long as s ≥ 0 and the nonlinearity24 is Hs

x-
subcritical or Hs

x-critical, though in the latter case the wellposedness is in the
critical sense (the time of existence depends on the profile of the datum rather than
the norm, but for small norm one has global existence). See [CWeis2], [Caz2]. For
NLW, one has a similar result but with an additional constraint25 s ≥ sl, where sl is

24There is also a technical smoothness condition required on the nonlinearity in the non-
algebraic case; see [CWeis2], [Caz2].

25Again, we need a smoothness condition on the nonlinearity. Also this result is not fully
established in high dimension n ≥ 4 when s is very close to zero, for technical reasons; see [Tao].
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the Lorentz regularity sl := d+1
4 − 1

p−1 ; this constraint is only relevant in the H1/2
x -

subcritical cases p < 1 + 4
d−1 ; see [LSog], [Sog]. For periodic NLS, the situation

is much less well understood, due to the lack of sharp Strichartz estimates in this
setting; see [Bou]. (The local theory for periodic NLW is essentially identical to
non-periodic NLW; see Exercise 3.24.)

Exercise 3.14. Prove (3.24). (Hint: use the Leibnitz rule, Hölder, Sobolev,
and Gagliardo-Nirenberg, controlling the lower order terms before moving on to
the higher ones. A Littlewood-Paley approach is possible but somewhat lengthy
because of the need to continually commute the Littlewood-Paley operators with
weights such as 〈x〉k.)

Exercise 3.15. Using the Fourier transform, show that the solution (3.15) to
the pseudoconformal focusing NLS blows up in Hs

x for any s > 0 as t → 0, but
stays bounded in L2

x, and even goes to zero in Hs
x for s < 0. (This reflects the fact

that this equation is locally wellposed in the subcritical sense in Hs
x for s > 0, is

locally wellposed in the critical sense in L2
x, and is illposed in Hs

x for s < 0.) Using
this, show that when s < 0, one no longer has uniqueness for weak Hs

x solutions,
and that Exercise 3.10 also breaks down for weak Hs

x solutions.

Exercise 3.16. Let u ∈ Ṡ1(I × R3) be an H1
x-wellposed solution to quintic

NLS (so p = 5 and d = 3), and suppose that u(t0) ∈ Hk(R3) for some t0 ∈ I and
some integer k ≥ 0. Show that u(t) ∈ Hk(R3) for all t ∈ I, and in fact

‖u(t0)‖Hk(R3) �‖u‖Ṡ1(I×R3)
‖u(t0)‖Hk(R3).

(Hint: Let M := ‖u‖Ṡ1(I×R3). Subdivide I into time intervals Ij where the L10
t,x

norm on Ij is small compared withM . Then use Strichartz estimates and continuity
arguments to establish Sk control on each Ij .)

Exercise 3.17 (Unconditional uniqueness). Let u, v ∈ C0
t Ḣ

1
x(I×R3) be strong

H1
x solutions to quintic NLS (so p = 5 and d = 3) with u(t0) = v(t0) for some

t0 ∈ I. Show that u = v. (Hint: Let J be a small time interval containing t0,
and use Strichartz estimates to control ‖u − v‖L2

tL
6
x(J×R3) in terms of itself and

‖u − v‖L∞
t L6

x(J×R3). Then use the continuity of u − v in Ḣ1
x and hence in L6

x to
close the argument. To extend from J back to I, use the continuity method.) In
particular, this shows that the H1

x-wellposed solution given by Proposition 3.17 is
the only strong H1

x solution. One in fact has unconditional uniqueness for strong
H1
x solutions for all H1

x-critical and H1
x-subcritical equations; see [Kat9], [Caz2],

[TV].

Exercise 3.18 (L2
x-critical wellposedness). Prove Theorem 3.14. (Hint: there

are now two norms one wishes to place the solution u in: the S0 norm, and the
L

2(n+2)/n
t,x norm. The solution will be small in the latter norm but can be large in

the former norm. To account for this, one either has to apply Proposition 1.38 with
an artificial norm such as

‖u‖S := δ‖u‖S0 + ‖u‖
L

2(n+2)/n
t,x

for some small δ, or else use work with the iteration scheme directly and establish
bounds on all the various norms at each stage of the iteration. See also Figure 3.)
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Solution

Forcing term

(gain power of T)
[Holder in time]

0

F(u) in L   L
1 2

F

Forcing term

Solution

u in C   L
0 6

F(u) in C   L
0 2

[energy estimates]
[Holder]

[Sobolev]
u  in L 1 

2 
u in C  L 

1

u0 in H
1

2
u in C  H1

Initial data

Figure 6. A simple iteration scheme in H1
x × L2

x, based on the
energy estimate, for the three-dimensional cubic NLW d = 3, p = 3.
For higher powers p, Strichartz estimates and spaces are needed.

Exercise 3.19 (H1
x-critical wellposedness). Prove Proposition 3.17. (You may

find Figure 5 to be helpful.)

Exercise 3.20. Show that the cubic NLS on the circle T is locally wellposed
in L2

x(T) in the subcritical sense. (Hint: use Exercise 2.72.) Also, show persistence
of regularity, or more precisely if the initial datum lies in Hk

x (T) for some positive
integer k, then the local L2

x(T) solution constructed by the iteration method is in
fact a strong Hk

x (T) solution.

Exercise 3.21 (Classical local wellposedness of NLW). Show that an algebraic
NLW is unconditionally locally wellposed inHs

x×Hs−1
x for s > d/2 in the subcritical

sense, thus for eachR > 0 there exists a T = T (k, d, p, R) > 0 such that for all initial
data (u0, u1) in the ball BR := {(u0, u1) ∈ Hs

x(Rd) × Hs−1
x (Rd) : ‖u0‖Hs

x(Rd) +
‖u1‖Hs

x(Rd) < R} there exists a unique classical solution u ∈ C0
tH

s
x([−T, T ]×Rd)∩

C1
tH

s−1([−T, T ] × Rd) to (3.1). Furthermore the map (u0, u1) �→ u is Lipschitz
continuous. (Hint: adapt the proof of Proposition 3.5, and use (2.29).) Show also
that the solution can be continued in time as long as u stays bounded in spacetime.

Exercise 3.22 (H1
x(R

3) subcritical NLW solutions). Let µ = ±1 and 2 ≤
p < 5. Show that the NLW (3.2) is locally wellposed in H1

x(R
3) × L2

x(R
3) in the

subcritical sense. (Hint: there are many schemes available. The simple scheme
Figure 6, that does not use Strichartz estimates and which dates back to [Jor],
only works up to p ≤ 3; for higher p one needs to use spaces that involve some
integration in time. You may also wish to review Figure 2 from Chapter 2, and
peek at Figure 4 from Chapter 5.) For the critical case p = 5, see Exercise 5.1.

Exercise 3.23. Let d ≥ 3, µ = ±1, and let p := 1 + 4
d−2 be the Ḣ1

x-critical
power. Show that for any u0 ∈ H1

x(R
d) with sufficiently small norm, there exists a

unique global solution u ∈ S1(R × Rd) to the NLS (3.1) with the specified initial
datum. (Hint: for 3 ≤ d ≤ 6, one can modify the proof of Proposition 3.17 to
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accomodate the inhomogeneous Sobolev and Strichartz norms. For d > 6, we have
p < 2 and there is now a difficulty obtaining a contraction mapping. However, one
can still construct iterates, show that they are bounded in S1(R×Rd), and converge
locally in time in S0(I ×Rd). A variant of this argument then gives uniqueness, at
least locally in time, which can then be extended to be global in time by continuity
arguments. See [CWeis2], [TV] for a more thorough treatment of this equation.)

Exercise 3.24. Suppose that an NLW on Rd is known to be locally wellposed
in Hs

x×Hs−1
x in the subcritical sense for some s ≥ 0. Assume also that one has the

finite speed of propagation result, Proposition 3.3, for Hs
x ×Hs−1

x -wellposed solu-
tions. (In practice, this hypothesis can either be deduced from the corresponding
result for classical solutions by a limiting argument, or else by direct inspection of
the iterates used to construct the wellposed solution.) Show that the corresponding
periodic NLW on Td is also locally wellposed in Hs

x ×Hs−1
x . (You may find Exer-

cise A.18 to be useful.) This type of descent argument does not always work in the
nonperiodic setting, especially for large times; indeed, it is quite possible for the
behaviour of an equation for large, localized data to be better in higher dimensions
than in lower ones, due to the increased dispersion available.

Exercise 3.25 (Analytic wellposedness). Consider an algebraic NLS, and let
s > d/2 and R > 0. By the Hs

x version of Proposition 3.5, we know that there
exists T = Td,p,s > 0 such that every u0 ∈ Hs

x(R
d) with norm at most R extends

to a strong Hs
x solution u ∈ C0

tH
s
x([0, T ]×Rd). Show that if T is small enough, the

map u0 �→ u is in fact an real analytic map, thus there is a power series expansion
u =

∑∞
k=0 Nk(u0, . . . , u0) which converges absolutely in C0

tH
s
x([0, T ] × Rd), where

for each k, Nk is a k-multilinear operator fromHs
x(R

d) to C0
tH

s
x([0, T ]×Rd). (Hint:

you can adapt the proof of the Cauchy-Kowalevski theorem, see Exercise 1.1.) One
consequence of analyticity is that the solution map is also infinitely differentiable
from Hs

x to C0
tH

s
x.

3.4. Conservation laws and global existence

The journey of a thousand miles begins with one step. (Lao Tzu)
The wellposedness theory of the previous section allowed us to use iterative

methods to construct local-in-time solutions to NLS and NLW given suitable reg-
ularity assumptions on the initial data; if the datum was also small in a critical
norm (e.g. small in L2

x norm for the L2
x-critical NLS, or small in Ḣ1

x norm for the
H1
x-critical NLS) then one obtained a global solution also. These methods were

perturbative in nature (using the Duhamel formula to approximate the nonlinear
evolution by the linear evolution) and thus do not work directly for large data and
long times (since one expects the evolution to be genuinely nonlinear in this case).
However, in these cases one can use non-perturbative tools to gain enough control
on the equation to prevent the solution from blowing up. In this section we describe
the most important tool for doing this, namely the conservation laws.

As before, we begin by discussing the non-linear Schrödinger equation (3.1). In
this case we have two independent conservation laws, namely energy conservation
and mass/momentum conservation26. The latter can be most effectively described

26In the special case of the one-dimensional cubic NLS (d = 1, p = 3), it turns out that
the equation is completely integrable and there are in fact infinitely many conservation laws, see
Exercise 3.36.
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by pseudo-stress-energy tensor Tαβ , defined for α, β = 0, 1, . . . , d by by

T00 = |u|2
T0j = Tj0 = Im(u∂xju)

Tjk = Re(∂xju∂xk
u) − 1

4
δjk∆(|u|2) +

(p− 1)µ
p+ 1

δjk|u|p+1.

If the solution is sufficiently smooth, one easily verifies the local conservation laws
(2.35); see Exercise 3.26. In particular, for smooth decaying solutions, this leads to
conservation of total mass M [u(t)], defined by

(3.29) M [u(t)] :=
∫
Rd

T00(t, x) dx =
∫
Rd

|u(t, x)|2 dx

and total momentum �p[u(t)] = (p1[u(t)], . . . , pd[u(t)]), defined by

pj [u(t)] :=
∫
Rd

T0j(t, x) dx =
∫
Rd

Im(u∂xju) dx;

again, see Exercise 3.26. As in Section 2.4, the pseudo-stress-energy tensor also
yields many other important conservation laws and montonicity formulae; we will
develop some of these later in this chapter.

The above conservation laws are initially only justified for smooth decaying
solutions. However, if the conservation law is controlled by an Hs

x norm, and one
has a satisfactory wellposedness theory at Hs

x, then there is a standard limiting
argument that allows one to extend these conservation laws to these Hs

x-well posed
solutions. We illustrate this principle with the example of the one-dimensional
cubic NLS:

Proposition 3.18 (Conservation law for a wellposed solution). Let d = 1,
p = 3, µ = ±1. Let u ∈ S0(I × Rd) ⊆ C0

t L
2
x(I × Rd) be a strong solution to (3.1)

defined on some time interval I. Let the total mass M [u(t)] be defined by (3.29).
Then M [u(t)] = M [u(t0)] for all t0, t ∈ I.

Proof. Since I is the increasing union of open intervals we may assume with-
out loss of generality that I is open. Fix t0 ∈ I. Since u ∈ C0

t L
2
x(I × R), the set

of times {t ∈ I : M [u(t)] = M [u(t0)]} is closed in I, and it clearly contains t0, so it
suffices by the continuity method to show that this set is open. In other words, it
suffices to show that for any t1 ∈ I, that we have M [u(t)] = M [u(t1)] for all times
t in a neighbourhood of t1.

By time translation invariance we can take t1 = 0. Set u0 := u(0). We
can approximate u0 as the limit in L2

x(R
d) of a sequence u(n)

0 ∈ H100
x (Rd) (say)

of smooth initial data, which will be uniformly bounded in L2
x(R

d). Applying
Proposition 3.12, we can obtain a time interval [−T, T ] ⊂ I independent of n, and
strong solutions u(n) ∈ S0([−T, T ] × Rd) to (3.1) with initial data u(n)(0) = u

(n)
0 .

Since u
(n)
0 converges to u0 in L2

x, the uniqueness and continuity conclusions of
Proposition 3.12 guarantee that u(n) will converge to u in S0([−T, T ]×Rd). Next,
since the u(n) are uniformly bounded in S0([−T, T ]×Rd), they are also uniformly
bounded in L4

tL
∞
x ([−T, T ]×Rd) and hence in L2

tL
∞
x ([−T, T ]×Rd). We may thus

apply Proposition 3.8 (and the remarks following that proposition) and conclude
that u(n) ∈ C0

tH
s
x([−T, T ] × Rd) for any s > d/2. From this, Sobolev embedding,

and the equation (3.1) it is easy to see that u(n) is smooth on [−T, T ]× Rd. This
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is enough regularity for us to apply the classical mass conservation law in Exercise
3.26 and conclude that∫

Rd

|u(n)(t, x)|2 dx =
∫
Rd

|u(n)(0, x)|2 dx

for all t ∈ [−T, T ]. Since u(n) converges to u in S0([−T, T ]×Rd), it also converges
in C0

t L
2
x([−T, T ]× Rd), and hence on taking limits as n→ ∞ we have∫

Rd

|u(t, x)|2 dx =
∫
Rd

|u(0, x)|2 dx

and hence M [u(t)] = M [u(0)] for all t in a neighbourhood of t, as desired. �

Note that the full power of the wellposedness theory was used here; not only the
existence aspect of the theory, but also the uniqueness, persistence of regularity, and
continuous dependence on the data. This basic argument - obtaining conservation
laws for rough solutions by approximating them by smooth solutions - is quite
general and extends to many other equations. There is an additional twist however
in the case when the non-linearity is not algebraic (i.e. p is not an odd integer),
because it is often not possible in such cases to obtain an approximating solution
that is sufficiently smooth that one can justify the conservation law classically. In
such cases one must not only regularise the initial data, but also regularise the
equation as well; this requires a further aspect of the wellposedness theory, namely
the stability theory of the equation, which we will address in Section 3.7.

A conservation law can often, but not always, be combined with a local well-
posedness result to obtain a global wellposedness result. Let us illustrate this with
a simple example:

Proposition 3.19. [Tsu] Let d = 1, p = 3, µ = ±1, and t0 ∈ R. Let
u0 ∈ L2

x(Rd), and let I be any bounded time interval containing t0. Then there is
a unique strong solution u ∈ S0(I ×Rd) ⊆ C0

t L
2
x(I ×Rd) to (3.1) defined on some

time interval I. Furthermore, the map u0 �→ u is a continuous map from L2
x to

S0(I × Rd).

In particular, this proposition gives a global strong solution u ∈ C0
t L

2
x(R×Rd)

to (3.1). However this solution is only in the S0 space locally in time. (Indeed, in
the focusing case µ = −1, soliton solutions to this equation exist which do not lie
globally in S0.)

Proof. we first use time translation invariance and time reversal symmetry
to reduce to the case when t0 = 0 and I = [0, T ] for some T > 0. (Note that by
Exercise 3.11 one can easily glue a strong solution on an interval such as [0, T ] to
a strong solution to an interval such as [−T, 0], and stay in S0.)

We give two proofs of this result; they are equivalent, but offer slightly different
perspectives as to how a conservation law extends a local existence result to a global
existence result. For the first proof, we divide the long time interval [0, T ] into
shorter time steps, where on each smaller interval the perturbative theory gives a
local solution. More precisely, let M [u(0)] := ‖u0‖2

L2
x(Rd) denote the initial mass,

and observe from Proposition 3.12 that there exists a time τ = τ(M [u(0)]) > 0
such that the equation (3.1) will have a local strong solution in S0([t0, t0 + τ ]×Rd)
whenever the initial datum u(t0) has mass less than or equal to M [u(0)]. We now
split the time interval [0, T ] as a finite union of intervals [tn, tn+1], where each
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on [t  , t  ]

local theory u(t  ) in L
2

on [t  , t  ]
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Figure 7. The first proof of Proposition 3.19. The nonlinear iter-
ation in the local theory could potentially increase the L2

x norm as
one advances from one time step tn to the next tn+1, thus leading
to a collapse of the lifespan tn+1− tn of that theory; however if one
uses instead the conservation law to control the L2

x norm then no
collapse occurs (cf. the global wellposedness of the ODE in Figure
9 from Chapter 1). Indeed the local theory plays a mostly quali-
tative role in the global argument, justifying the local existence of
the solution as well as the conservation law, but not providing the
key quantitative bounds.

interval has length less than or equal to τ , and t0 = 0. By applying Proposition
3.12 followed by Proposition 3.19 (and Exercise 3.11), an easy induction shows
that for every n we can construct a strong solution u to (3.1) in S0([0, tn] × Rd),
and thus we eventually obtain a strong solution to S0([0, T ] × Rd); see Figure 7.
Uniqueness follows from Proposition 3.12 and a continuity argument similar to that
used to prove Exercise 3.13. The continuous dependence follows by concatenating
the continuous dependence results on each of the intervals [tn, tn+1], using the fact
that the S0([tn, tn+1] × Rd) norm of u controls the L2

x norm of u(tn+1), and using
the fact that the composition of continuous maps is continuous.

The second proof proceeds by contradiction; it is quicker but is more indirect
(and does not give the continuous dependence as easily). We sketch it as follows.
Just as the Picard existence and uniqueness theorems imply a blowup criterion for
ODE (Proposition 1.17), the existence and uniqueness theory in Proposition 3.12
gives a blowup criterion for L2

x strong solutions to (3.1), namely that these solutions
will exist globally unless the L2

x norm goes to infinity in finite time. However, Propo-
sition 3.18 clearly implies that the L2

x norm of a strong solution stays bounded.
Thus blowup cannot occur, and one must instead have global existence. �

One can combine this global existence result with persistence of regularity the-
ory (e.g. Proposition 3.8) to show that the global solution constructed in Propo-
sition 3.19 preserves regularity; see Exercise 3.28. In particular, with a smooth
decaying initial datum we have a global smooth solution to the one-dimensional
cubic NLS.

Similar arguments give global L2
x-wellposedness for any L2

x-subcritical equation.
The situation is remarkably different when one considers the two-dimensional cubic
NLS (d = 2, p = 3, µ = ±1). The key difference is that whereas the one-dimensional
cubic NLS was L2

x-subcritical, the two-dimensional cubic NLS is L2
x-critical. This
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is reflected in the local wellposedness theory for this equation, given by Proposition
3.14. If the initial datum has a sufficiently small L2

x norm, then this proposition
already gives a global existence result without any need for a conseration law. How-
ever, when the L2

x norm is large, one cannot simply combine the conservation law
with the local existence theory to obtain a global existence theory; the problem is
that the time of existence given by the local wellposedness theory does not depend
only on the L2

x norm on the datum, but also on the profile of the datum itself (and
more specifically on the spacetime behaviour of the free evolution of the datum).
Because of this, the conservation law is insufficient by itself to make either of the
arguments used in the proof of Proposition 3.19 extend to this case; iterating the
local wellposedness theorem can lead to a shrinking interval of existence, which can
lead to blowup in finite time. Indeed, in the focusing case µ = −1, the explicit
blowup solution given in (3.15) shows that even for smooth L2

x(R
d) initial data one

can have finite time blowup for this equation. (Note that the classical uniqueness
theory shows that this failure of global existence cannot be avoided by strengthening
the notion of solution.) In the defocusing case µ = 1, global existence (and well-
posedness) for L2

x(R
d) initial data is suspected to be true for the two-dimensional

cubic NLS, but this is not known, even for radially symmetric initial data, and is
considered a major open problem in the field; a similar open question exists for any
other L2

x-critical defocusing NLS. However, the situation improves when the initial
data is assumed to be in the energy class H1

x(Rd), rather than merely in L2
x(Rd),

because a new conservation law becomes available, namely energy conservation27

For a general NLS, the total energy E[u(t)] takes the form

(3.30) E[u(t)] :=
∫
Rd

1
2
|∇u(t, x)|2 +

2µ
p+ 1

|u(t, x)|p+1 dx.

We refer to the first term 1
2

∫
Rd |∇u(t, x)|2 as the kinetic energy or linear energy,

and the second term 2µ
p+1 |u(t, x)|p+1 dx as the potential energy or nonlinear energy.

Note that in the defocusing case µ = +1 these two terms have the same sign,
whereas in the focusing case µ = −1 they have opposite signs. In practice, this
means that the energy conservation law is more coercive (gives more control on the
solution) in the defocusing case than in the focusing case.

The following heuristic principle, related to Principle 1.37 and Principle 3.1,
can be helpful in predicting behaviour of equations in the energy class:

Principle 3.20 (Energy principle). Suppose a solution has finite energy. If
the linear energy dominates the nonlinear energy, we expect linear behaviour; if the
nonlinear energy dominates the linear energy, we expect nonlinear behaviour.

This heuristic has very little rigorous justification to back it up, yet is surpris-
ingly accurate in many cases, as we shall see in several places in this text.

For sufficiently classical solutions one can justify conservation of energy E[u(t)]
by integration by parts; see Exercise 3.31. In the energy subcritical cases sc ≤ 1, the
energy functional u �→ E[u] is continuous in H1

x(Rd) (Exercise 3.32). Combining
this with the local H1

x wellposedness theory (such as Proposition 3.15 and 3.17) as
in Proposition 3.18, one can extend the energy conservation law to all H1

x-critical

27In principle, momentum conservation should become useful also once one reaches the reg-

ularity H
1/2
x or higher, thanks to Lemma A.10. However, because the momentum is a vector

rather than a positive quantity, the momentum is in practice not sufficiently coercive to obtain
any useful control of the solution. See however the Morawetz arguments in the next section.
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and H1
x-subcritical wellposed solutions. (In fact one has this for strong solutions

also, thanks to uniqueness results such as Exercise 3.17. The high-dimensional cases
n > 6 are a little tricky; see [Caz2], [TV].)

Let us now return to the two-dimensional cubic NLS (d = 2, p = 3), and see
what this new conservation law gives us. The focusing and defocusing cases are
now rather different (as one can already see from the blowup solution (3.15)). In
the defocusing case, it is clear that energy and mass together will control the H1

x

norm of the solution:
‖u(t)‖2

H1
x

� E[u(t)] +M [u(t)].

Conversely, the Gagliardo-Nirenberg inequality (Proposition A.3) shows that the
energy and mass are controlled by the H1

x norm:

E[u(t)] � ‖u(t)‖2
H1

x
(1+‖u(t)‖2

L2
x
) � ‖u(t)‖2

H1
x
(1+‖u(t)‖2

H1
x
); M [u(t)] = ‖u(t)‖2

L2
x

� ‖u(t)‖2
H1

x
.

From these bounds and the energy and mass conservation laws we see that for
any H1

x-wellposed solution, the H1
x norm of the solution u(t) at some later time

t is bounded by a quantity depending only on the H1
x norm of the initial datum.

On the other hand, Proposition 3.15 shows that an H1
x wellposed solution can be

continued in time as long as the H1
x norm does not go to infinity. Combining these

two statements we obtain

Proposition 3.21. The defocusing two-dimensional cubic NLS (d = 2, p =
3, µ = +1) is globally wellposed in H1

x. Indeed for any u0 ∈ H1
x and any time

interval I containing t0, the Cauchy problem (3.1) has an H1
x-wellposed solution

u ∈ S1(I × R2) ⊆ C0
tH

1
x(I × R2).

The reader should see how the scheme in Figure 7 is modified to accomodate
the utilisation of two conservation laws (mass and energy) rather than just one.

This argument is in fact quite general and works for anyH1
x-subcritical defocus-

ing NLS; see for instance [Caz2] or Exercise 3.35. One also has global wellposedness
in H1

x for the H1
x-critical equation but this is significantly more difficult and will be

discussed in Chapter 5. This fits well with Principle 3.20, since in the H1
x-critical

equation, Sobolev embedding only barely manages to control the nonlinear energy
in terms of the linear energy.

In the focusing case, a problem arises because of the negative sign of the non-
linear component of the energy E[u(t)]. This means that while the energy is still
controlled by the H1

x norm, the H1
x norm is not necessarily controlled by the energy.

Indeed, (3.15) shows that global wellposedness fails for some H1
x data. However this

turns out to be the borderline case: for any H1
x data with mass strictly less than

that of the blowup solution in (3.15), the Gagliardo-Nirenberg inequality becomes
strong enough again to control the H1

x norm by the energy and thus regain global
wellposedness. See Exercise 3.33.

The above discussion was for the two-dimensional cubic NLS, which was L2
x-

critical. For equations which are L2
x-subcritical, it turns out that the Gagliardo-

Nirenberg inequality is now so strong that the sign µ of the nonlinearity plays
essentially no role in the global theory; see Exercise 3.34. For equations which are
L2
x-supercritical but H1

x-subcritical or H1
x-critical, the defocusing equation enjoys

global existence in H1
x as discussed above, but blowup can occur for the focusing

equation unless a suitable smallness condition is met; see Exercise 3.35 and Section
3.8.
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Having discussed the conservation laws for the NLS, we now turn to the NLW
(3.2), which we write using the Minkowski metric as

(3.31) ∂α∂αu = µ|u|p−1u.

For this equation there is no mass conservation law, and the energy/momentum
conservation laws can be unified via the stress-energy tensor

(3.32) Tαβ := Re(∂αu∂βu) − 1
2
gαβRe(∂γu∂γu+

2µ
p+ 1

|u|p+1)

(compare with (2.45)). In coordinates,

T00 = T00 =
1
2
|∂tu|2 +

1
2
|∇u|2 +

µ

p+ 1
|u|p+1

T0j = −Tj0 = −Re(∂tu∂xju)

Tjk = Tjk = Re(∂xju∂xk
u) − δjk

2
(|∇u|2 − |∂tu|2 +

2µ
p+ 1

|u|p+1).

From (3.31) we easily verify the divergence-free property

(3.33) ∂αTαβ = 0

or in coordinates

(3.34) ∂tT00 + ∂xj T
0j = 0; ∂tT0j + ∂xk

Tjk = 0,

for classical solutions at least. This leads (for classical, decaying solutions) to
conservation of the total energy

(3.35) E[u[t]] :=
∫
Rd

T00(t, x) dx =
∫
Rd

1
2
|∂tu|2 +

1
2
|∇u|2 +

µ

p+ 1
|u|p+1 dx

and total momentum28

pj(u[t]) :=
∫
Rd

T0j(t, x) dx = −
∫
Rd

Re(∂tu∂xju) dx.

By the limiting arguments as before, these conservation laws can be extended to
H1
x-wellposed solutions, as long as the equation is either H1

x-subcritical or H1
x-

critical.
For defocusing H1

x-subcritical equations, the energy conservation can lead to
global existence in even for large initial data. Let us illustrate this with the three-
dimensional cubic NLW (d = 3, p = 3, µ = +1). From Exercise 3.22 we have a local
wellposedness result for initial data in H1

x×L2
x in the subcritical sense, which easily

implies a blowup criterion, namely that the H1
x × L2

x wellposed solutions to this
equation can be continued in time as long as the quantity ‖u(t)‖H1

x
+ ‖∂tu(t)‖L2

x

does not go to infinity in finite time. To bound this quantity, we observe from
(3.35) and energy conservation that we can bound the homogeneous component of
this quantity easily:

‖u(t)‖Ḣ1
x

+ ‖∂tu(t)‖L2
x

� E[u[t]]1/2 = E[u[0]]1/2.

28Note the presence of the time derivative, which is absent for the NLS momentum. Indeed,

while the NLS momentum is naturally associated to the regularity Ḣ
1/2
x , the NLW momentum is

associated to the regularity Ḣ1
x, and thus is of the same order as the energy. Thus the relationship

between momentum and energy in NLW is different from that in NLS, which turns out to be a
crucial difference in the critical scattering theory, see Chapter 5 below.
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To control the lower order term ‖u(t)‖L2
x

we use the fundamental theorem of cal-
culus and Minkowski’s inequality:

‖u(t)‖L2
x
≤ ‖u(0)‖L2

x
+ |

∫ t

0

‖∂tu(s)‖L2
x
ds|

� ‖u(0)‖L2
x

+ |
∫ t

0

E[u[s]]1/2 ds|

= ‖u(0)‖L2
x

+ |t|E[u[0]]1/2.

Thus we can control the H1
x × L2

x norm of u[t] by a quantity that depends mostly
on the initial data:

‖u(t)‖H1
x

+ ‖∂tu(t)‖L2
x

� ‖u(0)‖L2
x

+ (1 + |t|)E[u[0]]1/2.

In particular, if u[0] ∈ H1
x × L2

x, then E[u[0]] is finite and the quantity ‖u(t)‖H1
x

+
‖∂tu(t)‖L2

x
cannot go to infinity in finite time for any H1

x × L2
x-wellposed solution.

Comparing this with the blowup criterion29 we see that we have a global C0
tH

1
x ∩

C1
t L

2
x strong solution to this equation for any initial data in the energy space

H1
x × L2

x. Once one has this global existence result in the energy class, we also
obtain it for smoother classes; see Exercise 3.38.

The above argument in fact works for any H1
x-subcritical NLW; see [GV2],

[Sog]. The case of the H1
x-critical equation is again more delicate (because the

lifespan given by the local existence theorem depends on the profile of the data as
well as on the H1×L2

x norm, and so the blowup criterion is more subtle), and will be
treated in Section 5.1; again, this is in accordance with Principle 3.20. For focusing
NLW, there are no Gagliardo-Nirenberg tricks available to control the nonlinearity
(since there is no mass conservation law), and indeed for such equations large data
can lead to blowup no matter what the power is; see Exercise 3.9.

Exercise 3.26. Verify (2.35) for the pseudo-stress-energy tensor for C3
t,x so-

lutions to (3.1). These conservation laws may seem somewhat miraculous, but
can be explained using Lagrangian methods; see [SSul], as well as Exercises 3.30,
3.40. Conclude that if u ∈ C3

t,x(I × Rd) is a solution to (3.1) which also lies in
C0
tH

s
x(I ×Rd) for a sufficiently large s, then we have mass conservation M [u(t)] =

M [u(t0)] and momentum conservation pj(t) = pj(t0) for all t, t0 ∈ I. (In order to
justify the integration by parts, one needs to apply a smooth cutoff in space, and
then let the cutoff go to infinity, using the Hs

x control on u to show that the error
incurred by the cutoff goes to zero.) These rather restrictive regularity conditions
can usually be removed by a limiting argument.

Exercise 3.27. Obtain the analogue of Proposition 3.18 but with d = 2 instead
of d = 1. (The challenge here is that the equation is now L2

x-critical instead of L2
x-

subcritical, and one has to use Proposition 3.14 instead of Proposition 3.12.)

Exercise 3.28. Let p = 3, d = 1, µ = ±1, and let u0 ∈ Hs
x(R) for some s ≥ 0.

Show that the solution u constructed in Proposition 3.19 is a strong Hs
x solution,

29It is instructive to use the other approach to global existence from Proposition 3.19, namely
dividing up a long time interval into short ones. Here, because the quantity ‖u(t)‖H1

x
+‖∂tu(t)‖L2

x

could grow linearly in t, the interval of existence guaranteed by the local theory could decay
polynomially in t. However, the length of this interval will not go to zero in finite time, which is
all one needs to establish global existence.
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and we have the bound ‖u(t)‖Hs
x

� exp(Ct)‖u0‖Hs
x
, where C = C(s, ‖u0‖L2

x
) > 0

depends only on s and the initial mass.

Exercise 3.29. Show that the energy (3.30) is formally the Hamiltonian for
the NLS (3.1) using the symplectic structure from Exercise 2.45. Also use Noether’s
theorem to formally connect the mass conservation law to the phase invariance of
NLS, and the momentum conservation law to the translation invariance of NLS.

Exercise 3.30. Use Exercise 3.2 to link the pseudo-stress-energy tensor and
energy conservation law for d-dimensional NLS to the stress-energy tensor for d+1-
dimensional NLW. (In d+ 1 dimensions, you may find it convenient to introduce a
null frame (t′, x′, x1, . . . , xd) where t′ := t− xd+1 and x′ := t+ xd+1, and compute
the coordinates of the stress-energy tensor in that frame.)

Exercise 3.31. Let u ∈ C3
t,x(I × Rd) be a classical solution to (3.1). Verify

the identity

∂t(
1
2
|∇u(t, x)|2 +

2µ
p+ 1

|u(t, x)|p+1) =

∂j(
1
2
Im(∂jku(t, x)∂ku(t, x)) + µ|u(t, x)|p−1Im(u(t, x)∂ju(t, x))).

If u is also in C0
tH

k,k
x (I × Rd) for some sufficiently large k, deduce the energy

conservation law E[u(t1)] = E[u(t0)] for all t0, t1 ∈ I (by arguing as in Exercise
3.26).

Exercise 3.32. If sc ≤ 1, show that the energy functional u �→ E[u] is well-
defined and continuous on the space H1

x(Rd). (Hint: use Sobolev embedding and
an estimate similar to (3.27).) When sc > 1, show that the energy is not always
finite for H1

x(Rd) data.

Exercise 3.33. [Wei] Let u0 ∈ H1
x(R2) have mass strictly less than the mass

of the blowup solution in (3.15). Show that there is a global strong H1
x solution to

the cubic defocusing two-dimensional NLS (i.e. (3.1) with d = 2, p = 3, µ = −1)
with initial datum u0. (Hint: you will need the relationship between Q and Wmax

given by Lemma B.1 in order to control the H1
x norm by the energy.) Note that

this is consistent with Principle 3.20. There has been much recent analysis of the
case when the mass is exactly equal to, or slightly higher than, the mass of the
blowup solution (3.15): see [Mer2], [Mer3], [MR], [MR2], [MR3].

Exercise 3.34. Let u be an H1
x-wellposed solution to the one-dimensional

cubic NLS (d = 1, p = 3, µ = ±1) with initial datum u0; this is a global so-
lution by Proposition 3.19 and persistence of regularity. Establish the bound
‖u(t)‖H1

x(R) �‖u0‖H1
x
(R) 1 for all times t, regardless of whether the equation is

focusing or defocusing. (The point here is that in the L2
x-subcritical equations, the

Gagliardo-Nirenberg inequality allows one to control the nonlinear component of
the energy by a fractional power of the linear component of the energy, times a
factor depending only on the conserved mass; cf. Exercise 1.20 and Principle 3.20.)

Exercise 3.35. Consider the defocusing three-dimensional cubic NLS (d =
3, p = 3). Show that one has global H1

x-wellposed solutions if the initial datum
u0 is sufficiently small in H1

x(R3) norm, and in the defocusing case one has global
H1
x-wellposedness for arbitrarily large H1

x(R
3) initial data. (Again, one can rely
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primarily on the Gagliardo-Nirenberg inequality and the conservation laws. An
alternate approach is to develop a small data global existence theory at the crit-
ical regularity Ḣ

1/2
x (R3) by perturbative arguments, and then use persistence of

regularity to move from Ḣ
1/2
x to H1

x.)

Exercise 3.36. Consider the one-dimensional cubic NLS (d = 1, p = 3). It
turns out that there is a conserved quantity (at least for classical solutions to NLS)
of the form

E2(u) :=
∫
R

|∂xxu|2 + c1µ|∂xu|2|u|2 + c2µRe((u∂xu)2)) + c3µ
2|u|6 dx

for certain absolute constants c1, c2, c3 whose exact value is unimportant here. (The
verification of this conservation law is extremely tedious if done directly, though
the machinery in Section 4.2 can expedite some of the algebra; one can also proceed
via the Lax pair formulation of this equation.) Assuming this, conclude the bound
‖u(t)‖H2

x(R) �‖u0‖H2
x
(R) 1 for all times t, at least for classical solutions to (3.1).

(The same bound in fact holds for all H2
x solutions, and one has a similar result

with H2
x replaced by Hk

x for any integer k ≥ 0.)

Exercise 3.37. Show that the 1D cubic periodic NLS (with either sign of
nonlinearity) is globally wellposed in L2

x(T). Also show that if the initial datum is
smooth, then the solution is globally classical. (One should of course use the local
theory from Exercise 3.20.)

Exercise 3.38. Show that for every smooth initial data u[0] to the three-
dimensional cubic defocusing NLW (d = 3, p = 3, µ = +1), there is a unique
classical solution. (In the text we have already established global wellposedness in
H1
x×L2

x for this equation; it is now a matter of applying the persistence of regularity
theory (to ensure the solution is smooth) and the finite speed of propagation and
uniqueness theory (to localise the initial data to be compactly supported.)

Exercise 3.39. Consider a global H1
x × L2

x-wellposed solution u to the three-
dimensional cubic defocusing NLW (d = 3, p = 3, µ = +1), as constructed in the
text. If (u0, u1) ∈ Hk

x ×Hk−1
x for some k ≥ 1, show that the quantity ‖u(t)‖Hk

x
+

‖u(t)‖Hk−1
x

grows at most polynomially in time t, in fact we have the bound

‖u(t)‖Hk
x

+ ‖u(t)‖Hk−1
x

�‖u0‖Hk
x
+‖u1‖

H
k−1
x

(1 + |t|)Ck

for some Ck > 0. (Hint: induct on k. This result should be compared with the
exponential bounds in Exercise 3.28. The difference is that for the wave equation,
the energy estimate (2.28) or (2.29) gains one degree of regularity, which is not
the case for the Schrödinger equation. However, in many cases it is possible to use
additional smoothing estimates and almost conservation laws to recover polynomial
growth of Sobolev norms for the Schrödinger equation; see [Sta], [CKSTT8], and
the scattering estimates we give in Section 3.6 can eliminate this growth altogether).

Exercise 3.40. Show that the NLW (3.2) is the (formal) Euler-Lagrange equa-
tion for the Lagrangian S(u, g) =

∫
R1+d L(u, g) dg, where L(u, g) := gαβ∂αu∂βu +

2µ
p+1 |u|p+1. Conclude that the stress-energy tensor given here coincides with the
one constructed in Exercise 2.58.



3.5. DECAY ESTIMATES 149

Exercise 3.41 (Positivity of stress-energy tensor). Let u be a classical solution
to a defocusing NLW, and let Tαβ be the associated stress energy tensor. Let xα, yα

be forward timelike or forwardlike vectors, thus x0, y0 > 0 and xαxα, y
αyα ≤ 0.

Show that Tαβxαyβ ≥ 0. In particular we have the positivity property (2.47).
(Hint: first establish this when xα is the standard timelike vector e0, then use
Lorentz invariance to handle the case when x is a general timelike vector, then
use limiting arguments to handle the lightlike case.) This positivity is related to
the finite speed of propagation property for NLW but is not identical; indeed,
in the focusing case µ = −1, the positivity fails but one still has finite speed of
propagation.

Exercise 3.42. Consider a H1
x-subcritical focusing NLS. Show that the ground

state eitτQ(x) has positive energy in the L2
x-supercritical case p > 1+ 4

d , zero energy
in the L2

x-critical case p = 1 + 4
d , and negative energy in the L2

x-subcritical case
p < 1 + 4

d . Similarly for all translates, rescalings, and Galilean transforms of the
ground state. (Hint: Use Exercise B.3.)

Exercise 3.43 (Orbital stability of NLS). [Wei3] Consider a L2
x-subcritical

focusing NLS. Define the ground state cylinder Σ as in Exercise B.14. Show that if
the initial datum u0 ∈ H1

x(Rd) is sufficiently close to Σ in H1
x(Rd), then the global

H1
x solution u to the Cauchy problem is such that distH1

x
(u(t),Σ) ∼ distH1

x
(u0,Σ)

for all t ∈ R. (Hint: first rescale so that u0 has the same mass as Σ, then use
Exercise B.14.) An earlier result of this type appears in [CL]. The theory of
orbital stability of ground states for much more general equations has been studied
extensively; see for instance [GSS], [GSS2] for a systematic approach.

3.5. Decay estimates

Things fall apart; the centre cannot hold. (WB Yeats, “The second
coming”)

The conservation laws of the preceding section can give global bounds on a
solution u(t) to NLS or NLW that are either uniform in time, or grow at some
controlled rate (polynomial or exponential in time). We have already seen that such
bounds can be sufficient to obtain global existence of the solution. However, one is
not just interested in whether solutions exist globally in time; one is also interested
in the asymptotic behaviour of these solutions as t → ±∞. The conservation laws
show that these solutions stay bounded in certain norms, but this still leaves a lot
of possibilities for the asymptotic development. For instance, consider the following
two rather different (and informally described) modes of behaviour:

• (Linear-type behaviour) The solution u behaves like a solution to the linear
equation; thus the nonlinear effects become asymptotically negligible. In
particular, we expect the solution to obey the same type of dispersive
and Strichartz estimates as the linear equation, thus for instance we may
expect the L∞

x or other Lpx norms of the solution to go to zero as t→ ±∞.
We also expect Sobolev norms such as ‖u(t)‖Hs

x
to stabilise as t → ±∞,

as opposed to growing polynomially or exponentially in time.
• (Soliton-type behaviour) The solution refuses to disperse, and for every

time t the solution has a significant presence at some location x(t) de-
pending on t, for instance the local mass

∫
|x−x(t)|≤R |u(t, x)|2 dx might be

bounded away from zero for some fixed R. In particular the L∞
x or Lpx
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norms of u(t) will not go to zero as t → ±∞. This is the type of behav-
iour exhibited by soliton solutions such as (3.7) (possibly after applying
some symmetries such as Galilean or Lorentz invariance). One can also
consider more complex behaviour when for each fixed time t, the solution
has significant presence at multiple points x1(t), . . . , xk(t); this is the case
for multi-soliton solutions, which are essentially a nonlinear superposition
of several separated solitons.

There is some evidence (both theoretical and numerical) that for “most”30

global solutions to an NLS or NLW, that the asymptotic behaviour eventually
decouples into the above two extremes: most solutions should eventually resolve
into a “localised” component which behaves like a soliton or multi-soliton solution,
plus a “radiation” component which disperses like a linear solution. Making this
rather vaguely worded soliton resolution conjecture a rigorous theorem is a major
open problem in the field, and somewhat out of reach of current technology except
in special cases (e.g. small perturbations of a special solution such as a soliton,
multisoliton, or the vacuum state 0, or the one-dimensional cubic NLS, which is
completely integrable). However, significantly more is known in the defocusing
case µ = −1. In many defocusing cases it is known that soliton-type behaviour is
excluded, and all solutions in fact disperse like a linear equation. These results are
part of the scattering theory for these equations and will be discussed more fully in
the next section. For now, let us just say that the question of whether a solution
disperses or not is intimately tied to whether there is some sort of decay estimate
for the solution in various norms, such as an Lpx norm for some p > 2; in many
cases, knowing that such an Lpx norm goes to zero as t → ∞ (either in a classical
sense, or in some time-averaged sense) is sufficient to establish that the solution
scatters to a linear solution, while conversely estimates such as Strichartz estimates
assure us that the Lpx norms of such solutions do indeed go to zero. (This should
also be compared with Principle 3.20.)

Thus it is of interest to obtain decay estimates on solutions to defocusing equa-
tions. The conservation laws establish boundedness in L2

x-based spaces such as L2
x

and H1
x, but do not yield any decay estimates in higher Lpx norms. There are a num-

ber of known ways to establish such a decay estimate; in this section we shall discuss
three such, namely the Morawetz inequality approach, the (pseudo)conformal iden-
tity approach, and the vector fields approach.

We begin with the Morawetz inequality approach. This method is based on
monotonicity formulae, as discussed in Section 1.5. It is here that we can begin to
usefully exploit the momentum conservation laws. As momentum is a vector, these
laws are not of the coercive type needed to obtain uniform bounds on a solution as
in the preceding section, but the vector structure does permit31 one to construct
various quantities based on the momentum density which are monotone in time,

30One of the many difficulties with establishing this conjecture is that we expect there to
be a small class of exceptional solutions which exhibit more exotic (and unstable) behaviour,
such as periodic “breather” solutions, or clusters of solitons which diverge from each other only
logarithmically. Almost all of the known tools in the subject are deterministic in the sense that if
they work at all, they must work for all data in a given class, while to settle this conjecture it may
be necessary to develop more “stochastic” techniques that can exclude small classes of exceptional
solutions.

31Indeed, it is not possible for an (autonomous) quantity based on the mass or energy density
to have a non-trivial monotonicity in time, as this would conflict with time reversal symmetry.
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and so the fundamental theorem of calculus will provide some spacetime bounds
that force some decay in the solution.

In the linear setting, Morawetz inequalities for the NLS and NLW were already
introduced in Section 2.4 and Section 2.5, using the pseudo-stress-energy and stress-
energy tensors respectively. The NLS and NLW also have such tensors, and in the
defocusing case the sign of the nonlinearity will be favourable for preserving the
desired monotonicity. In the case of the NLS, we can repeat the derivation of
(2.37) (taking into account the new nonlinear term in the Tjj components of the
pseudo-stress-energy tensor) and obtain the identity

∂2
t

∫
Rd

a(x)|u(t, x)|2 dx = ∂t

∫
Rd

∂xja(x)Im(u(t, x)∂xju(t, x)) dx

=
∫
Rd

(∂xj∂xk
a(x))Re(∂xju∂xk

u) dx

+
(p− 1)µ
p+ 1

∫
Rd

|u(t, x)|p+1∆a(x) dx

− 1
4

∫
Rd

|u(t, x)|2∆2a(x) dx,

(3.36)

at least for smooth a of polynomial growth, and for classical, decaying solutions u
to (3.1). One can specialise this to a = |x| and d ≥ 3 (justifying this as in Exercise
2.55) to conclude that

∂t

∫
Rd

Im(u(t, x)
x

|x| · ∇u(t, x)) dx =
∫
Rd

|∇/ u(t, x)|2
|x| dx

+
2(p− 1)µ
p+ 1

∫
Rd

|u(t, x)|p+1

|x| dx

− 1
4

∫
Rd

|u(t, x)|2∆2a(x) dx.

(3.37)

When d ≥ 3 the tempered distribution ∆2a is non-negative. In particular, in the
defocusing case this time derivative is non-negative, and we have the monotonicity
formula

∂t

∫
Rd

Im(u(t, x)
x

|x| · ∇u(t, x)) dx �p

∫
Rd

|u(t, x)|p+1

|x| dx.

Integrating this along a time interval [t0, t1] and using Lemma A.10, we obtain the
Morawetz inequality

(3.38)
∫ t1

t0

∫
Rd

|u(t, x)|p+1

|x| dx �p,d sup
t=t0,t1

‖u(t)‖2
Ḣ1/2(Rd)

for any classical solution to defocusing NLS on [t0, t1] × Rd. In practice, the re-
quirement that this solution is classical can be dropped by the usual limiting ar-
guments32, provided that one is working with a wellposed solution at a regularity
strong enough to control both sides of (3.38).

The momentum density is not subject to this problem, since reversing time also reverses the sign
of the momentum density.

32In the case where the NLS is not algebraic, one also needs to regularise the nonlinearity in
order to create an approximating sequence of classical solutions, and exploit some stability theory
as in Section 3.7; we ignore this rather tedious detail.
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Suppose we are working with anH1
x-wellposed solution, with a defocusing equa-

tion which is H1
x-subcritical or H1

x-critical (this turns out to be sufficient to justify
the bound (3.38)). As we saw in the preceding section, the conservation laws of
mass and energy allow one in this case to show that the solution is global, and
bound the H1

x norm (and hence Ḣ1/2
x norm) of u(t) by a quantity depending on

the H1
x norm of the initial datum u0. Applying this to (3.38) and letting the time

interval [t0, t1] go to infinity, we obtain the global spacetime bound

(3.39)
∫
R

∫
Rd

|u(t, x)|p+1

|x| dxdt �p,d,‖u0‖H1
x

1,

first observed in [LStr] (and inspired by a similar result in [Mor] for nonlinear wave
equations). This is a decay estimate, as it shows that the quantity

∫
Rd

|u(t,x)|p+1

|x| dx

must go to zero, at least in some time-averaged sense. Because the weight 1
|x| is large

at the origin, this means (roughly speaking) that the solution cannot maintain a
significant presence near the origin for extended periods of time. This is a nonlinear
effect caused by the defocusing nature of the nonlinearity; it fails utterly in the
focusing case µ = −1 (as one can see by inspecting the soliton solution (3.7)), and
also behaves strangely in the linear case µ = 0 (see Exercise 3.44). It is especially
useful for spherically symmetric solutions, as such solutions already decay away
from the origin (Exercise A.19). However, this estimate is not as effective for
general solutions, which can be located arbitrarily in space. This problem can be
alleviated to some extent by exploiting spatial translation invariance. For sake of
simplicity we discuss the three-dimensional case d = 3, in which the formulae are
cleanest (for higher dimensions, see [Vis], [TVZ], and for lower dimensions, see
[Gri6]). By translating (3.37) by y we obtain

∂t

∫
R3

Im(u(t, x)
x− y

|x − y| · ∇u(t, x)) dx =
∫
R3

|∇/ yu(t, x)|2
|x− y| dx

+
2(p− 1)µ
p+ 1

∫
R3

|u(t, x)|p+1

|x− y| dx

+ π|u(t, y)|2

(3.40)

where ∇/ y is the angular component of the gradient using y as the origin. This
estimate can then be used to obtain a translated version of (3.39) which prevents
the solution u from concentrating at the point y for long periods of time. The
freedom afforded by this additional parameter y can be exploited by integrating
(3.40) against a suitable weight in y. It turns out that the best weight to achieve
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this with is the mass density T00(t, y) = |u(t, y)|2. This gives

∂t

∫
R3

∫
R3

|u(t, y)|2Im(u(t, x)
x− y

|x − y| · ∇u(t, x)) dxdy

=
∫
R3

∫
R3

|u(t, y)|2|∇/ yu(t, x)|2 dxdy

|x− y|
+

2(p− 1)µ
p+ 1

∫
R3

∫
R3

|u(t, y)|2|u(t, x)|p+1 dxdy

|x− y|
+ π

∫
R3

|u(t, y)|4 dy

+
∫
R3

∫
R3

(∂t|u(t, y)|2)Im(u(t, x)
x− y

|x − y| · ∇u(t, x)) dxdy.

(3.41)

To deal with the final term of (3.41), we rewrite it in terms of the pseudo-stress-
energy tensor as ∫

R3

∫
R3

(∂tT00(t, y))
xk − yk
|x− y| T0k(t, x) dxdy

and then use (2.35) and integration by parts to write this as

−
∫
R3

∫
R3

T0j(t, y)(1 − (xj − yj)(xk − yk)
|x− y|2 )T0k(t, x)

dxdy

|x− y| ;

if u is smooth and decaying then there is no difficulty justifying the integration by
parts. However, an application of Cauchy-Schwarz shows that

|T0j(t, y)(1 − (xj − yj)(xk − yk)
|x− y|2 )T0k(t, x)| ≤ |u(t, x)||∇/ yu(t, x)||u(t, y)||∇/ xu(t, y)|

≤ 1
2
(|u(t, y)|2|∇/ yu(t, x)|2 + |u(t, x)|2|∇/ xu(t, y)|2

whenever x �= y; this can be seen for instance by rotating x − y to be a multiple
of the unit vector e1 and working in coordinates. From this pointwise bound and
symmetry we thus see that we can bound the last term in (3.41) by the first. If we
are in the defocusing or linear cases µ ≥ 0, we can also drop the second term as
being non-negative, and we conclude

∂t

∫
R3

∫
R3

|u(t, y)|2Im(u(t, x)
x− y

|x − y| · ∇u(t, x)) dxdy ≥ π

∫
R3

|u(t, x)|4 dx.

But by (a translated version of) Lemma A.10 we have the pointwise bound

|
∫
R3

∫
R3

|u(t, y)|2Im(u(t, x)
x− y

|x − y| · ∇u(t, x)) dxdy| � ‖u(t)‖2
L2

x
‖u(t)‖2

Ḣ
1/2
x
.

From the fundamental theorem of calculus, we thus obtain the interaction Morawetz
inequality

(3.42)
∫ t1

t0

∫
R3

|u(t, x)|4 dxdt � sup
t=t0,t1

‖u(t)‖2
L2

x
‖u(t)‖2

Ḣ
1/2
x

whenever u is a classical solution to a defocusing or linear NLS on [t0, t1] × R3;
this was first observed in [CKSTT10], and should also be compared with Example
1.34. There is no difficulty applying a limiting argument to extend this inequality
to H1

x-wellposed solutions when the NLS is H1
x-subcritical or H1

x-critical. Using the
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energy and mass conservation laws, we see in particular that we have the spacetime
bound

(3.43)
∫ t1

t0

∫
R3

|u(t, x)|4 dxdt �‖u0‖H1
x

1

in this case, where u0 is the initial datum of this solution. This bound resembles
(3.39), but is a linear phenomenon rather than a nonlinear one (it holds true even
when µ = 0), and does not involve the weight 1

|x| and so is not tied to any particular
spatial origin33. This makes it a more useful decay estimate for controlling solutions
to NLS when there is no assumption of spherical symmetry.

The ordinary Morawetz estimates for NLS have a counterpart for NLW; see Ex-
ercise 3.46. However, it seems difficult to locate a useful analogue of the interaction
Morawetz inequality for the NLW; the somewhat miraculous positivity properties
of the time derivative of the interaction functional do not seem to be present in
the wave equation setting, even if one drops the nonlinearity. Fortunately, for these
equations the ordinary Morawetz estimate is already quite powerful, especially when
combined with finite speed of propagation.

The Morawetz inequalities are based on the monotonicity formulae method.
Another way to obtain decay is to find a conserved (or almost conserved) quantity
which is non-autonomous (depending explicitly on t). Often, such laws arise by
conjugating an autonomous conservation law with a symmetry (or approximate
symmetry) of the equation. For instance, for the free Schrödinger equation we have
already seen that the pseudoconformal symmetry from Exercise 2.26 conjugates the
usual energy conservation law to the conservation of the pseudoconformal energy
(2.33). Turning now to (classical) solutions u of the nonlinear Schrödinger equation,
recall that the pseudoconformal transform v of u, as defined in Exercise 2.26, obeys
the modified equation (3.16). In particular, in the L2

x-critical case p = pL2
x

the
pseudoconformal transformation is a symmetry of the equation; we have already
used this fact to construct the blowup solution (3.15). But this transform is still
useful even in the non-L2

x-critical case; one can view the equation (3.16) as an NLS
in which the degree of focusing or defocusing, as quantified by t

d
2 (p−pL2

x
)
µ, is now

time-dependent. In analogy with the usual NLS, we can define a (non-autonomous)
energy E[v(t), t] for t �= 0 by

E[v(t), t] :=
∫
Rd

1
2
|∇v(t)|2 + 2t

d
2 (p−pL2

x
)
µ
|v(t)|p+1

p+ 1
dx.

Because (3.16) is not time translation invariant in general, we do not expect this
energy to be perfectly conserved in time (except when p = pL2

x
). Nevertheless, it

should be “almost” conserved in that its time derivative should be small. Indeed,
a computation (essentially the one in Exercise 3.31) shows that

∂tE[v(t), t] =
d

2
(p− pL2

x
)t

d
2 (p−pL2

x
)−1

µ

∫
Rd

|v(t)|p+1

p+ 1
dx;

33While the original Morawetz inequality controls the extent to which a solution can con-
centrate near a fixed point y, the trick of integrating that inequality against the mass density
means that the interaction Morawetz inequality controls the extent to which the solution con-
centrates against itself. In this perspective, the L4

x quantity
�
R3 |u(t, x)|4 dx can be rewritten

as
�
R3

�
R3 |u(t, x)|2|u(t, y)|2δ(x − y) dxdy and thought of as a self-interaction of the mass den-

sity. The interaction inequality can also be thought of as an ordinary Morawetz inequality for a
six-dimensional (or “two-particle”) Schrödinger equation; see Exercise 3.45.
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in other words, the only source for the time variation of the energy of v is the
explicit dependence on the time variable t.

This formula can be used to control the time evolution of the energy of v, which
in turn gives control on the original solution by means of the easily verified identity

(3.44) E[v(t), t] = Epc[u(1/t), 1/t]

where Epc is the pseudoconformal energy

(3.45) Epc[u(t), t] :=
1
2

∫
Rd

|(x+ it∇)u(t)|2 dx+ 2
µt2

p+ 1

∫
Rd

|u(t)|p+1,

which is defined for all t including 0. For instance, in the L2
x-critical case p = pL2

x
,

the quantity E[v(t), t] is conserved in t, and hence the pseudoconformal energy
Epc[u(t), t] is also conserved in t. (This was only established for t �= 0, but can
be verified for t = 0 also, either by a limiting argument or by establishing the
conservation of Epc[u(t), t] directly; see Exercise 3.47.) In the L2

x-critical defocusing
case (p = pL2

x
, µ = +1), we obtain in particular that

2
t2

p+ 1

∫
Rd

|u(t)|p+1 ≤ Epc[u(t), t] = Epc[u(0), 0] =
1
2
‖xu(0)‖2

L2
x

which leads to the decay bound

‖u(t)‖
L

2(d+2)/2
x

�d |t|− d
d+2 ‖xu(0)‖

d
d+2

L2
x

for all times t �= 0 for which the (classical) solution exists; this bound can be
extended to more general classes of solution by the usual limiting arguments. Some
further examples of decay estimates of this type are given in the exercises; they
can give quite strong decay for a wide range of powers, but have the drawback that
they require some spatial decay on the initial datum (in this case, one needs xu(0)
to lie in L2

x).
For the NLW, the analogue of the pseudoconformal energy is the conformal

energy Q[u(t), t], which was already introduced in (2.54) for the linear wave equa-
tion and is defined the same way for the NLW (using the nonlinear stress-energy
tensor defined in (3.32), of course). For classical solutions to NLW one can use the
properties of the stress energy tensor to verify the identity

∂tQ[u(t), t] = −µt(d− 1)
p− pc
p+ 1

∫
Rd

|u(t, x)|p+1 dx

where pc := 1+ 4
d−1 is the conformal (or H1

x-critical) exponent. This can be utilised
to obtain decay estimates in analogy with the pseudoconformal energy and the NLS,
especially for the conformal power p = pc.

The pseudoconformal and conformal energy methods provide decay of the so-
lution in an Lpx sense. In some cases one wishes to also establish decay of the
solution in an L∞ sense. This can be done via Sobolev embedding but requires one
to control quantities that involve more than one derivative. One way to do this
(assuming a sufficiently small, smooth, and localised initial datum) is by the vector
field method, which we introduced in Section 2.5. For technical reasons it is a little
simpler to work with a derivative nonlinear wave equation rather than a semilinear
NLW; for sake of illustration and concreteness we shall work with classical solutions
to the (rather artificial) three-dimensional scalar equation �u = (∂tu)3. We recall
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the Killing vector fields Xα defined in Section 2.5. We use this to define the higher
order energies En(t) for any n = 0, 1, . . . as

En(t) =
n∑

m=0

∑
K1,...,Km

‖K1 . . .Kmu(t)‖2
Ḣ1 + ‖∂tK1 . . .Kmu(t)‖2

L2
x

where K1, . . . ,Km range over the vector fields ∂t, ∂xj , xj∂xk
−xk∂xj , or t∂xj +xj∂t.

Since the Killing vector fields commute with �, we have

�(K1 . . .Kmu) = −K1 . . .Km((∂tu)3)

and hence by the energy estimate (2.28) we have

En(t) � En(0) +
n∑

m=0

∑
K1,...,Km

∫ t

0

‖K1 . . .Km((∂tu)3)(t′)‖L2
x
dt′

for all t ≥ 0. Let us apply this with n = 5 (this is far more regularity than
strictly necessary, but serves to illustrate the general idea). We have at most five
Killing vector fields K1, . . . ,Km applied to (∂tu)3 on the right-hand side. Using
the Leibnitz rule repeatedly, we can distribute these derivatives and observe that
at most one of the factors ∂tu will receive more than two of these Killing vector
fields. We place that factor in L2

x and the other two in L∞, and obtain

‖K1 . . .Km((∂tu)3)(t′)‖L2
x

� ( sup
m′≤5

sup
K1,...,Km′

‖K1 . . .Km′∂tu(t′)‖L2
x
)

( sup
m′≤2

sup
K1,...,Km′

‖K1 . . .Km′∂tu(t′)‖L∞
x

)2.

Now one observes that the commutator of ∂t or ∂xj with one of the vector fields in
the list ∂t, ∂xj , xj∂xk

− xk∂xj , or t∂xj + xj∂t is a linear combination of the vector
fields ∂t and ∂xj . Using that fact repeatedly, we can bound

‖K1 . . .Km′∂tu(t′)‖L2
x

� E5(t)

whenever m′ ≤ 5. Applying the Klainerman-Sobolev inequality (see Exercise 3.48)
one obtains

‖K1 . . .Km′∂tu(t′)‖L∞
x (R3) � 〈t′〉−1E5(t).

Combining all these estimates together we obtain the integral inequality

E5(t) � E5(0) +
∫ t

0

〈t′〉−2E5(t′)3 dt′.

From this and a standard continuity argument we see that if E5(0) � ε for some
suffiicently small absolute constant ε > 0, then we have E5(t) � ε for all t ≥ 0 for
which the classical solution u exists. Applying the Klainerman-Sobolev inequality,
this leads to decay bounds such as ‖∇t,xu(t)‖L∞

x
� 〈t〉−1. See [Sog] for a more

detailed and general treatment of this vector fields approach.

Exercise 3.44. Let d = 3. Show that the estimate (3.39) continues to hold
for the linear equation µ = 0 when 5/3 < p < 7, but fails for p < 5/3 or p > 7.
(Hint: first obtain bounds for

∫
R

∫
|x|≤R |u(t, x)|p+1 dxdt for R a power of two by

using Strichartz estimates, and then sum in R. For the negative results, start with
a bump function initial datum (or a Gaussian) and rescale it as in Exercise 2.40.)
The estimate is also true at the endpoints p = 5/3 and p = 7 but requires a Lorentz
space refinement of the Strichartz estimates, observed in [KTao].
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Exercise 3.45. For simplicity let us work with a global classical solution u :
R×R3 → C to the three-dimensional linear Schrödinger equation (so d = 3 and µ =
0). Define the “two-particle” field U : R × R6 → C by U(t, x, y) := u(t, x)u(t, y).
Show that U solves the six-dimensional linear Schrödinger equation. Apply (2.37)
to the solution U with the weight a(x, y) := |x − y| (using limiting arguments as
necessary to deal with the fact that a is not smooth) and deduce another proof of
(3.42) in the linear case µ = 0. How does the argument change when one places a
defocusing nonlinearity in the equation?

Exercise 3.46 (Morawetz inequality for the wave equation). [Mor] Let u :
I × R3 → C be a classical solution to a three-dimensional defocusing NLW (thus
d = 3 and µ = 1), and let Tαβ be the associated stress-energy tensor. Using (3.34)
and the identity

Tjk = Re(∂xju∂xk
u) − δjk

4
�(|u|2) +

pδjk
2(p+ 1)

|u|p+1

for the spatial component of the stress-energy tensor, establish the identity

∂t

∫
R3

xj
|x|T

0j dx =
∫
R3

|∇/ u|2
|x| +

p

p+ 1
|u|p+1

|x| − 1
2|x|�(|u|2).

Integrate this in time and use the Hardy inequality (Lemma A.2) to establish the
Morawetz inequality∫

I

∫
R3

|∇/ u|2
|x| dxdt+

∫
I

∫
R3

|u|p+1

|x| dxdt+
∫
I

|u(t, 0)|2 dt �p E[u]

where E[u] = E[u[t]] is the conserved energy; compare this with (3.38).

Exercise 3.47. Let u be a classical solution to a NLS. Verify the identity

Epc[u(t), t] = t2E[u(t)] − t

∫
Rd

xjT0j(t, x) dx+
∫
Rd

1
2
|x|2T00(t, x) dx

which connects the pseudoconformal energy to the ordinary energy and the pseudo-
stress-energy tensor. Use this to verify the evolution law

∂tEpc[u(t), t] = −µdt(p− pL2
x
)

p+ 1

∫
Rd

|u(t, x)|p+1 dx

directly, without recourse to the pseudoconformal transformation. From this and
Gronwall’s inequality, deduce the estimate

‖u(t)‖p+1

Lp+1
x

�d,p t
−2‖xu(0)‖2

L2
x
,

in the defocusing, L2
x-supercritical case µ = +1, p > pd and all t �= 0, as well as the

estimate

‖u(t)‖p+1

Lp+1
x

�d,p,t0 t
−d(p−1)/2(‖xu(0)‖2

L2
x

+
∫ t0

0

∫
Rd

|u(t, x)|p+1 dxdt),

in the defocusing, L2
x-subcritical case µ = +1, p < pd and all t ≥ t0 > 0.

Exercise 3.48. Let f ∈ C∞
t Sx(I ×R3) for some time interval I. By repeating

the arguments used to deduce (2.57) from (2.56), derive the Klainerman-Sobolev
inequality

(3.46) ‖∇t,xf(t)‖L∞
x (R3) � 〈t〉−1

∑
m≤3

∑
K1,...,Km

‖∇t,xK1 . . .Kmf(t)‖L2
x(R3)
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for all t ∈ I, where K1, . . . ,Km ranges over all the vector fields ∂t, ∂xj , xj∂xk
−

xk∂xj , or t∂xj + xj∂t.

3.6. Scattering theory

To know the road ahead, ask those coming back. (attributed to
Confucius)

The decay estimates of the preceding section give asymptotic control for global
solutions to NLS or NLW. It turns out in many cases, these estimates can be
bootstrapped to provide quite strong control on these solutions, in particular es-
tablishing that they scatter to a linear solution. Intuitively, the reason for this is
that if u(t) decays to zero as t→ ±∞, then the nonlinearity µ|u(t)|p−1u(t) decays
even faster, and so the nonlinear component of the NLS or NLW equation will van-
ish asymptotically (in a relative sense), and thus (by Principle 1.37) we expect the
evolution to behave linearly as t → ±∞. The main tool for making these heuris-
tics rigorous is the Duhamel formula ((3.22) or (3.23)), applied for various values
of t and t0; the arguments often bear some similarity with the Duhamel iteration
arguments used to establish local existence, though with some subtle differences.
For instance, in the local theory, large exponents p are more difficult to deal with
than small exponents (because they exacerbate the large values of the solution,
which are the main source of difficulty in closing a local iteration argument), but
in the asymptotic theory, the small exponents tend to be the most difficult34 (be-
cause they do not attenuate the small values of the solution as much as the large
exponents, and so the nonlinearity does not decay as fast asymptotically). Since
one needs to combine the local and asymptotic theories to understand scattering,
it should thus be unsurprising that most scattering results only hold for exponents
p that are neither too large nor too small. (For instance, recall from our discussion
of the exact solutions (3.18), (3.19) that we do not expect scattering results when
p ≤ 1 + 2

d .)
We begin by discussing the scattering theory for NLS in the energy classH1

x. To
reduce the number of cases slightly we shall only consider scattering from t = 0 to
t = +∞ or vice versa; one can certainly consider scattering back and forth between
t = 0 and t = −∞, or between t = −∞ and t = +∞, but the theory is more
or less the same in each of these cases. We will also assume that the nonlinearity
is either H1

x-subcritical or H1
x-critical, so that we have a good H1

x-wellposedness
theory (locally in time, at least).

A solution to the linear Schrödinger equation in this class takes the form
eit∆/2u+ for some u+ ∈ H1

x. We say that a global strong H1
x solution u to the

nonlinear equation (3.1) with initial datum u(0) = u0 scatters in H1
x to a solution

eit∆/2u+ to the linear equation as t→ +∞ if we have

‖u(t) − eit∆/2u+‖H1
x
→ 0 as t→ +∞,

or equivalently (by using the unitarity of eit∆/2)

‖e−it∆/2u(t) − u+‖H1
x
→ 0 as t→ +∞.

34For similar reasons, the asymptotic theory sometimes gets easier when there are derivatives
in the nonlinearity, despite the fact that these derivatives can make the local theory significantly
harder.
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In other words, we require the functions35 e−it∆/2u(t) converge in H1
x as t→ +∞.

From the Duhamel formula (3.22) we have

e−it∆/2u(t) = u0 − iµ

∫ t

0

e−it
′∆/2(|u(t′)|p−1u(t′)) dt′

and so u scatters inH1
x as t→ +∞ if and only if the improper integral

∫ ∞
0 e−it∆/2(|u(t)|p−1u(t)) dt

is conditionally convergent in H1
x, in which case the asymptotic state u+ is given

by the formula

(3.47) u+ = u0 − iµ

∫ ∞

0

e−it∆/2(|u(t)|p−1u(t)) dt.

Thus one can view the asymptotic state u+ as a nonlinear perturbation of the initial
state u0. If we compare (3.47) with (3.22) and eliminate u0 we obtain the identity

(3.48) u(t) = eit∆/2u+ + iµ

∫ ∞

t

ei(t−t
′)∆/2(|u(t′)|p−1u(t′)) dt′

which can be viewed as the limiting case t0 = +∞ of (3.22).
Suppose that for every asymptotic state u+ ∈ H1

x there exists a unique initial
datum u0 ∈ H1

x whose corresponding H1
x-wellposed solution is global and scatters

to eit∆/2u+ as t → +∞. Then we can define the wave operator Ω+ : H1
x → H1

x

by Ω+u+ := u0. Note that the uniqueness aspect of the H1
x-wellposedness theory

ensures that the wave operator is injective. If it is also surjective - in other words,
if every H1

x-wellposed solution is global and scatters in H1
x as t→ +∞, we say that

we also have asymptotic completeness.
In general, the existence of wave operators is relatively easy to establish (as long

as the power p is not too small or too large, and especially if a smallness condition
is assumed), both in focusing and defocusing cases. The asymptotic completeness,
however, is a bit harder, is restricted to the defocusing case (since soliton solutions
clearly do not scatter to linear solutions), and requires the decay estimates. We
will not attempt a complete theory here, but just illustrate with a single example,
namely the cubic defocusing three-dimensional NLS (d = 3, p = 3, µ = +1). Note
that global wellposedness for H1

x for this equation (in the subcritical sense) was
already established in Exercise 3.35.

Proposition 3.22 (Existence of wave operators). Let d = 3, p = 3, and
µ = +1. Then the wave operator Ω+ : H1

x → H1
x exists and is continuous.

Proof. (Sketch) To construct the wave operator Ω+, we need to evolve a state
at t = +∞ to t = 0. We shall factor this problem into two sub-problems; first we
shall solve the “asymptotic problem”, getting from t = +∞ to some finite time
t = T > 0, and then we will solve the “local problem” of getting from t = T
to t = 0. The latter problem will be an immediate consequence of the global
wellposedness problem, so we focus on the former. We shall use the same Duhamel
iteration method used to prove Proposition 3.15, but with (3.48) being used instead

35It is instructive to write e−it∆/2u(t) = Slin(t)−1S(t)u0, where S(t) : u0 �→ u(t) is the prop-
agator for the nonlinear Schrödinger equation, and Slin(t) is the corresponding linear propagator.
Thus scattering is an assertion that the “gap” between S(t) and Slin(t) converges to something
bounded in H1

x as t→ ∞.



160 3. SEMILINEAR DISPERSIVE EQUATIONS

 

Forcing term

Solution

u

F(u)

Asymptotic state

u
+

[linear evolution]
(homogeneous)

(backwards inhomogeneous)

[linear evolution]nonlinearity

F

Figure 8. The iteration scheme used to construct a solution from
an asymptotic state at late times; it is essentially a backwards-in-
time version of the local existence scheme, but on an unbounded
time interval.

of the usual Duhamel formula (3.22). Fix u+ ∈ H1
x; we will assume the bound

‖u+‖H1
x
≤ A for some A > 0. From the Strichartz estimate (3.28) we have

‖eit∆/2u+‖S1(R×R3) �A 1.

We would like to make this norm not only bounded, but small, by restricting the
time variable. This is not possible at present because the S1 norm contains some
components of L∞

t type, which do not necessarily shrink upon restricting time. To
fix this we shall pass from S1 to a smaller controlling norm; a convenient choice
here is the norm

‖u‖S0 := ‖u‖L5
t,x

+ ‖u‖
L

10/3
t W

1,10/3
x

.

From Sobolev embedding we have

‖eit∆/2u+‖S0(R×R3) � ‖eit∆/2u+‖L5
tW

1,30/11
x (R×R3)

+ ‖eit∆/2u+‖L10/3
t W

1,10/3
x (R×R3)

� ‖eit∆/2u+‖S1(R×R3)

�A 1.

Let ε > 0 be a small absolute constant to be chosen later. If we set T = T (u+)
large enough, we see from monotone convergence that

‖eit∆/2u+‖S0([T,+∞)×R3) ≤ ε.

We now solve (3.48) in the spacetime slab [T,+∞) × R3 by iteration, keeping
the iterates bounded in S1([T,+∞) × R3) and small in S0, and the nonlinearity
|u|p−1u small in L10/7

t W
1,10/7
x ([T,+∞)×R3). This constructs a unique solution u ∈

S1([T,+∞)×R3) to (3.48), which can be shown to be a strong H1
x solution to (3.1)

in this interval by a variant of Exercise 3.10. Using the global H1
x-wellposedness

theory, one can then extend this solution uniquely to S1([0,+∞) × R3), and in
particular u will take some value u0 = u(0) ∈ H1

x at time t = 0. This gives
existence of the wave map; continuity can be established by concatenating the
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continuity given from the above iteration scheme in the interval [T,+∞) with the
continuity arising from the global wellposedness in the interval [0, T ]; note that the
time T can be chosen to be uniform under small H1

x perturbations in u+ thanks to
the Strichartz estimates. The uniqueness can be made to be unconditional (in the
category of strong H1

x solutions) by arguing as in Exercise 3.17. �

Remark 3.23. The above argument shows that (perhaps unintuitively) it is
in fact easier to evolve from an asymptotic state at t = +∞ to a large finite time
t = T , than it is to evolve from t = T down to t = 0, as the former does not
even require energy conservation or the defocusing sign of the nonlinearity. The
reason for this is that in the asymptotic regime t → +∞, the asymptotic state is
so dispersed that the nonlinear effects are extremely weak; it is only at time T and
below that the solution reaches sufficient levels of concentration that one must start
paying more serious attention to the nonlinearity.

Now we establish asymptotic completeness. For pedagogical purposes we shall
split the argument into three parts. First we begin with a conditional result, that
shows that asymptotic completeness is implied by a certain spacetime bound; this
is a purely perturbative argument that does not require any decay estimates. Then,
we show that this rather strong spacetime bound is implied by a seemingly weaker
spacetime bound. Finally, we use the decay estimates of the previous section to
establish that spacetime bound.

Proposition 3.24 (Spacetime bound implies asymptotic completeness). Let
d = 3, p = 3, and µ = +1. Suppose that there exists a bound of the form

(3.49) ‖u‖S1(R×R3) �‖u0‖H1
x

1

for all H1
x-wellposed solutions to (3.1) (thus we assume that the nonlinear equation

obeys the same type of global Strichartz estimate as the linear equation). Then the
wave operator Ω+ is surjective from H1

x to H1
x, and the inverse Ω−1

+ is continuous.
(In conjunction with Proposition 3.22, this implies that Ω+ is a homeomorphism
from H1

x to itself.)

Proof. We shall demonstrate the surjectivity here, and leave the continuity
to an exercise. We need to show that for any u0 ∈ H1

x, the global H1
x-wellposed

solution u to (3.1) scatters in H1
x; by the preceding discussion, this is equiva-

lent to the conditional convergence of the integral
∫ ∞
0
e−it∆/2(|u(t)|2u(t)) dt in

H1
x. By Strichartz estimates (e.g. (3.28)), it will suffice to show that |u|2u lies

in N1(R × R3). But from the Leibnitz rule and Hölder’s inequality, followed by
Sobolev embedding we have

‖|u|2u‖N1(R×R3) �
1∑

k=0

‖∇k(|u|2u)‖
L

10/7
t,x (R×R3)

�
1∑

k=0

‖|u|2|∇ku|‖
L

10/7
t,x (R×R3)

� ‖u‖2
L5

t,x
‖u‖

L
10/3
t W

1,10/3
x (R×R3)

� ‖u‖3
S1(R×R3)

and the claim follows by (3.49). �
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Proposition 3.25 (Weak spacetime bound implies strong spacetime bound).
Let d = 3, p = 3, and µ = +1. Suppose that there exists a bound of the form

(3.50) ‖u‖Lq
t,x(R×R3) �‖u0‖H1

x
1

for all H1
x-wellposed solutions to (3.1) and some fixed 10/3 ≤ q ≤ 10. Then we

have (3.49).

Note that Sobolev embedding shows that the Lqx norm is controlled by the S1

norm. The S1 norm is ostensibly a stronger norm as it also controls one derivative
of the solution, but the point is that Strichartz estimates will allow one to control
this stronger norm by the weaker norm (and the energy). This bootstrapping
phenomenon is typical for any subcritical equation (reflecting a certain amount
of “room” in the iteration argument); for critical equations, the situation is more
delicate as the relevant Strichartz norm is now scale-invariant and thus can only
be controlled by other scale-invariant quantities; see Exercise 3.51. One can also
combine this result with persistence of regularity results such as Proposition 3.8,
giving in particular the bound

‖u‖C0
tH

s
x(R×R3) �s,‖u0‖H1

x
‖u0‖Hs

x(R3)

for any s ≥ 0 for which the right-hand side is finite.

Proof. Let u be an H1
x-wellposed solution to (3.1). We shall apply a pertur-

bative argument; to do this, we need the solution u to be made small in some sense.
This shall be accomplished by partitioning the time axis36.

Let ε = ε(‖u0‖H1
x
) > 0 be a small number to be chosen later. Using (3.50), we

can divide the time axis R into Oε,q,‖u0‖H1
x
(1) intervals I, such that on each such

interval we have

(3.51) ‖u‖Lq
x(I×R3) ≤ ε.

Now fix one of these intervals I, say I = [t0, t1]. From (3.28) we have

‖u‖S1(I×R3) � ‖u(t0)‖H1
x(R3) + ‖|u|2u‖N1(I×R3).

From energy conservation we have ‖u(t0)‖H1
x(R3) = O‖u0‖H1

x
(1). Now we argue as

in the proof of Proposition 3.24. Estimating the N1 norm by the L10/7
t W

1,10/7
x

norm and using the Leibnitz rule and Hölder inequality, we see that

‖|u|2u‖N1(I×R3) �
1∑

k=0

‖|u|2|∇ku|‖
L

10/7
t,x (I×R3)

� ‖u‖2
L5

t,x(I×R3)‖u‖L10/3
t W 1,10/3(I×R3)

� ‖u‖2
L5

t,x(I×R3)‖u‖S1(I×R3).

Now from the definition of S1 and Sobolev embedding we have

‖u‖Lr
t,x(I×R3) � ‖u‖S1(I×R3)

36This is very similar to how one iterates a local existence result to a global one, as in Figure

7. A key difference is that the time intervals considered here can be arbitrarily large or even
infinite. In practice, this means that we are no longer permitted to use Hölder in time (except
perhaps on some exceptionally short intervals), as we generally cannot afford to lose a power of
the length of the time interval.
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for all 10/3 ≤ r ≤ 10. Interpolating this with (3.51) we obtain

‖u‖L5
t,x(I×R3) � εα‖u‖1−α

S1(I×R3)

for some 0 < α < 1 depending on q. Combining all these estimates we obtain

‖u‖S1(I×R3) � O‖u0‖H1
x
(1) + εα‖u‖1−α

S1(I×R3).

If we choose ε sufficiently small depending on ‖u0‖H1
x
, then standard continuity

arguments (see Exercise 1.19) yields

‖u‖S1(I×R3) = O‖u0‖H1
x
(1).

Summing this over all of the intervals I we obtain (3.49) as desired. �
It thus remains to establish the spacetime bound (3.50). In the case of spher-

ically symmetric solutions, one can combine the ordinary Morawetz inequality
(3.39), which in this case gives∫

R

∫
R3

|u(t, x)|4
|x| dxdt �‖u0‖H1

x
1,

with the radial Sobolev inequality (Exercise A.19), which when combined with the
conservation of mass and energy give

‖u(t, x)|x|‖L∞
t L∞

x (R×R3) �‖u0‖H1
x

1.

Multiplying the two gives

‖u‖L5
t,x(R×R3) �‖u0‖H1

x
1,

which is of the desired form (3.50) with q = 5. Note how the Morawetz inequality
provides the decay near the origin, while the radial Sobolev inequality provides the
decay away from the origin. In the non-radial case, we cannot run this argument
so easily (though see [Bou6]); however the interaction Morawetz inequality (3.43)
yields (3.50) immediately (with q = 4).

The above types of arguments are known to give scattering results in H1
x for

defocusing NLS equations which are strictly between the H1
x-critical and L2

x-critical
powers; see [Caz2]. A scattering theory at the H1

x-critical endpoint (based upon a
spacetime bound such as (3.50)) has recently been established but is significantly
more difficult; see Chapter 5. The H1

x-scattering theory for the L2
x-critical equation

remains open, even in the spherically symmetric defocusing case. Similar remarks
also apply to the NLW, but with the role of the L2

x-critical exponent now played
by the Ḣ1/2

x -critical (conformal) exponent.
For NLS equations below the L2

x-critical exponent, no scattering theory is
known in H1

x, but one can extend the range of exponents for which a scatter-
ing result is known by assuming more spatial decay on the solution. For instance,
one can work in the pseudoconformal space

Σ := {u0 ∈ H1
x(R

d) : xu0 ∈ L2
x(R

d)},
as one can now utilise the pseudoconformal decay laws for such initial data (such as
those in Exercise 3.47). It turns out that the exponent p still needs to be above a
certain threshold in order for that decay law to be strong enough to give scattering;
more precisely, if we have a defocusing NLS with

2 + d+
√
d2 + 12d+ 4
4d

< p ≤ 1 +
4

d− 2
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u in L  L   on  [0,T]
4 4

v in L  L   on [0, 1/T]
4 4

4

u(0) in H
0,1

u(T) has finite pc−energy

u in L  L   on [T,     ] v in L  L   on [1/T,   ]
4 48

4

[local theory in L  ]
2

8

[global theory in H  ]
1

[pc transform]

v(1/T) has finite energy

[pc conservation]

Figure 9. The scheme used to establish a global L4
t,x bound from

H0,1
x initial data. Notice how the original and pseudoconformal

viewpoints together form a “coordinate chart” for the compactified
time interval [0,+∞], thus reducing a global problem to two local
ones.

and u0 ∈ Σ, then there is a global H1
x-wellposed solution u, and e−it∆/2u(t) con-

verges in Σ to some asymptotic state u+ ∈ Σ. See [Caz2], [TVZ]. On the other
hand, for NLS equations in which the power p is less than or equal to 1 + 2

d , the
asymptotic effects of the nonlinearity are not negligible, and it is known that the
solution does not in general scatter to a free solution; see Section 3.8.

The pseudoconformal transformation is a useful tool for analyzing the asymp-
totic behaviour of NLS, because it swaps the asymptotic regime t → +∞ with
the local regime t → 0+ (though at the possible cost of introducing a singular-
ity at t = 0). This transformation should also (heuristically at least) swap the
initial datum with its Fourier transform, or something resembling its Fourier trans-
form; see Exercise 2.26. The Fourier transform swaps H1

x to the weighted space
H0,1
x := {u0 : 〈x〉u0 ∈ L2

x}, and so one might expect to be able to use this transfor-
mation to somehow intertwine the H1

x theory with an H0,1
x theory. A sample result

is as follows.

Proposition 3.26. Consider the two-dimensional defocusing cubic NLS (thus
d = 2, p = 3, µ = +1, and the equation is L2

x-critical). Let u0 ∈ H0,1
x . Then there

exists a global L2
x-wellposed solution to (3.1), and furthermore the L4

t,x(R × R3)
norm of u0 is finite.

The L4
t,x bound is sufficient to yield a scattering result in L2

x; see Exercise 3.54.
In contrast, for H1

x data, no scattering result is known (the Morawetz inequalities
do some decay here, but it is not scale-invariant), while for L2

x data, not even global
existence is known (unless the mass is small).

Proof. We shall use an argument from [BC]. By time reversal symmetry and
gluing arguments we may restrict attention to the time interval [0,+∞). Since u0
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lies in H0,1
x , it also lies in L2

x. Applying the L2
x wellposedness theory (Proposition

3.14) we can find an L2
x-wellposed solution u ∈ S0([0, T ]×R3) on some time interval

[0, T ], with T > 0 depending on the profile of u0. In particular the L4
t,x([0, T ]×R3)

norm of u is finite. Next we apply the pseudoconformal law (which is exact in the
L2
x-critical case, and can be justified by the usual limiting arguments) to conclude

that

Epc[u(T ), T ] = Epc[u0, 0] =
1
2

∫
R2

|xu0|2 dx <∞

since u0 ∈ H0,1
x .

We have obtained a solution from t = 0 to t = T . To go all the way to
t = +∞ we apply the pseudoconformal transformation (Exercise 2.26) at time
t = T , obtaining an initial datum v(1/T ) at time 1/T by the formula

v(1/T, x) :=
1
i/T

u(T, Tx)eiT |x|2/2.

From (3.44) we see that v has finite energy:

1
2

∫
R2

|∇v(1/T, x)|2 dx+
1
2

∫
R2

|v(1/T, x)|4 dx = Epc[u(T ), T ] <∞.

Also, the pseudoconformal transformation conserves mass and hence∫
R2

|v(1/T, x)|2 dx =
∫
R2

|u(T, x)|2 dx =
∫
R2

|u0(x)|2 dx <∞.

We thus see that v(1/T ) has a finite H1
x norm. We can thus use the global H1

x-
wellposedness theory (from Exercise 3.35) backwards in time to obtain an H1

x-
wellposed solution v ∈ S1([0, 1/T ] × R2) to the equation (3.16), which in this
case is identical to the original NLS: i∂tv + 1

2∆v = |v|2v. In particular, v ∈
L4
t,x([0, 1/T ]×R2). We now invert the pseudoconformal transformation, which now

defines the original field u on the new slab [1/T,∞) × R2. From Exercise 2.36 we
see that the L4

t,x([1/T,∞) × R2) and C0
t L

2
x([1/T,∞) × R2) norms of u are finite.

This is enough to make u an L2
x-wellposed solution to NLS on the time interval

[1/T,∞); for v classical this is an immediate consequence of Exercise 2.26, and for
general v ∈ S1([0, 1/T ] × R2) the claim follows by a limiting argument using the
H1
x-wellposedness theory. Gluing together the two intervals [0, 1/T ] and [1/T,∞),

we have obtained a global L4
t,x([0,+∞) × R2) solution u to (3.1) as desired. We

summarise the above argument in Figure 9. �

Remark 3.27. One can go through the above argument and extract an explicit
bound on the global L4

t,x norm of the solution u, but it depends on the profile of the
initial datum u0 and not just on itsH0,1

x norm (as this is what determines how small
T is). Indeed, if one could obtain a bound depending only in the H0,1

x norm then
the scaling invariance and a limiting argument would allow one to replaceH0,1

x with
L2
x, which would lead to the (still open) result that one has global wellposedness

and scattering in L2
x for this equation. The above argument can also be generalised,

linking a wellposedness theory in Hs
x to a scattering theory in H0,s for any s ≥ 0

and any L2
x-critical equation; see [BC].

Observe how in the above argument, the pseudoconformal transformation was
used to convert an asymptotic time horizon t = +∞ to a finite time horizon t = 0,
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thus allowing one to use local theory to obtain asymptotic control of the solu-
tion. There is a somewhat similar trick for wave equations known as conformal
compactification, in which one applies a conformal transformation of Minkowski
spacetime to a pre-compact Lorentzian manifold (the “Penrose diamond”). In
one dimension d = 1, this compactification is especially simple in null coordinates
u := t+x, v := t−x, as it is given simply by (u, v) �→ (tan−1 u, tan−1 v), thus map-
ping R1+1 to the diamond-shaped region {(t, x) ∈ R1+1 : |t+ x|, |t− x| < π/2}. If
the equation is of a suitable type (it typically must obey some sort of “null condi-
tion”, or the nonlinearity must be sufficiently high order), then this transformation
does not introduce any severe singularities at the boundary of the diamond (cf.
(3.16) in the case p < pL2

x
), and one can use local theory on the Penrose diamond

to obtain a transformed solution on the entire diamond (if the datum is sufficiently
small, smooth, and decaying), and then by inverting the conformal compactifica-
tion one obtains a global solution in Minkowski space. Typically the transformed
solution extends to the boundary of the Penrose diamond and beyond, which often
leads to scattering-type behaviour for the original solution. See [Chr].

Several of the above methods can also be used to establish various scattering
results for NLW; the conformal conservation law, Morawetz estimates, the vector
fields method, and the conformal compactification methods are particularly useful.
Because of finite speed of propagation, one can often reduce the case of compactly
supported data. We will not discuss these results here, except in the energy-critical
case which we treat in see Section 5.1, and refer the reader to [Stra], [GV6], [BZS],
[GV5], [Nak3], [Hid].

Exercise 3.49. Complete the proof of Proposition 3.22. (Full details can also
be found in [Caz2].)

Exercise 3.50. Establish the continuity component of Proposition 3.24. (One
may need to divide the time axis into intervals on which certain spacetime norms are
small, in order that the perturbative argument can apply to give local continuity.
Then concatenate the results to obtain global continuity.)

Exercise 3.51. Suppose one replaces the H1
x-subcritical cubic NLS in Propo-

sition 3.25 with the H1
x-critical quintic NLS (so d = 3, p = 5, µ = +1). Show that

one can still prove this Proposition if one fixes q = 10 (this is the unique value of
q which is invariant under the scaling symmetry of the equation).

Exercise 3.52. Suppose one is working with a global H1
x(R

3)-wellposed so-
lution u to either the cubic or quintic three-dimensional NLS (with either sign of
nonlinearity). Suppose it is known that the potential energy 1

p+1

∫
R3 |u(t, x)|p+1 dx

goes to zero as t→ ∞. Conclude that the solution scatters in H1
x to an asymptotic

state eit∆/2u+. (This is yet another affirmation of Principle 3.20.)

Exercise 3.53 (Blowup criterion forH1
x-critical NLS). Suppose u ∈ C0

tH
1
x([0, T∗)×

R3) be a strong H1
x solution to quintic NLS (so d = 3 and p = 5) which can-

not be continued beyond a finite time T∗ as a strong solution. Show that the
L10
t,x([0, T∗) × R3) norm of u is infinite. (Argue by contradiction and obtain an

Ṡ1([0, T∗) ×R3) bound on u. Conclude that for times t close to T , both the linear
and nonlinear evolution of u(t) will be small in L10

t,x([t, T∗) × R3), and hence for
L10
t,x([t, T∗ + ε) × R3) for some ε > 0, contradicting the hypothesis that T∗ is the

maximal time of existence.)
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Exercise 3.54. Consider the two-dimensional defocusing cubic NLS (thus d =
2, p = 3, µ = +1). Show that if a global L2

x-wellposed solution u is known to have
finite L4

t,x(R×R2) norm, then e−it∆/2u(t) converges in L2
x to an asymptotic state

u+ ∈ L2
x as t→ +∞.

3.7. Stability theory

True life is lived when tiny changes occur. (Leo Tolstoy)
The differential equations that one studies in mathematics, such as NLS and

NLW, often arise from physics as simplified models for more complicated systems.
In reality, the actual equations that govern a physical system will not evolve by
these model equations exactly, but will contain some additional terms. For sake
of discussion let us fix the model equation to be the NLS (3.1). Instead of solving
NLS, the true system may be governed by a field ũ which obeys a perturbed NLS

(3.52) i∂tũ+
1
2
∆ũ = µ|ũ|p−1ũ+ e; ũ(t0) = u0 + e0

where the forcing term e = e(t, x) and the initial datum error e0 = e0(x) are small,
and possibly depending on ũ and on some external forces37. It is thus of interest to
develop a stability theory for equations such as NLS, which would guarantee that the
solution to a perturbed NLS does not deviate too far from the solution to the actual
NLS if e and e0 are small some suitable norms. Note that this would generalise
the property of continuous dependence of the data, which is already given by the
wellposedness theory and corresponds to the special case e = 0. It also generalises
the uniqueness theory, which can be viewed as the case e = e0 = 0. A strong
stability theory lends confidence as to the robustness of the results obtained for the
model equation. Conversely, if a PDE is known to be very unstable then this would
cast doubt on the ability of that PDE to accurately simulate (either numerically or
theoretically) a real-life system, except perhaps in some stochastic sense.

A stability theory is also useful to have in the analysis of PDE. It opens up a
very useful strategy for constructing solutions u to an equation such as NLS, by
first constructing an approximate solution ũ, for which i∂tũ + 1

2∆ũ is very close
to µ|ũ|p−1ũ and ũ(t0) ≈ u0. In other words, an approximate solution to NLS is
nothing more than an exact solution to the perturbed NLS (3.52) for some small e
and e0. Stability theory can then let us pass from the approximate solution ũ to a
nearby exact solution u to the unperturbed NLS. This approach is quite powerful,
because it is much easier to construct approximate solutions than exact solutions,
for instance by asymptotic expansions38, or by omitting certain terms from an
equation that one believes to be negligible and then solving the reduced equation;

37The field of stochastic partial differential equations studies such equations with the as-
sumption that e is some stochastic field, e.g. Gaussian white noise. These random fluctuations
often serve to regularise the behaviour of the equation and keep it well-behaved even when the
deterministic equation is not known to be wellposed. However, we shall focus on the determin-
istic theory in which e is fixed, which is the case needed for applications such as construction of
solutions via approximate solutions.

38In particular, the theory of nonlinear geometric optics proceeds in this fashion, constructing
solutions to an equation by first creating an ansatz consisting of an asymptotic series with certain

amplitude and phase parameters. One then solves for these amplitudes and phases in order to
make the partial sums of this series an approximate solution to the original equation, and then uses
some stability theory to pass to an exact solution. These methods are very useful in constructing
large classes of interesting solutions to many PDE, though they tend to require the initial data to
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see Section 3.8 below. To give another example, while the superposition of two
solutions to a nonlinear equation will not in general yield another solution to that
equation, such a superposition is often an approximate solution to the equation if the
two component solutions are sufficiently “separated”, either in space or frequency.
This strategy can be used for instance to construct multisoliton solutions, and is
also the main reason why the “induction on energy” strategy that we shall introduce
in Chapter 5 is so powerful.

Fortunately, any equation with a good wellposedness theory is also likely to
have a good stability theory, by modifying the arguments used to prove wellposed-
ness suitably; indeed the stability theory is in many ways the culmination of the
perturbation theory methods. The main trick (which we have already seen with the
uniqueness and continuity theory) is to look at the difference equation between the
approximate solution ũ and the exact solution39, and then solve this difference equa-
tion using the same types of techniques and estimates used for the wellposedness
theory. Specifically, if we set ũ = u+ v, then v solves the difference equation

(3.53) i∂tv +
1
2
∆v = µ(|u+ v|p−1(u+ v) − |u|p−1u) + e; v(t0) = e0.

Thus the initial datum of v is small. As for the nonlinearity, we can use Taylor
expansion to expand

µ(|u+v|p−1(u+v)−|u|p−1u)+e = O(|u|p−1|v|)+O(|u|p−2|v|2)+. . .+O(|v|p)+O(|e|).
assuming for simplicity that we are in the algebraic case where p is an odd integer.
In practice, if e and e0 are both small, then we expect v to be small also, and
the dominant terms in the nonlinearity will be the terms O(|u|p−1|v|) which are
linear in v. These terms can be dealt with for short times by iterative arguments
based on the Duhamel formula, as well as estimates such as Strichartz estimates; for
longer times, one can use energy methods40, combined with tools such as Gronwall’s
inequality, to try to keep control of the solution.

To illustrate the method, we shall consider asymptotics of one-dimensional
defocusing NLS in the “short range” case p > 3. (The “critical range” case p = 3
and the “long range” case p < 3 are significantly more interesting, but also more
difficult technically.) Applying the pseudoconformal transformation as in (3.16),
we obtain the equation

(3.54) i∂tv +
1
2
∂xxv =

1
t(5−p)/2

|v|p−1v

for 3 < p < 5, which is obtained from the one-dimensional defocusing NLS via the
pseudoconformal transformation (see (3.16)). To construct solutions near t = 0,
we first omit the dispersive term 1

2∂xxv (using the intuition that this term will

be of a special form and are unsuited for the Cauchy problem with generic Hs
x initial data. Due

to limitations of space we will not be able to discuss this important technique in this text.
39This assumes that the exact solution u exists for at least as long as the approximate solution

u. In practice one can establish this by a continuity argument or by a suitable iteration of the
wellposedness theory.

40In some cases, when the exact solution u is an explicit form such as a soliton, one can use

more advanced spectral analysis of the linearised equation i∂tv + 1
2
∆v = O(|u|p−1|v|) to obtain

long-time control of the solution; this is an important tool in the theory of stability of solitons and
multisolitons. However, such spectral methods are currently unavailable for more general classes
u of solution.
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forcing terms

F(u+v) − F(u)
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u
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(homogeneous)

(inhomogeneous)
Linear evolution

Nonlinearity

F

Figure 10. The difference scheme for an approximate perturba-
tion ũ = u + v to an exact solution u. This scheme can also be
reversed to convert an approximate solution ũ to an exact solution
u = ũ− v (by replacing F (u+ v) − F (u) with F (ũ) − F (ũ− v)).

be dominated by the singular nonlinearity 1
t(5−p)/2 |v|2v for very small times t) and

solve the simpler equation

(3.55) i∂tṽ =
1

t(5−p)/2
|ṽ|2ṽ.

This equation just the ODE (3.17), and can be solved explicitly as

(3.56) ṽ(t, x) = εe−i
2

p−3 ε
2|ψ(x)|2t(p−3)/2

ψ(x)

for any complex-valued function ψ(x), and 0 < ε < 1 is a small parameter we have
introduced to allow ṽ to be small (compare with (3.18)). Thus, if ε is small, we
expect the original PDE (3.54) to have solutions which are approximately of the
form (3.55). This can be established as follows.

Proposition 3.28. Let ψ ∈ Sx(R) and 0 < ε � 1. If ε is sufficiently small
depending on ψ, then we have a solution v to (3.54) on the slab (0, 1)×R obeying
the bounds

‖v(t) − ṽ(t)‖H1
x

�ψ εt

for all 0 < t < 1, where ṽ was defined in (3.56).

Proof. To construct v, we use the ansatz v = ṽ+w. Subtracting (3.55) from
(3.54), we see that w needs to solve the equation

i∂tw +
1
2
∂xxw =

1
t(5−p)/2

(F (ṽ + w) − F (ṽ)) − ∂xxṽ

where F (z) := |z|p−1z. We set initial datum w(0) = 0, and write the equation in
integral form as w = Φ(w), where Φ is the nonlinear operator

Φ(w) =
∫ t

0

1
(t′)(5−p)/2

(F (ṽ(t′) + w(t′)) − F (ṽ(t′))) − ∂xxṽ(t′) dt′.
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One can use energy estimates to verify that Φ is a contraction on the set {tu :
‖u‖C0

tH
1
x([0,1]×R) �ψ ε}, if ε is sufficiently small depending on ψ; we leave this as

an exercise. The claim now follows from the contraction mapping principle. �

Informally, the above proposition gives the approximation

v(t, x) = εe−i
2

p−3ε
2|ψ(x)|2t(p−3)/2

ψ(x) + l.o.t.

for 0 < t < 1, where the lower order terms go to zero in a suitable sense as t → 0.
Inverting the pseudoconformal transformation, one obtains

(3.57) u(t, x) = ε
1

(it)d/2
exp(

i|x|2
2t

+
2

p− 3
ε2|ψ(x/t)|2t(p−3)/2)ψ(x/t) + l.o.t.

for 1 < t < ∞, where the lower order terms go to zero in a suitable sense as t →
+∞. A similar argument applied to the linear Schrödinger equation (or using the
fundamental solution) allows one to construct a solution ulin to the linear equation
with the asymptotics

ulin(t, x) = ε
1

(it)d/2
exp(

i|x|2
2t

)ψ(x/t) + l.o.t.

Because we are in the short-range case p > 3, we can thus conclude that u(t)−ulin(t)
converges to zero in certain norms (for instance, it converges in Hs

x(R) for any s).
This suggests that the short-range case, one has scattering, at least for certain types
of initial data. In the critical-range case p = 3 or the long-range case p > 3, it turns
out that one can still construct solutions to NLS of the form (3.57); the arguments
are similar though the singular nature of (3.54) now presents some delicate issues
(cf. Exercise 1.17); see [Oza], [GO], [HN], [CCT] for some resolutions of this issue.
These solutions fail to scatter to a solution to the linear Schrödinger equation in any
Hs
x norm; thus long-range and critical-range equations do not exhibit scattering to

the linear solution (this was first observed in [Gla]). However one can still hope to
establish a modified scattering result, in which the approximating solution is not a
linear solution, but rather a phase-shifted linear solution; see the above references.

Next, we illustrate how Gronwall type inequalities can be used to obtain sta-
bility for longer times than a simple iteration method (such as that given above)
would give. The time interval on which one has non-trivial control is only extended
by a logarithmic factor, but this is sometimes sufficient for applications. It would
be of great interest to derive stability estimates on even longer intervals, perhaps
by adapting the theory of Nekhoroshev stability from ODE, but this seems to be a
difficult task (see [BK]).

Proposition 3.29. Let ψ ∈ Sx(R) and let 0 < ε� 1 be a small number. Then
there exists a time T ∼ψ log1/3 1

ε and a strong H1
x solution u ∈ C0

tH
1
x([0, T ] × R)

to the small dispersion NLS

(3.58) i∂tu+
ε2

2
∂xxu = |u|2u; u(0) = ψ

such that ‖u− ũ‖C0
tH

1
x([0,T ]×R) �ψ ε, where

ũ(t, x) := e−i|ψ(x)|2tψ(x)

is the explicit solution to the ODE

i∂tũ = |ũ|2ũ; ũ(0) = ψ.
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Proof. From (a rescaled version of) Proposition 3.19 we know that a strong
H1
x solution u to (3.58) exists globally in time41 Writing u = ũ+ w, we see that w

solves the equation

i∂tw + ε2∂xxw = (|(ũ + w)|2(ũ+ w) − |ũ|2ũ) − ε2

2
∂xxũ; w(0) = 0

which we write in Duhamel form as

w(t) =
∫ t

0

eiε
2(t−t′)∂xx [(|(ũ + w)|2(ũ + w) − |ũ|2ũ) − ε2

2
∂xxũ](t′) dt′.

We take H1
x norms of both sides, and use the fact that eiε

2(t−t′)∂xx is bounded in
H1
x, to obtain

‖w(t)‖H1
x
≤

∫ t

0

‖|(ũ+ w)|2(ũ+ w)(t′) − |ũ|2ũ(t′)‖H1
x

+
ε2

2
‖∂xxũ(t′)‖H1

x
dt′.

A direct computation shows that

‖ũ(t′)‖H1
x

�ψ 〈t′〉; ‖∂xxũ(t′)‖H1
x

�ψ 〈t′〉3
while a computation using the algebra property of H1

x (see Lemma A.8) gives

‖|(ũ+ w)|2(ũ+ w)(t′) − |ũ|2ũ(t′)‖H1
x

� ‖w(t′)‖H1
x
(‖ũ(t′)‖H1

x
+ ‖w(t′)‖H1

x
)2.

Putting this all together, we obtain the bound

‖w(t)‖H1
x

�ψ ε
2〈t〉4 +

∫ t

0

〈t〉2‖w(t′)‖H1
x

+ ‖w(t′)‖3
H1

x
dt′.

If ε is sufficiently small depending on t, a continuity argument then gives

‖w(t)‖H1
x

�ψ ε
2〈t〉4 exp(C〈t〉3)

for all 0 < t � log1/3 1
ε (cf. what one would obtain by Gronwall’s inequality by

dropping the nonlinear term ‖w(t′)‖3
H1

x
), and the claim follows. �

In the next section we will use this proposition to obtain some illposedness
results for NLS.

Our final example of a stability theory result comes from the defocusing energy-
critical three-dimensional NLS (d = 3, p = 5, µ = +1). We shall show that H1

x-
wellposed solutions to this equation are stable as long as the L10

t,x norm stays
bounded. We first state a preliminary result in which we assume that a certain
spacetime norm on the solution is small.

Lemma 3.30 (Short-time perturbations). [CKSTT11] Let d = 3, p = 5, µ =
+1. Let I be a compact interval, and let ũ be a field on I × R3 which is a near-
solution to NLS in the sense that

(3.59) (i∂t +
1
2
∆)ũ = |ũ|4ũ+ e

for some field e. Suppose that we also have the energy bound

‖ũ‖L∞
t Ḣ1

x(I×R3) ≤ E

41This global wellposedness is convenient for the argument, but not absolutely necessary;
the energy bounds we obtain in the proof, combined with the local H1

x wellposedness theory,
are sufficient (via a standard continuity argument) to construct the solution u on the given time
interval [0, T ].
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v in L    W
10  .  1,30/13

v in L    L
10  10

u in C   H
0   . 1

v(0) in H

(large norm)

1

v     in L   Wlin

10 .  1,30/13

(small norm)

(large norm) (small norm) [Sobolev]

Net forcing 
term in N 1

.

e in L   W
2  .  1,6/5

(small norm)

(small norm)

u in L    W

(small norm)

(small norm)

F(u+v)−F(u) in L   W
2 .  1,6/5

(small norm)

(large norm)

[local theory]

1

(large norm)

u in S
~~

~

~

~

v in S
1.

[Strichartz estimates]

10  .  1,30/13
[Leibnitz, Holder, 

Sobolev]

Figure 11. The scheme for estimating difference v = u − ũ in
Lemma 3.30; it is thus a rather complex variation of the usual
Strichartz iteration loop.

for some E > 0. Let t0 ∈ I, and let u(t0) be close to ũ(t0) in the sense that

(3.60) ‖u(t0) − ũ(t0)‖Ḣ1
x
≤ E′

for some E′ > 0. Assume also that we have the smallness conditions

‖ũ‖
L10

t Ẇ
1,30/13
x (I×R3)

≤ ε0(3.61)

‖ei(t−t0)∆/2(u(t0) − ũ(t0))‖L10
t Ẇ

1,30/13
x (I×R3)

≤ ε(3.62)

‖e‖
L2

tẆ
1,6/5
x

≤ ε(3.63)

for some 0 < ε < ε0, where ε0 is some constant ε0 = ε0(E,E′) > 0.
We conclude that there exists a solution u to (3.1) on I ×R3 with the specified

initial datum u(t0) at t0 obeying the bounds

‖u− ũ‖Ṡ1(I×R3) � E′(3.64)

‖u‖Ṡ1(I×R3) � E′ + E(3.65)

‖u− ũ‖L10
t,x(I×R3) � ‖u− ũ‖

L10
t Ẇ

1,30/13
x (I×R3)

� ε(3.66)

‖(i∂t + ∆)(u − ũ)‖
L2

tẆ
1,6/5
x (I×R3)

� ε.(3.67)

Note that u(t0) − ũ(t0) is allowed to have large energy, albeit at the cost of
forcing ε to be smaller, and worsening the bounds in (3.64). From Strichartz esti-
mates and (3.60) we see that the hypothesis (3.62) is redundant if one is willing to
take E′ = O(ε).
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Figure 12. The additional time decompositions necessary in or-
der to deduce Lemma 3.31 from Lemma 3.30.

We leave the proof of Lemma 3.30 to the exercises. One can amplify this lemma
to deal with the more general situation of near-solutions with finite but arbitrarily
large L10

t,x norms.

Lemma 3.31 (Long-time perturbations). [CKSTT11] Let d = 3, p = 5, µ =
+1. Let I be a compact interval, and let ũ be a field on I × R3 which obeys the
bounds

(3.68) ‖ũ‖L10
t,x(I×R3) ≤M

and

(3.69) ‖ũ‖L∞
t Ḣ1

x(I×R3) ≤ E

for some M,E > 0. Suppose also that ũ is a near-solution to NLS in the sense that
it solves (3.59) for some e. Let t0 ∈ I, and let u(t0) be close to ũ(t0) in the sense
that

‖u(t0) − ũ(t0)‖Ḣ1
x
≤ E′

for some E′ > 0. Assume also that we have the smallness conditions,

‖ei(t−t0)∆/2(u(t0) − ũ(t0))‖L10
t Ẇ

1,30/13
x (I×R3)

≤ ε(3.70)

‖e‖
L2

tẆ
1,6/5
x (I×R3)

≤ ε

for some 0 < ε < ε1, where ε1 is a small constant ε1 = ε1(E,E′,M) > 0. We
conclude there exists a solution u to (3.1) on I×R3 with the specified initial datum
u(t0) at t0, and furthermore

‖u− ũ‖Ṡ1(I×R3) �M,E,E′ 1

‖u‖Ṡ1(I×R3) �M,E,E′ 1

‖u− ũ‖L10
t,x(I×R3) � ‖u− ũ‖

L10
t Ẇ

1,30/13
x (I×R3)

�M,E,E′ ε.

Again, we leave the details to the exercises. This stability lemma is quite
powerful; it shows that approximate solutions can be adjusted to become exact
solutions even when the energy of both initial data and their difference are large,
as long as the approximate solution is bounded (but not necessarily small) in L10

t,x

norm, and the error e is very small. It will play an important role in the large
energy theory of this equation in Chapter 5.
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In the preceding examples of stability theory, we approximated an exact solu-
tion u by an explicit approximate solution ũ. In some cases, most notably in the
stability theory of solitons and multisolitons, it is better to approximate u by a par-
tially explicit approximate solution, which involves some free parameters that one
has some freedom to choose in order to make the analysis of the error terms as easy
as possible. For instance, if considering perturbations u of a soliton solution such as
eitτQ(x), the ansatz u = eitτQ(x)+w turns out to not be very effective (the bounds
on w will grow exponentially in time if one applies perturbation theory naively).
Instead, a better procedure is to perform an ansatz u = eitτ+θ(t)Q(x − x(t)) + w,
where θ : R → R and x : R → Rd are parameters that one can choose. Typically,
one chooses these parameters in order to obtain some moment conditions on w
(for instance, one could try to force w to be orthogonal to functions such as iQ or
∇Q), which can improve the behaviour of the equation for w (by eliminating some
degeneracies in the linearised operator associated to Q). This reflects the fact that
perturbations to a soliton can cause that soliton to move in a significant manner
along the directions given by the symmetries of the equation, namely phase rotation
and spatial translation; these are major channels of propagation for the equation as
motion in these directions does not conflict with any of the conservation laws. (In
the case of the L2

x-critical equation, motion in the scaling direction is also possible
as it does not contradict conservation of mass.) We will not have space to devote
attention to these tools, which are fundamental in the stability theory of solitons,
but see [Wei2] and many subsequent papers (e.g. [MR], [MR2], [MR3] and the
references therein).

Exercise 3.55 (Justification of energy conservation). Let d = 3 and 1 < p < 5,
µ = +1, t0 = 0, and u0 ∈ H1

x(R
d). For each ε > 0, show that there exists a global

H1
x-wellposed solution u(ε) solution to the regularised NLS

i∂tu
(ε) +

1
2
∆u(ε) = (|u(ε)|2 + ε2)(p−1)/2u(ε); u(ε)(0) = u0

with a conserved energy

E(eps)[u(ε)(t)] :=
∫
Rd

1
2
|∇u(ε)|2 +

2
p+ 1

(|u(ε)|2 + ε2)(p+1)/2 dx.

Then show that for any compact time interval I containing 0, u(ε) converges in
S1(I × R3) to a strong H1

x solution u ∈ S1(I × R3) to (3.1) with the conserved
energy

E[u(t)] :=
∫
Rd

1
2
|∇u(ε)|2 +

2
p+ 1

|u|p+1 dx.

This is one way in which to justify the conservation of energy for fractional-power
NLS.

Exercise 3.56 (Weak solutions). Let d = 3 and 1 < p < 6, µ = +1, t0 = 0,
and u0 ∈ H1

x(R
d). Show that for any λ > 0 there exists a global H1

x-wellposed
solution u(λ) to the tempered NLS

i∂tu
(λ) +

1
2
∆u(λ) = max(|u(λ)|p−1, λ|u(λ)|4)u(λ); u(λ)(0) = u0

with a conserved mass
∫
Rd |u(λ)|2 dx and conserved energy

E(λ)[u(λ)(t)] :=
∫
Rd

1
2
|∇u(λ)|2 + Vλ(|u(λ)|) dx,
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where Vλ(y) :=
∫ y
0

max(wp, λw5) dw. Using weak compactness, show that there
exists a sequence λn → ∞ such that the solutions u(λn) converges weakly in
L∞
t H

1
x(R × R3) to a global weak H1

x solution u ∈ L∞
t H

1
x(R × R3) to the NLS

(3.1). Thus for certain supercritical equations it is still possible to construct global
weak solutions. Existence or uniqueness of global strong H1

x solutions for these
equations is a major unsolved problem (sharing many difficulties with the notori-
ous global regularity problem for Navier-Stokes). Even energy conservation for the
global weak solution is not known (the above construction, combined with Fatou’s
lemma, only shows that the energy at time t is less than or equal to the energy at
time 0). The analogous construction for global weak solutions for NLW dates back
to [Seg2].

Exercise 3.57. Complete the proof of Proposition 3.28. (Hint: use energy
estimates as in the proof of Proposition 3.5).

Exercise 3.58. [CKSTT11] Prove Lemma 3.30. (Hint: first establish L10
t,x

and Ṡ1 control on ũ, then write v := ũ − u and use the Leibnitz rule, Hölder’s in-
equality, Strichartz, and Sobolev to bound the quantity S := ‖(i∂t+∆)v‖

L2
tẆ

1,6/5
x (I×R3)

in terms of itself and ε. Then use a continuity method argument to obtain an un-
conditional bound on S. See also Figure 11.)

Exercise 3.59. [CKSTT11] Prove Lemma 3.31. (Hint: first establish Ṡ1

control on ũ. Then divide up I into intervals where the L10
t L

30/13
x norm of ∇u is

small, and apply Lemma 3.30 inductively on these intervals. See also Figure 12.)

Exercise 3.60. By refining the analysis used in the proof, replace the log1/3 1
ε

in Proposition 3.29 with log 1
ε .

Exercise 3.61. [CKSTT13] Let u ∈ C0
t Sx(R×T2) be a classical solution to

the cubic defocusing NLS i∂tu + 1
2∆u = |u|2u. Using the Fourier ansatz u(t, x) =∑

k∈(2πZ)2 e
i(k·x+ 1

2 |k|2t)ak(t), deduce the infinite system of ODE

(3.71) ∂ta(t) = Nt(a(t), a(t), a(t))

where a = (ak)k∈(2πZ)2 and Nt is the trilinear form

Nt(a, b, c)k :=
∑

k1,k2,k3∈(2πZ)2:k1−k2+k3=k

ak1bk2ck3e
i
2 (|k1|2−|k2|2+|k3|2−|k4|2)t.

(Compare with (1.55)). Let K � 1 be a large number, let 0 < σ < 1, and let
T ≤ c(σ)K2 logK for some small c(σ) > 0 depending only on σ. Suppose we have
a system b(t) = (bk(t))k∈(2πZ)2 of functions with b ∈ C1

t l
1
k([0, T ] × (2πZ)2) with

b(0) = a(0) which obeys the approximate equation

∂tb(t) = Nt(b(t), b(t), b(t)) + e(t)

to (3.71), where e(t) and b(t) obey the l1 bounds

‖b‖C1
t l

1
k([0,T ]×(2πZ)2 � K−1; sup

0≤t≤T

∫ t

0

‖
∫ t

0

e(t′) dt′‖l1k � K−1−σ.

Then if c(σ) is sufficiently small depending on σ, we have the estimate ‖a −
b‖C1

t l
1
k([0,T ]×(2πZ)2 � K−1−σ/2. This lemma allows one to use near-solutions to NLS

in Fourier space to approximate actual solutions to NLS, and is a key ingredient in
establishing a certain weak turbulence result for this equation. See [CKSTT13].
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3.8. Illposedness results

All happy families resemble one another; each unhappy family is
unhappy in its own way. (Leo Tolstoy, “Anna Karénina”)

In the past few sections we have developed a wellposedness theory for several
types of NLS and NLW equations, for various regularities Hs

x (or Hs
x × Hs−1

x ).
Despite the wide variety of equations and regularities considered, the wellposed-
ness theory for these equations are remarkably similar to each other, especially for
subcritical regularities. In such cases the time of existence depends only on the
norm of the data, and the solution map not only exists and is unique, but enjoys
very strong continuity properties; indeed, the solution map (from Hs

x to C0
tH

s
x)

is typically uniformly continuous, Lipschitz, infinitely differentiable, and even real
analytic (see for instance Exercise 3.25).

However, there are certain equations and certain regularities for which the
Cauchy problem does not agree with this picture, either locally or globally in time,
in which case we say that that particular Cauchy problem is illposed. Unlike the sit-
uation with wellposedness, the type of illposedness exhibited can vary substantially
on the equation and on the regularity. At one extreme, there are very dramatic
examples of illposedness, such as blowup - various norms going to infinity in finite
time - beyond which no reasonably strong notion of solution can be salvaged. At
the other extreme there are very mild examples of illposedness, where it may still
be that the solution map exists and could even be continuous, but that the solution
map is known to be unstable (e.g. non-uniformly-continuous or non-Lipschitz),
non-differentiable, or at least non-analytic. Intermediate between these extremes42

are examples of norm explosion - when data of arbitrarily small norm can lead to
solutions of arbitrarily large norm in arbitrarily small time. This is not quite as
dramatic as blowup, because a solution may still exist for each given initial datum,
but it certainly does prevent any continuous dependence of the solution map on the
initial data.

For each of the types of illposedness discussed above, there are examples of
equations and regularities that exhibit that illposedness. In contrast with the well-
posedness theory, which is largely based around the single technique of Duhamel
iteration, illposedness can be achieved by a surprisingly large number of unrelated
methods. We will not be able to discuss all of them here, but we give a represen-
tative sample. For a recent survey of techniques and results, see [Tzv].

We first discuss methods for generating blowup, by which we mean classical (or
strong) solutions which develop a significant singularity in finite time (e.g. the Hs

x

norm goes to infinity in finite time). One way to construct these solutions is via
construction of explicit (or nearly explicit) blowup solutions. We have already seen
two examples of this - the blowup solution (3.15) for the pseudoconformal focusing
NLS and the ODE-based blowup solution (3.6) for the focusing NLW. The latter
solution has no decay in space and thus does not lie in any Hs

x × Hs−1
x spaces,

however this can be rectified by a finite speed of propagation; see Exercise 3.9.

42There are several other “symptoms” of illposedness which we will not have space to discuss

here, including breakdown of uniqueness (either for weak or strong solutions); failure of mass or
energy conservation; loss of regularity; or examples of approximate solutions to the equation which
blowup in finite time. The reader is invited to try to list several such illposedness phenomena and
rank them in approximate order of severity.
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In some cases, one cannot construct a blowup solution explicitly, but can create
an explicit approximate solution to the equation which blows up in finite time.
One can then hope to use stability theory to convert this to an exact blowup
solution. This argument can be made to work, but is extremely delicate, because
stability theory requires a great deal of wellposedness and stability on the equation,
which is in obvious conflict with our need to make both the exact and approximate
solution to blow up in finite time. One often needs to carefully renormalise the
solution (usually via rescaling), and obtain stability control in one set of norms
while obtaining blowup in another. See for instance [Mer], [BW] for some instances
of this approach.

In the case of the NLS, there is another, much more indirect, way to force
blowup of a solution, namely the virial argument of Glassey [Gla2], based on the
nonlinear counterpart to (2.38). For simplicity let us consider a classical solution
u ∈ C∞

t Sx(R × Rd) to an algebraic NLS. Consider the quantity

V (t) :=
∫
Rd

|x|2T00(t, x) dx =
∫
Rd

|x|2|u(t, x)|2 dx.

This quantity is clearly non-negative. Applying (2.35) and integration by parts
repeatedly, we obtain the virial identity

∂ttV (t) = 2
∫
Rd

Tjj(t, x) dx

=
∫
Rd

2|∇u|2 +
µd(p− 1)
p+ 1

|u|p+1 dx

= 4E[u] +
µd(p− pL2

x
)

p+ 1

∫
Rd

|u(t, x)|p+1 dx

(3.72)

where E[u] is the conserved energy and pL2
x

:= 1+ 4
2 is the pseudoconformal power.

If we are in the L2
x-critical or L2

x-supercritical focusing cases p ≥ pL2
x
, µ = −1, we

thus conclude the bound
∂ttV (t) ≤ 4E[u].

If the energy happens to be negative (which is possible in the focusing case µ = −1),
this shows that V is a strictly concave function of t. Since V is also non-negative,
we conclude that the solution can only exist classically for a finite amount of time
(in either direction). This argument thus demonstrates blowup in finite time (and
even gives an upper bound on the time of existence in terms of the datum and
the energy). It can be extended to demonstrate blowup for any H1

x initial data u0

which has negative energy43 and obeys the decay condition 〈x〉u0 ∈ L2
x. The decay

condition can be removed, basically by working with spatially truncated versions of
the virial identity; see for instance [Naw]. We remark that while negative energy
is a sufficient condition for blowup, it is hardly a necessary condition; for instance,
the solution (3.15) has zero energy, and the solutions constructed in [BW] have
positive energy. The blowup phenomenon has been analyzed much further for the
L2
x-critical equation, in the vicinity of soliton solutions; see [MR], [MR2], [MR3].

For the focusing NLW, one can also exploit some positivity properties of the
fundamental solution to establish successively stronger lower bounds on a solution
which eventually leads to blowup. One particularly striking example of this is a

43To put it another way, whenever the nonlinear component of the energy exceeds the linear
component, blowup occurs. Compare this with Principle 3.20.
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result of John [Joh], who showed that for the three-dimensional focusing NLW with
initial data u(0, x) = εu0(x), ∂tu(0, x) = 0 for positive Schwartz u0 and sufficiently
small ε, one has blowup in finite time for p <

√
2 and global existence for p >

√
2.

These results have since been generalised extensively; see for instance [GLS], [Hor].
Once one has one solution blowing up, one can use the symmetries of the

equation to generate further solutions blowing up. When the regularity s is low
enough, one can use the symmetries to create classical initial data of arbitrarily
small Hs

x norm which blow up in arbitrarily small time, which is a very strong
demonstration of illposedness in that data class Hs

x; we give some examples in the
exercises.

All the known examples of blowup from classical data are for focusing equations;
for many defocusing equations (e.g. H1

x-subcritical or H1
x-critical defocusing NLS

or NLW) we have global existence of classical solutions. The question of whether
blowup occurs from classical data for H1

x-supercritical defocusing NLS or NLW
equations is a major open problem in the subject (analogous to the Navier-Stokes
global regularity problem) and remains very far from resolution. While blowup
is not known for these equations, we can in many cases establish weaker forms
of illposedness, which are not as dramatic as blowup but do indicate that many of
the techniques discussed in earlier sections to establish wellposedness (e.g. iteration
methods) must necessarily fail. One of the mildest types of illposedness of this form
is that of analytic illposedness, in which one demonstrates that the solution map (say
from Hs

x to C0
tH

s
x), if it exists at all, is not real analytic. In fact one typically shows

the stronger statement of Ck illposedness for some k ≥ 1, which asserts that the
solution map, if it exists, is not k-times differentiable. This is basically accomplished
by the method of Taylor expansions (i.e. power series methods). Let us illustrate
this with the three-dimensional cubic defocusing NLS (d = 3, p = 3, µ = +1)
with initial datum u(0) = εu0 for some fixed Schwartz u0, thus we are considering
solutions u(ε) to the Cauchy problem

(3.73) i∂tu
(ε) +

1
2
∆u(ε) = |u(ε)|2u(ε); u(0) = εu0.

The global existence theory of this equation (Exercise 3.38) guarantees that the
solutions u(ε) exist and are smooth for all time. A refinement of this theory also
shows us that u(ε) also depend smoothly on ε, uniformly on any compact time
interval. In particular, we can obtain a Taylor expansion

u(ε)(t, x) = εu1(t, x) + ε2u2(t, x) + ε3u3(t, x) +O(ε4)

for some smooth functions u1, u2, u3 (there is no zeroth order term since u(0) is
clearly zero), where the error is uniformly smooth in t, x on any compact time
interval. We can expand both sides of (3.73) using this expansion and compare
coefficients. One learns that the first coefficient u1 is just the linear solution:

i∂tu1 +
1
2
∆u1 = 0; u1(0) = u0

or in other words u1(t) = eit∆/2u0. The second term u2 solves the equation

i∂tu2 +
1
2
∆u2 = 0; u2(0) = 0
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and is hence zero. The third term u3 solves the equation

i∂tu3 +
1
2
∆u3 = |u1|2u1; u3(0) = 0

and is hence given by a Duhamel integral

u3(t) = −i
∫ t

0

ei(t−t
′)∆/2(|u1|2u1(t′)) dt′ = −i

∫ t

0

ei(t−t
′)∆/2(|eit′∆/2u0|2eit′∆/2u0) dt′.

From the Taylor expansion of u(ε) we thus have obtained the formula

d3

dε3
u(ε)(t)|ε=0 = −3!i

∫ t

0

ei(t−t
′)∆/2(|eit′∆/2u0|2eit′∆/2u0) dt′.

This shows that if the map u0 �→ ∫ t
0 e

i(t−t′)∆/2(|eit′∆/2u0|2eit′∆/2u0) dt′ is not a
bounded map from Hs

x(R3) to C0
tH

s
x([0, T ] × R3), then the solution map u0 �→ u

will not be a C3 map from Hs
x(R

3) to C0
tH

s
x([0, T ]×R3), even for data arbitrarily

close to zero in Hs
x norm. This lack of boundedness can often be established by

direct computation; in this case, we can achieve this for supercritical regularities
s < sc = 1

2 (in contrast to the critical case s = sc and subcritical cases s > sc, in
which one does have analytic wellposedness); see Exercise 3.65.

The method above is fairly general. Roughly speaking, it shows that if the
Duhamel iteration scheme used to construct solutions leaves a certain space X after
finitely many iterations, then the solution map can only have a finite amount of
differentiability in that space. This is not too surprising since the iteration scheme
is closely akin to a power series expansion of the solution in terms of the initial
datum.

Another approach for establishing illposedness is by constructing families of ex-
act solutions to the equation which are close together at time zero but far apart at
other times. In some cases one can use explicit solutions such as solitons and plane
wave solutions, possibly after various symmetries of the equation have been applied;
in other cases one needs to construct solutions by the methods of nonlinear geomet-
ric optics, or more generally by constructing an approximate solution first and then
using stability theory to perturb the approximate solution into the exact solution.
A typical result obtained by this method would be that a certain solution operator
cannot be uniformly continuous from Hs

x to C0
tH

s
x even when the size of the datum

and time of existence are set to be small. We have already seen some examples of
this in Exercise 3.5 and the discussion after (3.20), using explicit solutions. We now
briefly sketch how to achieve a similar effect using the approximate solutions of the
preceding section. For sake of concreteness let us just consider the one-dimensional
defocusing cubic NLS (d = 1, p = 3, µ = +1). Let ψ be a Schwartz function. From
Proposition 3.29 we have constructed (for small ε > 0 and 1 ≤ a ≤ 2) solutions wε,a
to the small-dispersion equation i∂twε + ε2

2 ∂xxwε = |v|2wε on the slab [0, 1] × R
which has the approximate form

wε,a(t, x) = ae−ia
2|ψ(x)|2tψ(x) + Oψ(ε)

for 0 ≤ t ≤ 1, where the error can be controlled in a suitable H1
x sense. One can

apply the rescaling uε,a(t, x) := wε,a(t, εx) to obtain a class of solutions uε to the
original NLS with the approximate form

uε,a(t, x) = ae−ia
2|ψ(εx)|2tψ(εx) +Oψ(ε)
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where the error is now controlled in some rescaled H1
x sense. One can exploit scale

invariance (3.9) and Galilean invariance (3.10) to obtain a wider class of exact
solutions uε,a,λ,v to NLS for λ > 0 and v ∈ R of the form

uε,a,λ,v(t, x) = λ−2/(p−1)aei(x·v+
t|v|2

2 −a2|ψ(ε(x−vt)/λ)|2t/λ2)ψ(ε(x−vt)/λ)+Oψ(ελ−2/(p−1))

where the error has to be interpreted in a suitable norm. If s < 0 is a negative
regularity, then by making v large, and setting λ ∼ε |v|−(p−1)s/2, these solutions
can become bounded in Hs

x. By a suitable variation of the parameters ε, a, λ, v one
can then show that the solution operator to this equation cannot be uniformly con-
tinuous from Hs

x to C0
tH

s
x, even for small times and small norm, by exploiting the

phase decoherence effect arising from the a2|ψ(ε(x−vt)/λ)|2t/λ2 term; see [CCT2]
for details. Generally speaking, it is not difficult to create (for any equation and
regularity) large data solutions which exhibit these types of instabilities at large
times; the various symmetries are then used to create small data solutions which
are similarly unstable at small times. In order for this to work, one needs the reg-
ularity s to be supercritical with respect to at least one of the symmetries (scaling,
Galilean, or Lorentz). See [Kuk], [Leb], [BGT], [CCT], [CCT2], [CCT3] for
several examples of this technique and further discussion.

One final type of illposedness is the high-to-low frequency cascade, in which
a solution starts off initially with Fourier transform supported primarily at high
frequencies, but quickly creates a substantial presence at low frequencies. For small
s (e.g. negative s), such solutions typically have small Hs

x norm at time zero
but large Hs

x norm at later times; this norm explosion is a fairly strong form of
illposedness as it shows that the solution operator, if it exists at all, has a severe
singularity in Hs

x near the zero solution. These cascading solutions can often be
constructed using the stability theory arising from a higher regularity Hs′

x . See
[CCT2], [BT] for examples of this strategy.

Exercise 3.62. Let u be a classical solution to an NLW, and let

V (t) :=
∫
Rd

|x|2T00(t, x) − d− 1
2

|u|2 dx.

Establish the following analogue of the virial identity for this quantity, namely

∂ttV (t) = 2E[u] +
µ(d− 1)(p− p

H
1/2
x

)

p+ 1

∫
Rd

|u(t, x)|p+1 dx

where p
H

1/2
x

:= 1+ 4
d−1 is the conformal power. (Note the shifting of the dimension

d by one; compare this with Exercise 3.2.) This identity is not as useful as the NLS
virial identity because the quantity V does not have a definite sign in general.

Exercise 3.63. Consider a focusing NLS with p ≥ pL2
x

= 1 + 4
d , and let

s < sc. Show that there exists classical data of arbitrarily small Hs
x norm such that

the solution to the NLS blows up in arbitrarily small time. (Hint: use the virial
identity to create a classical solution with Schwartz initial data which blows up in
finite time, and then use the scaling symmetry to rescale the blowup time to be
arbitrarily small.) This illustrates the principle that one usually does not have a
wellposedness theory at supercritical regularities for focusing equations.

Exercise 3.64. Consider a focusing NLW and let s < sc. Show that there
exists classical data of arbitrarily small Hs

x ×Hs−1
x norm such that the solution to
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the NLW blows up in arbitrarily small time. (Hint: use Exercise 3.9. In the case
when sc is negative, you may find it convenient to enforce moment conditions on
the initial data to ensure some vanishing of the Fourier coefficients near the origin.)
A similar result holds for s < sl (using the Lorentz invariance instead of the scaling
invariance) but is a little trickier; see [Sog].

Exercise 3.65. Let T > 0 be arbitrary. Use a scaling argument to show that
the map u0 �→ ∫ t

0 e
i(t−t′)∆/2(|eit′∆/2u0|2eit′∆/2u0) dt′ is not a bounded map from

Hs
x to C0

tH
s
x([0, T ] × R3) when s < 1/2. Conversely, use Strichartz estimates to

show that this map is bounded for s ≥ 1/2. (For sake of this exercise, you may use
the heuristic (A.15) as if it were rigorous. Alternatively, one may use Littlewood-
Paley decomposition.)

Exercise 3.66. [Kat4] Consider the rather artificial nonlinear wave equation
�u = −|u|p for some H1

x-subcritical power 1 ≤ p < 1 + 4
d−2 . Let u be a strong

H1
x × L2

x solution to this equation whose initial position is supported in the ball
{|x| ≤ 1} and whose initial velocity is zero (for simplicity). It is possible to establish
the finite speed of propagation property for such solutions, in particular you may
assume that this solution is supported on the ball {|x| ≤ 1 + t} for all later times
t > 0 for which the solution exists. Show that if the integral

∫
Rd u(0, x) dx is

sufficiently large and positive depending on d and p, then the solution u can only
exist for a finite amount of time in the forward direction (i.e. u cannot be a
strong solution on [0,+∞)). If p < 1 + 2

d , show that one only needs the integral∫
Rd u(0, x) dx to be strictly positive to achieve the same result (i.e. no largeness

hypothesis is required). Hints: obtain an integral inequality for the quantitym(t) :=∫
Rd u(t, x) dx, using Hölder’s inequality and finite speed of propagation. First show

that m(t) is convex and monotone increasing, and then obtain even better lower
bounds on this quantity. You may find the comparison principle, Exercise 1.7, to
be useful. For further variations on this theme, see [KTao3].

Exercise 3.67. [LSog], [Sog] Consider a focusing NLW, and let s be such
that 0 < s < sl := d+1

4 − 1
p−1 (so s is supercritical with respect to the Lorentz

invariance). Start with the explicit blowup solution (3.6) with t0 = 0 and apply a
Lorentz transform to it, to create a solution which blows up at the point (0, 0) but is
smooth in the backwards light cone {(t, x) : |x| < −t}. Now work on the time slice
t = −1 and localise the initial data to a neighbourhood of the ball {|x| < 1} using
finite speed of propagation, to create smooth initial data (u(−1), ∂tu(−1)) whose
Hs
x(R

d) × Hs−1
x (Rd) norm is arbitrarily small, but which develops a singularity

at time 0. Rescaling this, we can construct data of arbitrarily small Hs
x(R

d) ×
Hs−1
x (Rd) norm with a solution that blows up in arbitrarily small time, which

defeats any hope of a reasonable wellposedness theory at this regularity.

3.9. Almost conservation laws

The Law of conservation of energy tells us we can’t get something
for nothing, but we refuse to believe it. (Isaac Asimov)

We have seen how the laws of conservation of mass and energy can be used
to obtain global wellposedness results at the L2

x and H1
x regularities respectively;

generally speaking, they assert that these two norms stay bounded for all time. One
may then ask what happens to the other Hs

x norms; after all, the linear Schrödinger
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and wave flows preserve the Hs
x norm and Hs

x × Hs−1
x norms respectively. In

particular, once one has global wellposedness for one norm, say H1
x, one can ask

whether the same wellposedness occurs for other regularities also.
Generally speaking, global wellposedness in lower norms implies global well-

posedness in higher norms44, due to persistence of regularity; we have already seen
several examples of this phenomenon in this chapter. However, while the lower
Sobolev norms such as H1

x may remain bounded uniformly in time, the bounds one
obtains on higher norms such as H2

x may grow faster than this; see for instance the
exponential bounds in Exercise 3.28. This reflects the fact that the persistence of
regularity arguments do not prohibit a “low-to-high frequency cascade” scenario, in
which the energy starts off concentrated in low frequencies but moves increasingly
to higher frequencies as time progresses; it is easy to envisage a scenario of this
form where the H1

x norm stays bounded, but higher norms such as H2
x go to infin-

ity. Numerical simulations have confirmed this type of weak turbulence behaviour
for the periodic analogues of NLS and NLW, but for the non-periodic defocusing
setting it appears that such phenomena, if they exist at all, do not occur with any
great strength generically. (Indeed, the solition resolution conjecture mentioned
earlier is probably not consistent with weakly turbulent behaviour.) It would be of
interest to obtain more theoretical results regarding this issue.

Somewhat dual to this is the problem of starting with a global wellposedness
result, say at H1

x, and trying to lower the regularity needed for global existence,
say to Hs

x for some 0 < s < 1. This is reasonable in the H1
x-subcritical case with

s subcritical, since in such cases one already knows that the local wellposedness
theory can extend below H1

x. Indeed, the Hs
x local wellposedness theory asserts

in this case that the only way an Hs
x-solution can cease to exist is if the Hs

x norm
blows up in finite time. Thus the difficulty is to establish some upper bounds on the
growth of the Hs

x norm in time; by limiting arguments one can restrict attention
to the global H1

x solutions, so long as the final bound on the Hs
x norm growth

depends only on the Hs
x norm of the initial datum rather than on the energy. Here,

the major difficulty is caused by the “high-to-low frequency cascade” scenario, in
which one starts initially with a very large amount of energy at high frequencies
(which may have small Hs

x norm), but a significant fraction of this energy somehow
makes its way to low frequencies, thus causing the Hs

x norm to grow substantially.
To summarise, in order to establish good global existence results either for s

above or below the energy regularity H1
x one needs to control the flow of energy

either from low frequencies to high frequencies or vice versa. In recent years, two
methods have been developed to achieve such a control, namely the Fourier trun-
cation method of Bourgain, and the method of almost conserved45 quantities or
I-method of Colliander, Keel, Staffilani, Takaoka, and Tao. The two methods are
similar but not identical. They both proceed by selecting a large frequency cutoff
N , and declaring frequencies less than N to be “low” and greater than N to be
“high”. If the solution has regularity Hs

x for some s < 1, then the low frequency
components will have bounded energy (but with a bound depending on N), but

44Assuming of course that the nonlinearity itself is smooth enough to support solutions at
this level of regularity.

45We shall use the term “almost conserved quantity” rather loosely; for us, it shall mean
a quantity whose time derivative is unexpectedly “small” or “low order” in some sense. The
monotone quantities appearing in monotonicity formulae could also be viewed as a type of almost
conserved quantity.
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the high frequency components will have unbounded or infinite energy. The strat-
egy is then to somehow suppress the unbounded energy high frequency component
in order that the energy conservation law can be usefully applied. The Fourier
truncation method, which was developed first, achieves this by viewing the original
equation as a weakly coupled system of the high and low frequency components.
Then one attempts to omit the nonlinear effects of the high frequencies, so that one
believes the high frequencies to evolve approximately linearly, and the low frequen-
cies to evolve approximately via the original equation. In particular one expects the
low frequencies to (approximately) conserve their energy (as opposed to exporting
or importing energy with the high frequencies). On short time intervals, one can
justify this approximation using stability theory; the strategy is then to iterate this
control on short time intervals to control on long-time intervals. Thus turns out to
be possible by choosing N to be large, provided that the initial regularity Hs

x is suf-
ficiently close to H1

x, and provided that the nonlinearity has a certain “smoothing”
property (roughly speaking, one wants the effect of the nonlinearity to be bounded
in H1

x even when the solution is only as regular as Hs
x).

The Fourier truncation method is surveyed in [Bou9] and will not be detailed
here (but see Figure 13 and Table 2). The I-method proceeds slightly differently;
rather than omit the high frequencies completely, it merely damps them using
a Fourier multiplier I (hence the name “I-method”). This damping operator is
essentially the mildest operator that makes the high frequencies bounded in energy;
the low frequencies remain undamped by this operator. One then tries to control
the energy E[Iu(t)] of the damped solution Iu to the equation, which consists of
the unadulterated low frequencies and the damped high frequencies. This quantity
turns out to enjoy an almost conservation law, in that the quantity E[Iu(t)] does
not vary very quickly in t. (Note that if I is the identity then E[Iu(t)] would be
constant; thus this almost conservation nature reflects the “mild” nature of the
operator I.) One can then use this almost conserved quantity to generate long-
time control of the solution in much the same way that a genuine conservation law
can be used to ensure global wellposedness. If all goes well, the time upon which
one ultimately gets a useful control on the solution will be a positive power of N ;
letting N go to infinity will then yield the desired global wellposedness in Hs

x. This
method can handle slightly more general nonlinearities and regularities than the
Fourier truncation method, because no smoothing effect is required (this is due to a
certain cancellation arising from a “commutator” term in the almost conservation
law, which has no counterpart in the Fourier truncation approach), but provides
slightly less information on the solution.

Let us illustrate the method with the one-dimensional quintic defocusing NLS

(3.74) i∂tu+
1
2
∂xxu = |u|4u,

which one can proceed by a relatively simple “energy method” implementation
of the approach46. Indeed for this equation one can obtain global H1

x-wellposed

46This is similar in spirit to the “energy cancellation” methods for establishing local existence
for various nonlinear equations without performing an iteration scheme, and which can exploit
certain structural cancellations arising from the nonlinearity; see for instance the high-regularity
arguments in Section 4.1, Section 4.4, or Section 6.1. Most applications of the I-method, however,
also require a modified local wellposedness statement which is obtained by standard iterative
means, in order to exploit various local smoothing effects that can only be captured by spacetime
norms.
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u   (T)
lo

u  (T)
hi

u(0)

High frequency
components

u   (0)
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u   (0)
lo

[linear evolution]
evolution
[nonlinear

Adjusted u   (T)
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Initial datum

[cross−terms]

[self−interaction]

v(T)

Figure 13. The first step in the Fourier truncation method. For
a short time t, one evolves the high frequencies linearly and the
low frequencies nonlinearly (thus preserving the Hamiltonian of
the low frequencies). The error term v arises both from high-low
frequency interactions and high-high frequency interactions; if the
equation has enough smoothing properties, this error will be small
in energy norm and can be safely absorbed into the low frequency
component. One then iterates this scheme for as long as one has
good control on all components.

and classical solutions without any difficulty. (On the other hand, this equation
is L2

x-critical, and global wellposednes of L2
x solutions is unknown.) Now let u

be a classical solution and 0 < s < 1; we are interested in the behaviour of the
Hs
x norm of u(t) as t → ∞. We already have conservation of the energy E[u] :=∫

R
1
2 |∂xu|2 + 1

3 |u|6 dx and mass M [u] :=
∫
R |u|2 dx, but we will be reluctant to use

E[u] directly as it will not be controlled purely by the Hs
x norm. To create some

almost conserved quantities at the regularity Hs
x, let us introduce a large frequency

cutoff N � 1 and a spatial Fourier multiplier I defined by

Îu(ξ) := mN (ξ) = m(
ξ

N
),

where mN (ξ) = m(ξ/N) and m is a smooth function which equals 1 for |ξ| ≤ 1 and
is equal to |ξ|s−1 for |ξ| ≥ 2. Thus I is the Identity operator on low frequencies |ξ| ≤
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Table 2. An oversimplified comparison between the ways the
Fourier restriction method and I-method treat different frequency
interactions in a nonlinear equation. In both cases the low-low
frequency interactions are considered large, but they do not alter
the Hamiltonian, while the high-high frequency interactions are
treated as error terms. The main difference lies in how the high-
low interactions are treated, with the I-method taking advantage
of commutator cancellations to show that these interactions ap-
proxiately conserve the damped Hamiltonian E(Iu). Also, the
Fourier restriction method takes advantage of smoothing effects
and obtains better (energy-class) control of error terms.

Interaction Fourier restriction method I-method
Low-low Conserves E(ulo) Conserves E(Iu)
High-low Small error in H1

x Approximately conserves E(Iu)
High-high Small error in H1

x Small error in IH1
x

N , and is essentially an Integration operator N1−s|∇|s−1 on high frequencies |ξ| ≥
N ; this explains why this operator is denoted “I”. We now show that the modified
energy E[Iu(t)] =

∫
R

1
2 |∂xIu(t)|2 + 1

3 |Iu(t)|6 dx obeys an almost conservation law.

Proposition 3.32 (Almost conservation law). Let s > 1/2. Suppose t is a
time such that E[Iu(t)] � 1. Then |∂tE[Iu(t)]| �s N

−1/2.

The exponent 1/2 here might not be best possible. An improvement of the
exponent here will lead to a better global wellposedness result for a conclusion, as
will be clear from the remainder of this argument.

Proof. For a general classical field v, we have the identity

∂tE[v(t)] = −2Re
∫
R

∂tv(i∂tv +
1
2
∂xxv − |v|4v) dx

which can be easily verified by integration by parts; note that this reproves the
conservation of energy for (3.74). We now set v := Iu; by applying I to (3.74) we
see that v solves the equation

i∂tv +
1
2
∂xxv = I(|u|4u)

and hence we have

∂tE[v(t)] = −2Re
∫
R

I∂tu(I(|u|4u) − |Iu|4Iu) dx.
Thus it will suffice to establish the bound

|
∫
R

I∂tu(I(|u|4u) − |Iu|4Iu) dx| � N−1/2.

Splitting ∂tu = 1
2∂xxu− i|u|4u, we can split this further into

(3.75) |
∫
R

I∂xxu(I(|u|4u) − |Iu|4Iu) dx| � N−1/2

and

(3.76) |
∫
R

I(|u|4u)(I(|u|4u) − |Iu|4Iu) dx| � N−1/2.
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We shall just prove the top order estimate (3.75) and leave the lower order estimate
(3.76) as an exercise. To avoid technicalities we shall “cheat” somewhat by assuming
heuristics such as the fractional Leibnitz rule (A.14) as if they were rigorous; one
can justify all the cheats performed here by Littlewood-Paley theory and other
tools of Fourier analysis but we shall not do so here. We integrate one of the
partial derivatives by parts, and observe from the hypothesis E[Iu(t)] � 1 that
‖I∂xu‖L2

x
� 1. Thus it suffices to show the commutator estimate

‖∂x[I(|u|4u) − |Iu|4Iu]‖L2
x

� N−1/2/

We split u = uhi + ulo, where uhi := P>N/100u and ulo := P≤N/100u. We can
then expand |u|4u and |Iu|4Iu into a large number of terms involving five factors
from uhi and ulo. There are three types of terms to consider. First consider the
“low-low” terms that only involve ulo:

‖∂x[I(|ulo|4ulo) − |Iulo|4Iulo]‖L2
x
.

Because I is the Identity on low frequencies, we see that both I(|ulo|4ulo) and
|Iulo|4Iulo are equal to |ulo|4ulo and so the net contribution of these terms is zero.
Next, consider any “high-high” term that involves two or more factors of uhi. Here
is a typical one (we do not attempt to exploit cancellation here):

‖∂xI(uhi2u3
lo)‖L2

x
.

The operator ∂xI is a pseudodifferential operator of positive order. Applying the
fractional Leibnitz rule, we can distribute this operator and end up considering
terms, of which the following is typical:

‖O(|∂xIuhi||uhi||ulo|3‖L2
x
.

Now from the Gagliardo-Nirenberg inequality and the hypothesis E[Iu(t)] � 1 we
have ‖Iu‖L∞

x
� 1, and in particular ‖ulo‖L∞

x
� 1. Also we have already remarked

that ‖∂xIuhi‖L2
x

� 1, which by an easy Fourier analytic argument (exploiting the
high frequency nature of uhi and the hypothesis s > 1/2) implies that ‖uhi‖L∞

x
�s

N−1/2; see Exercise 3.68. The desired bound then follows from Hölder’s inequality.
Finally, we must consider “high-low” terms involving only one factor of uhi.

Here we must use47 the cancellation present in (3.75). A typical term to consider
is

‖∂x[I(|ulo|4uhi) − |ulo|4Iuhi]‖L2
x
,

where we have used the fact that Iulo = ulo. The expression in brackets is the
commutator of I and |ulo|4, applied to uhi. Let us write w := |ulo|4. The Fourier
transform of ∂x(I(wuhi) − wIuhi) at ξ can be computed to be

i

∫
R

ξ[m(
ξ

N
) −m(ξ − ηN)]ŵ(η)ûhi(ξ − η) dη.

The integrand vanishes unless |η| � N and |ξ| � N . In such a case, an application
of the mean-value theorem gives the bound ξ(m( ξN ) −m(ξ − ηN)) = O(|η|m((ξ −

47An alternative would be to try to average in time and exploit bilinear refinements to
Strichartz’ inequality here; this is related to the extra smoothing effect alluded to earlier. However,
the approach given in the text demonstrates that one can use the commutator cancellation in the
I-method as a substitute for such smoothing effects.
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η)/N)). On the other hand, the expression∫
R

|η|m((ξ − η)/N)ŵ(η)ûhi(ξ − η) dη

is essentially the Fourier transform of (|∇|w)Iuhi. Thus we morally have

∂x[I(|ulo|4uhi) − |ulo|4Iuhi]“ �′′ (|∇|w)Iuhi

in some Fourier sense. Assuming this to be rigorous, we are reduced to establishing
that

‖(|∇|w)Iuhi‖L2
x

� N−1/2.

Now we already know that ‖Iuhi‖L∞
x

� N−1/2. Also by distributing the derivative
|∇| using the fractional Leibnitz rule, we can (morally) replace |∇|w by an expres-
sion such asO(||∇|ulo|×|ulo|3). Since we already know that ‖ulo‖L∞

x
� ‖Iu‖L∞

x
� 1

and ‖|∇|ulo‖L2
x

� ‖∇Iu‖L2
x

� 1, the claim now follows from Hölder’s inequality. �

From the above proposition and the continuity method, we conclude that if
E[Iu(0)] = O(1), then in fact E[Iu(t)] = O(1) for all |t| �s N

1/2. Thus the
quantity E[Iu(t)] is stable for long periods of time. One can now apply scaling
arguments and some Fourier analysis to conclude

Proposition 3.33. If ‖u(0)‖Hs
x

� 1, then ‖u(t)‖Hs
x

�s N
1−s for all |t| �s

N
1
2−2(1−s).

We leave the derivation of this proposition to the exercises. If s > 3/4, the
exponent of N in the bound on |t| is positive, and so by letting N → ∞ we can
conclude a growth bound on the Hs

x norm. In fact we obtain the polynomial bound

‖u(t)‖Hs
x

�s 〈t〉(1−s)/( 1
2−2(1−s)).

This, combined with the local Hs
x wellposedness theory, easily gives global well-

posedness for this equation in Hs
x for all 3/4 < s < 1. (Wellposedness for s ≥ 1

already follows from energy conservation and persistence of regularity.)
The above strategy is rather flexible and can be adapted to a variety of sub-

critical equations; see for instance [CKSTT], [CKSTT3], [CKSTT4], [Mat],
[Pec], [Pec2], [Pec3], [Car]. It also combines well with scattering theory (see
[CKSTT7], [CKSTT10]; also see [Bou6] for an application of the Fourier re-
striction method to the scattering problem), to the growth of higher Sobolev norms
(see [CDKS], [Sta], [CKSTT8], [Bou10]) and to the stability theory of solitons
(see [CKSTT8], [CKSTT9]). In many cases it is not practical to obtain a point-
wise bound on the time derivative ∂tE[Iu(t)] as in Proposition 3.32, but all one
really needs anyway is a bound on the integral

∫ t1
t0
∂tE[Iu(t)] dt of this time deriv-

ative. This additional time averaging allows one to use additional spacetime norms
such as Strichartz norms, which can lead to better estimates. In such cases, one
needs an additional ingredient in the argument, namely a “modified local existence
theorem” that asserts that whenever E[Iu(t)] is bounded, then certain spacetime
norms of Iu (such as Strichartz norms) are bounded on a time interval centred at
t. This however can be achieved by a routine modification of the local existence
theory; see Figure 14 for a summary of this scheme. One can also exploit other
conservation laws (e.g. mass conservation) to try to improve the powers of N which
appear in the above argument. However, the most powerful methods for improving
the exponents here has proceeded by modifying either the Hamiltonian E[u] or the
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on [t  , t  ]0 1

local theory
modified

Iu(t  ) in H0

1

0E(I(u(t  )) bounded 0E(I(u(t  )) bounded 0E(I(u(t  )) bounded

s
u(t  ) in H

s
u(t  ) in H

[almost conservation
law]

on [t  , t  ]
local theory
modified

21

Iu(t  ) in H1

1
Iu(t  ) in H

1

2

[rescale]

0 2

[undo
rescaling]

[almost conservation
law]

Figure 14. The general scheme of the I-method; compare with
Figure 7. Of course, one would usually iterate the method for more
than the two time steps indicated here. Apart from the rescaling
and the presence of the I operator, one new feature is that the
(modified) local theory plays a quantitative role rather than merely
a qualitative one, as this theory is necessary to control the error
terms in the almost conservation law. However, it is important
that the local theory does not impact the main term in that law,
otherwise the H1

x norm of Iu(t) could increase exponentially with
each time step.

almost conserved quantity E[Iu(t)] with additional correction terms to damp out
some “nonresonant” fluctuations; see Section 4.2. For instance, the quintic NLS
discussed above is in fact known to be globally wellposed in Hs

x for all s > 4/9
using this technique; see [Tzi].

Exercise 3.68. Prove that ‖uhi‖L∞
x

�s ‖∂xIuhi‖L2
x

whenever uhi is a Schwartz
function supported on frequencies > N/100. (Hint: use frequency decomposition
and either Bernstein’s inequality (A.6) or Sobolev embedding.)

Exercise 3.69. Prove (3.76). (Here one will have to make some use of the
potential energy component of E[Iu], which gives a useful bound on ‖Iu‖L6

x
. This

can be combined with the bound one already has on ‖Iu‖L∞
x

, after decomposing
into high and low frequencies.)

Exercise 3.70. Prove Proposition 3.33. (Hint: choose a λ ≥ 1 such that the
rescaled solution uλ(t, x) := 1

λ1/2u( t
λ2 ,

x
λ) obeys E[Iuλ(0)] � 1 (you may find taking

the Fourier transform to be helpful). Then apply the almost conservation of E[Iuλ]
for a long period of time, and then undo the scaling. One can use mass conservation
to control the lower order component of the Hs

x norm.)
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log M

log || P   u ||M H
1

N

upper bound on u

upper bound on Iu

Figure 15. A log-log plot of the energy of the Littlewood-Paley
pieces PMu(0) of u(0) as a function of M , when u(0) is assumed
to only lie in Hs

x for some s < 1. Note the infinite energy at
high frequencies. The operator I smooths out the energy at high
frequencies, giving Iu(0) a large but finite energy. A rescaling is
then needed to make the energy bounded by 1.
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log M

log || P   u ||M H
1

N

upper bound on u

upper bound on Iu

Figure 16. A log-log plot of the energy of the Littlewood-Paley
pieces PMu(t) of u(t) as a function of M , for some late time t (a
power of N). The almost conservation law keeps the energy of Iu
bounded but large (because of the scaling), but we do not exclude
the possibility that energy has been moved around in the frequency
ranges M � N . Thus at each time t, the high frequencies still
evolve in a somewhat linear (non-interacting) fashion, but the low
and medium frequencies may share their energy with each other.
As time progresses, more and more frequencies could mix their
energy, potentially leading to a polynomial growth in the Hs

x norm.



CHAPTER 4

The Korteweg de Vries equation

One ship sails East,
And another West,
By the self-same winds that blow,
Tis the set of the sails
And not the gales,
That tells the way we go.
(Ella Wheeler Wilcox, “Winds of Fate”)

We now leave the nonlinear Schrödinger and wave equations, and pass to an-
other model dispersive equation, namely the (nonperiodic and periodic) Korteweg-
de Vries (KdV) equation1

(4.1) ∂tu+ ∂xxxu = 6u∂xu

for real scalar fields u : R × R → R or u : R × T → R in one spatial dimension;
this is one of the simplest PDE to exhibit the fascinating phenomenon of complete
integrability, which is a vast topic which we will not attempt to discuss in detail
here. To avoid technicalities we shall only concern ourselves in this section with
classical solutions (thus we require smoothness, as well as decay in space in the
nonperiodic setting). The existence of such solutions is not entirely trivial, but will
be addressed in the next section.

As with the NLS, this equation arises as a model for many physical systems,
most famously the propagation of shallow water waves along a canal [KdV]. Just
as the NLS is a nonlinear perturbation of the linear Schrödinger equation, KdV
is a nonlinear perturbation of the linear Airy equation (2.4). The NLS and KdV
are both first-order nonlinear dispersive equations, and thus share many features in
common; however there are also a number of key differences that are worth noting.
Firstly, the nonlinearity in KdV involves a derivative, in contrast to NLS or NLW.
Thus KdV is not a purely semilinear equation, but is rather a derivative semilinear
equation. (The nonlinear term is still lower order than the dispersive term ∂xxxu,
otherwise we would refer to this equation as a quasilinear equation instead.) This
makes the local wellposedness theory more difficult; in particular, the Strichartz
estimates that were so useful in the preceding chapter have a sharply reduced
utility here, and one relies more heavily instead on smoothing estimates which gain
regularity (in contrast to the Strichartz estimates, which only gain integrability) in
order to recover the loss of a derivative in the nonlinearity.

A second difference regards the symmetries of the equation. Like the NLS, the
KdV enjoys spacetime translation symmetry, a time reversal symmetry u(t, x) �→

1The factor of 6 is convenient for the complete integrability theory, and to make the Miura
transform below look as pleasant as possible; it can easily be normalised out here if desired by
replacing u by 6u.

191
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u(−t,−x), a reflection symmetry u(t, x) �→ −u(t,−x), and a scaling symmetry2

(4.2) u(t, x) �→ 1
λ2
u(

t

λ3
,
x

λ
).

There is a “Galilean” symmetry

(4.3) u(t, x) �→ u(t, x− vt) − v

6
for v ∈ R but it is not particularly useful in the nonperiodic case as it does not
preserve the square-integrability of the solution u. It can however be used in the
periodic case, for instance to normalise u to have mean zero. In the nonperiodic
case, if one enforces a decay condition at infinity then one cannot easily alter the
“velocity” of a solution to KdV at will. Indeed, rather the opposite is true; even for
the Airy equation, the dispersion relation v = −3ξ2 ensures that solutions to the
Airy equation tend to propagate to the left, with the high frequencies propagating
to the left extremely rapidly. As with the Schrödinger equation, this should lead to
highly dispersive and smoothing behaviour, especially on the right axis {x > 0}.

Remarkably, however, the KdV equation contains another nonlinear mode of
propagation, quite distinct from the left-moving linear mode, which involve the
famous soliton solutions to KdV, and which propagate rightward. Indeed, if Qv(x)
is the non-negative Schwartz solution to the ground state equation

(4.4) ∂xxQv + 3Q2
v = vQv

for some rightward velocity v > 0 (the existence and uniqueness of Q follows from
Appendix B), then we have the explicit solution

u(t, x) = −Qv(x− vt)

as can be seen by differentiating (4.4) in space. One has the scaling relationship
Qv(x) = vQ1(

√
vx); thus the amplitude of a soliton is proportional to the velocity,

while the width scales like v−1/2 (and so the frequency scales like v1/2).
More generally, it is possible to show using the theory of complete integrability

that given any Schwartz initial data, the solution to KdV exists globally in time,
and as t→ ∞ the solution decouples into a radiation component, which propagates
leftward and disperses like a solution to the Airy equation, and a multisoliton com-
ponent3, which is a nonlinear superposition of solitons which propagate rightward.
This phenomenon is currently only explainable by the methods of complete inte-
grability, and it is not known whether it extends to other, non-integrable equations
(such as the generalised KdV equation

(4.5) ∂tu+ ∂xxxu = λuk−1∂xu.

Nevertheless, the intuition that linear radiation tends to move left, and nonlinear
soliton-like objects tend to move right, thus leading to a decoupling between the two
components of the equation, has been supported by a number of rigorous analytic
results that do not rely directly on complete integrability.

2In the periodic case, this scaling changes the period, so that the circle 2πZ dilates to a larger
circle 2πλZ. This creates some (manageable) technical difficulties when attempting to exploit the
scaling symmetry in the periodic setting; see [CKSTT2].

3This is an oversimplification; in some exceptional cases there are more exotic modes of
behaviour, such as logarithmically divergent pairs of solitons.
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The KdV equation is Hamiltonian (Exercise 4.1), with Hamiltonian

(4.6) H [u] :=
∫
R

(∂xu)2 + 2u3 dx.

Note that as the potential energy 2u3 is indefinite, we do not regard the KdV
equation as either defocusing or focusing. From Noether’s theorem we expect the
symmetries mentioned earlier to be associated with conserved quantities. The time
translation invariance is of course related to the conservation of the Hamiltonian.
The spatial translation invariance corresponds, not to momentum, but rather to
the L2

x norm E[u] :=
∫
R u2 dx. There is also conservation of total mass M [u] :=∫

R
u dx, which is not exactly a Hamiltonian conservation law (though it is somewhat

related to the Galilean symmetry (4.3)) but instead follows from the conservative
nature of the equation (4.1):

∂tu = ∂x(−∂xxu+ 3u2).

Being completely integrable, the KdV equation also enjoys an infinite number of
additional conserved quantities. A typical one is

(4.7) H2[u] :=
∫
R

(∂xxu)2 − 5u2∂xxu− 5u4 dx.

By Noether’s theorem, each of these should correspond to a flow which commutes
with the KdV flow. This gives rise to an infinite collection of commuting nonlinear
PDE known as the KdV hierarchy, which should not be confused with the gener-
alised KdV equations (4.5). The analysis of the higher order equations in the KdV
hierarchy is rather incomplete in comparison to that for the KdV equation, and
will not be discussed here.

From conservation of L2
x norm and the Hamiltonian, and the Gagliardo-Nirenberg

inequality one can already establish the a priori bounds

sup
t

‖u(t)‖Hk
x

�k,‖u(0)‖
Hk

x

1

for all classical solutions u to KdV and k = 0, 1, where the supremum is taken over
all times for which the classical solution exists. In fact one can use the higher con-
servation laws to establish this bound for all non-negative integer k. These bounds
are asserting that even over long times, the KdV flow does not move significant
amounts of energy from very low frequencies to very high frequencies or vice versa.
This intuition can be clarified by means of the scattering transform, which is to
KdV as the Fourier transform is to the Airy equation. Namely, the scattering coef-
ficients obtained by this transform will oscillate in time under the KdV flow in an
explicit manner, but their magnitudes will remain constant. The use of the scat-
tering transform to analyze the KdV equation is a powerful tool from the theory
of complete integrability, but unfortunately we will not have the space to develop
it here and only hint at its existence through the exercises.

There is one final algebraic property of the KdV equation that is of importance,
and that is the remarkable connection between KdV and the defocusing4 modified

4There is also the focusing mKdV equation ∂tv + ∂xxxv = 6v2∂xv, which has a very similar
theory but also admits soliton solutions, in contrast to solutions to defocusing mKdV which can
only disperse. Indeed, the Miura transform turns out to map onto the “soliton-free” component
of the KdV flow, thus neatly decoupling the soliton and radiation components of the evolution.
We will not discuss the focusing mKdV equation in this text. Note that for KdV, the sign of the
nonlinearity is irrelevant as one can simply replace u with −u to flip the sign.
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Korteweg-de Vries (mKdV) equation

(4.8) ∂tv + ∂xxxv = 6v2∂xv.

The connection between the two is as follows: if v is a classical solution to (4.8),
then the Miura transform u := Mv of v, defined by

(4.9) Mv := ∂xv + v2

is a classical solution to KdV (Exercise 4.7). The Miura transform is not quite
invertible (see Exercise 4.9), but it does behave like the derivative operator ∂x,
and so its inverse (whenever it is defined) should be smoothing of one order. Thus
the Miura transform allows one to add one degree of regularity to the solution, at
the cost of making the nonlinearity cubic instead of quadratic. This maneuvre is
especially useful for understanding the low-regularity behaviour of KdV.

Exercise 4.1. Let us formally consider Ḣ−1/2
x (R → R) as a symplectic phase

space with symplectic form ω(u, v) = 2
∫ (

R
∂−1
x u(x))v(x) dx, where ∂−1

x : Ḣ−1/2
x →

Ḣ
1/2
x is the inverse of the partial derivative ∂x : Ḣ1/2

x → Ḣ
−1/2
x . Show that the

KdV equation (4.1) is then the formal Hamiltonian flow associated to the (densely
defined) Hamiltonian (4.6). Also use this flow to formally connect the symmetries
and conserved quantities mentioned in this section via Noether’s theorem (ignoring
irrelevant constants such as factors of 2). A similar formalism exists in the periodic
case (if one imposes the mean zero condition

∫
T u = 0), and in fact can be made

rather rigorous in this case; see [Kuk3].

Exercise 4.2 (Lax pair formulation). Let u ∈ C∞
t,x(R×R → R) be a smooth

scalar field, and for each time t let L(t) be the (self-adjoint) spatial differential
operator

L(t) := −D2 + u(t)
where D := ∂x; thus L(t)f = −∂xxf + u(t)f for any f ∈ Sx(R). Also let P (t) be
the (skew-adjoint) spatial differential operator

P (t) := 4D3 + 3(Du(t) + u(t)D)

(thus P (t)f = 4∂xxxf + 3∂x(u(t)f) + 3u(t)∂xf). Show that L and P obey the Lax
pair equation

∂tL(t) = L(t)P (t) − P (t)L(t)
if and only if u solves (4.1). The same claim of course holds if one works in the
periodic setting rather than the nonperiodic.

Exercise 4.3. Let u ∈ C∞
t,x(R × T → R) be a periodic solution to KdV. Let

L(t), P (t) be as in the previous exercise (in the periodic setting), and suppose
that for some time t0 there exists a real number λ and a smooth non-zero periodic
solution φt0 ∈ C∞

t,x(T → R) to the eigenfunction equation L(t0)φt0 = λφt0 . Show
that there exists a global classical solution φ ∈ C∞

t,x(R × T → R) to the Cauchy
problem

∂tφ(t) = P (t)φ(t); φ(t0) = φt0
with conservation law

∫
T φ(t)2 dx =

∫
T φ

2
t0 dx and that we have L(t)φ(t) = λφ(t)

for all t. (The solvability of this (linear) Cauchy problem is not entirely trivial. One
approach is via the Hille-Yoshida theorem. Another is to first solve the penalised
problem ∂tφ

(ε)(t) = ε2∂xxφ
(ε)(t) + P (t)φ(ε)(t) forward in time, obtain Hk

x bounds
uniformly in ε, and take limits. A third is to use the Xs,b technology of later



4. THE KORTEWEG DE VRIES EQUATION 195

sections, reducing to the case when u has mean zero if necessary.) This shows that
the periodic spectrum of L(t) is conserved by the KdV flow. This forms “action
variables” for the flow; the associated “angle variables” can be constructed in a
number of ways, for instance by analyzing the Dirichlet eigenvalues of the operator
L(t). See for instance [HSW].

Exercise 4.4 (Approximate square roots of differential operators). Let D :=
∂x and let k be a non-negative integer. Let A = D2k +

∑2k−1
j=0 aj(x)Dj be any

differential operator of order 2k with leading term D2k and smooth lower order
coefficients a0, . . . , a2k−1. Show that there exists a unique differential operator
B = Dk +

∑k−1
j=0 bj(x)D

j with smooth coefficients such that A differs from B2 only
by a differential operator of order k − 1 or less. Furthermore, the coefficients bj
of B are a polynomial combination of the coefficients aj of A, together with their
derivatives. (Hint: compute bk−1, then bk−2, and so forth.) We shall refer to B as
the approximate square root of A. Show that if L := D2 + u for some smooth u(x),
then the approximate square root of L3 is the operator 1

4P := D3 + 3
4 (Du + uD).

Exercise 4.5 (KdV hierarchy). Let k be an odd integer, let u(x) be smooth,
let L := D2 + u, and let Pk be the approximate square root of Lk as defined
in the preceding exercise. Show that the commutator [L,Pk] = LPk − PkL is a
zeroth order operator, whose coefficient is a polynomial in u and its derivatives.
(Hint: first show that [Lk, Pk] has order at most 2k − 2, and then write [Lk, Pk] =
Lk−1[L,Pk] + Lk−2[L,Pk]L + . . . + [L,Pk]Lk−1). Thus for each k there exists a
first-order PDE for u that has the Lax pair L,Pk in the sense of Exercise 4.2; this
is the KdV hierarchy. For instance, for k = 1 one obtains the transport equation
∂tu + ∂xu = 0, while for k = 3 one obtains a trivial modification of the KdV
equation. One can use the same type of arguments to also show that these flows
commute with each other. Finally, by introducing an R-matrix operator as in
Exercise 1.55 one can give this entire system a Hamiltonian structure, thus leading
to the infinite number of conserved quantities for KdV. For details, see e.g. [HSW].

Exercise 4.6. It is a fact (as mentioned in the preceding exercise) that for any
integer k ≥ 0, there is a conserved quantity Ek[u(t)] for classical solutions of KdV
which is an expression of the form

Ek[u(t)] =
∫
R

(∂kxu)2 + . . . dx

where . . . is a polynomial combination of the u and its first k− 1 derivatives which
has the same scaling as (∂kxu)2. Assuming this, establish the a priori inequality

Ek[u(t)] = ‖∂kxu‖2
L2

x(R) +Ok,‖u‖
H

k−1
x (R)

(1 + ‖∂kxu‖L2
x(R))

and hence
‖u(t)‖Hk

x(R) �k,‖u(0)‖
Hk

x (R)
1

for all times t for which the solution exists and is classical.

Exercise 4.7. [Miu] Show that the Miura transform (4.9) does indeed link
defocusing mKdV and KdV as claimed.

Exercise 4.8. Use the Miura transform to connect the conserved L2
x norm in

KdV with the conserved Hamiltonian in mKdV, and the conserved mass in KdV
with the conserved L2

x norm in mKdV. (Indeed, one can connect an infinite sequence
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of conserved quantities in KdV with a corresponding sequence in mKdV, although
the mass

∫
v dx in mKdV has no counterpart in KdV.)

Exercise 4.9 (Invertibility of Miura transform). [KTop], [CKSTT12] Let
v ∈ Sx(T), and let u := Mv be the Miura transform of v. Show that the operator
L := −∂xx + u is positive semi-definite in the sense that 〈Lf, f〉 ≥ 0 for all f ∈
Sx(T). Also, if v has mean zero, show that L has a nontrivial eigenfunction at zero.
(Hint: use the factorisation L = (∂x + v)(−∂x + v).) Conversely, if u ∈ Sx(T) is
such that the operator L := −∂xx+u is positive semi-definite with an eigenfunction
at zero, show that u = Mv for a unique v ∈ Sx(T) with mean zero.

Exercise 4.10 (Generalised Miura transform). [CCT] Let v, w ∈ C∞
t Sx(R ×

R) be classical solutions to the system

∂tv + ∂xxxv = 6(v2 + w)∂xv

∂tw + ∂xxxw = 6(v2 + w)∂xw.

Show that the function u := ∂xv + v2 + w solves (4.1). This transform is a useful
substitute for the Miura transform because the map (v, w) �→ ∂xv + v2 + w is
significantly easier to invert, though it turns out that in order for this transform to
be useful one needs w to have significantly higher regularity than v.

4.1. Existence theory

Things we do and experience have resonance. It can die away
quickly or last a long time; it can have a clear center frequency or
a wide bandwidth; be loud, soft, or ambiguous. The present is filled
with past experience ringing in various ways and now is colored by
this symphony of resonance. (Paul Lansky)

Having discussed the algebraic structure of the KdV equation, we now turn
to the analytic theory, beginning of course with the existence theory. We begin
with the construction of classical solutions; as it turns out, these constructions
are superceded by the low-regularity wellposedness theory that we shall describe
shortly, but it is still of some interest to see the classical construction as the methods
are somewhat different. As mentioned previously, the difficulty arises from the
derivative in the nonlinearity, which prevents a classical iteration method from
working. For instance, if one were to try to control the solution u in Hs

x by a
Duhamel iteration scheme such as

u(n)(t) = e−t∂xxxu(0) + 6
∫ t

0

e−(t−t′)∂xxx(u(n−1)(t′)∂xu(n−1)(t′)) dt′

and energy estimates, one would be led to estimates such as

‖u(n)(t)‖Hs
x
≤ ‖u(0)‖Hs

x
+ 6

∫ t

0

‖u(n−1)(t′)∂xu(n)(t′)‖Hs
x
dt′,

but the norm on the right-hand side will require at least s+ 1 degrees of regularity
on u(n) in order to estimate if all the derivatives are allowed to fall on one term,
which seems to defeat any attempt to construct an iteration scheme in which each
iterate has at least as much regularity as the previous one (even if one takes s to
be large). A similar problem arises if one wishes to use the Strichartz estimates for
the Airy equation.
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There are two ways to avoid this loss of derivative5. The first is to develop
smoothing estimates for the homogeneous and inhomogeneous linear equation, in or-
der to recover the loss of derivative; this is the approach taken by the low-regularity
theory that we present below. The other approach, which is more nonlinear, is to
exploit an energy cancellation in the nonlinearity, similar in spirit to the almost
conservation laws discussed in Section 3.9. The point is that while the nonlinearity
contains an additional derivative, when the effect of the nonlinearity on various
energies is computed, the derivative can be placed (via integration by parts) into
a favourable location, so that one does not lose a derivative when closing the esti-
mate6. To illustrate the idea, let us establish a local-in-time a priori estimate on
the H2

x norm of a classical KdV solution u; in the exercises we shall see how the
argument used to establish this a priori bound can be modified (via the viscosity
method) to construct these classical solutions. Now the higher conservation laws
for KdV will automatically provide an H2

x bound, but we shall pretend that these
higher conservation laws are unavailable, as we shall wish the argument to be valid
also for certain viscosity perturbations of the KdV equation, for which the higher
conservation laws are not available. For brevity we shall write ux for ∂xu, etc. We
consider the time evolution of the second energy

E2(t) :=
∫
R

u2 + u2
x + u2

xx dx ∼ ‖u‖2
H2

x(R).

The first component of this quantity is conserved, thanks to (4.1) and integration
by parts:

∂t

∫
R

u2 =
∫
R

2uut

=
∫
R

2u(−uxxx + 6uux)

=
∫
R

2uxuxx + 4(u3)x

=
∫
R

(u2
x)x

= 0.

5There is also a third way, namely a gauge transform of the equation. This technique is
not necessary for KdV, but plays an important role in some other equations with a derivative
nonlinearity; see Section 4.4 or Section 6.2.

6In other words, the term predicted by Principle A.7 to be the worst term, namely when all
the derivatives fall on a single factor, ends up to have no net contribution to the energy under
consideration, and so it is only the next worst term which causes difficulty.
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The second component of this quantity is not conserved, but there is no difficulty
estimating its fluctuation in terms of the H2

x norm:

|∂t
∫
R

u2
x| = |

∫
R

2uxuxt|

= |
∫
R

2ux∂x(−uxxx + 6uux)|

= |
∫
R

2uxxuxxx + 12u3
x + 12uuxuxx|

≤ 0 + 12‖ux‖2
L2

x
‖ux‖L∞

x
+ 12‖uxx‖L2

x
‖u‖L∞

x
‖ux‖L∞

x

� ‖u‖3
H2

x

� E2(t)3/2.

Note that while third and even fourth order derivatives appeared briefly in the linear
component of the above calculation, they soon disappeared after integration by
parts. Now we turn to the third component of the quantityE2. When differentiating
this quantity, both the linear and the nonlinear components will now involve third
and higher order derivatives. Fortunately, the structure of the nonlinearity allows
one to again integrate by parts until only second or lower order derivatives remain.
Indeed, we have

|∂t
∫
R

u2
xx =

∫
R

2uxxuxxt|

= |
∫
R

2uxx∂xx(−uxxx + 6uux)|

= |
∫
R

2uxxxuxxxx + 12uuxxuxxx + 48uxu2
xx|

= |0 +
∫
R

6u∂x(u2
xx) + 48uxu2

xx|

= 42|
∫
R

uxu
2
xx|

� ‖uxx‖2
L2

x
‖ux‖L∞

x

� ‖u‖3
H2

x

� E2(t)3/2.

To summarise, we have established the differential inequality

(4.10) ∂tE2(t) = O(E2(t)3/2)

which by standard continuity arguments yields the a priori bound

(4.11) E2(t) = O(E2(0))

whenever |t| � E2(0)−1/2. This shows that if the initial datum is bounded in H2
x,

then it stays bounded for a reasonable amount of time. This by itself does not quite
imply any sort of local wellposedness statement in H2

x, because the bound was only
established for classical solutions (which are not even yet known to exist). However,
the above arguments are robust enough to extend to various viscosity versions of
KdV for which classical solutions can be constructed by an iteration method. One
can then take limits to construct H2

x solutions to the original KdV; see exercises.
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The above arguments can eventually be used to establish local wellposedness for
the nonperiodic KdV inHs

x for all s > 3/2, see for instance [BSmi], [Kat2], [Kat3].
One would expect to be able lower the regularity here, however. For instance, the
critical regularity with respect to the scaling (4.2) is sc = −3/2, which is a full three
derivatives lower than the 3/2 threshold. To break the 3/2 barrier, it was necessary
to return to the iteration method (thus treating the nonlinear KdV equation as a
perturbation of the linear Airy equation) and obtain smoothing estimates for the
Airy equation that recover the derivative. (Recall that the iteration method requires
both a linear estimate and a nonlinear estimate; any regularity or integrability lost
by the nonlinear estimate must be recovered by the linear estimate if one is to have
any chance of closing the Duhamel iteration.) From Exercise 2.54 we already have
the sharp local smoothing estimate

‖∂xu‖L∞
x L2

t (R×R) � ‖u(0)‖L2
x

whenever u is an L2
x solution to the free nonperiodic Airy equation ∂tu+ ∂xxxu =

0; this is a consequence of the infinite speed of propagation for this equation,
which sends the high frequencies to spatial infinity, leaving only the smoother low
frequencies to linger about a single point in space for long periods of time. Note
that unlike the Strichartz estimates, which integrate first in space and then in
time, the local smoothing estimate integrates first in time and then in space. One
can combine this estimate with Duhamel’s formula and obtain the more general
estimate

‖∂xu‖L∞
x L2

t ([0,T ]×R) � ‖u(0)‖L2
x

+ ‖F‖L1
tL

2
x([0,T ]×R)

whenever u is an L2
x solution to the forced Airy equation ∂tu + ∂xxxu = F . Since

the Airy operator ∂t + ∂xxx commutes with differential operators, we thus have

(4.12) ‖〈∇〉s∂xu‖L∞
x L2

t ([0,T ]×R) � ‖u(0)‖Hs
x

+ ‖F‖L1
tH

s
x([0,T ]×R)

for any s.
In principle, the estimate (4.12) recovers the derivative loss in the nonlinearity

6u∂xu. However, there is a problem because (4.12) attains this gain of regularity
at the cost of all decay in x. To see the difficulty, let us try to control u in Hs

x using
an energy estimate:

‖u‖L∞
t Hs

x([0,T ]×R) � ‖u(0)‖Hs
x

+ ‖u∂xu‖L1
tH

s
x([0,T ]×R).

We can distribute the derivative 〈∇〉s onto u∂xu using the fractional Leibnitz rule
(A.14). By Proposition A.7, the worst case should be when all the derivatives fall
on the high order factor, creating a term of the form ‖u〈∇〉s∂xu‖L1

tL
2
x([0,T ]×R), so

let us just focus on this term. In order to exploit (4.12) using Hölder’s inequality,
we need to reverse the time and space integrations. We achieve this by first using
a Hölder in time:

‖u〈∇〉s∂xu‖L1
tL

2
x([0,T ]×R) ≤ T 1/2‖u〈∇〉s∂xu‖L2

tL
2
x([0,T ]×R) = T 1/2‖u〈∇〉s∂xu‖L2

xL
2
t([0,T ]×R).

Using Hölder again, with an eye on exploiting (4.12), we obtain

‖u〈∇〉s∂xu‖L1
tL

2
x([0,T ]×R) ≤ T 1/2‖〈∇〉s∂xu‖L∞

x L2
t ([0,T ]×R)‖u‖L2

xL
∞
t ([0,T ]×R).

This heuristic computation suggests that in order to close the argument, one needs
to establish L2

xL
∞
t control on u (and for modified KdV, one would similarly need

L4
xL

∞
t control on u). Even for the solution to the Airy equation, this is nontrivial;



200 4. THE KORTEWEG DE VRIES EQUATION

one is now asking for L2
x control of a maximal function supt |e−t∂xxxu0(x)|. This is

given by the following harmonic analysis estimates of Kenig, Ponce, and Vega.

Proposition 4.1 (Maximal function estimates). [KPV2] Let u be an Hs
x so-

lution to the inhomogeneous Airy equation ∂tu + ∂xxxu = F on [0, T ] × R. Then
we have

(4.13) ‖u‖L2
tL

∞
x ([0,T ]×R) �s,T ‖u(0)‖Hs

x
+ ‖F‖L1

tH
s
x([0,T ]×R)

whenever s > 3/4, and

(4.14) ‖u‖L4
tL

∞
x ([0,T ]×R) �s,T ‖u(0)‖Hs

x
+ ‖F‖L1

tH
s
x([0,T ]×R)

whenever s ≥ 1/4.

These estimates are proven by a TT ∗ argument similar to those used to prove
Strichartz estimates, but with the roles of space and time reversed; see [KPV2].
Using this proposition, it was shown in [KPV2] that the nonperiodic KdV equation
was locally wellposed in Hs

x in the subcritical sense for s > 3/4, and that the
mKdV equation (4.8) was locally wellposed in Hs

x in the subcritical sense for s ≥
1/4; see exercises. The regularity threshold for KdV can be lowered further; by
exploiting the Xs,b estimates as discussed below, Bourgain [Bou] and Kenig-Ponce-
Vega [KPV4] were able to obtain local wellposedness for nonperiodic KdV for
s > −3/4. An alternative method, based on transferring the mKdV theory to
KdV using a modified Miura transform (see Exercise 4.10), was able to obtain the
endpoint s = −3/4, see [CCT]. Below s = −3/4, the solution map is known to not
be uniformly wellposed (see [NTT], [KPV5], [CCT]), though it may well continue
to be wellposed (cf. [KTop]). Similarly, s = 1/4 appears to be the threshold for the
mKdV local theory (see [BPS], [CCT]), despite the fact that global weak solutions
exist all the way down to L2

x (see Exercise 4.14), though there is a chance that some
sort of non-uniform wellposedness persists below H

1/4
x .

The local smoothing estimate is a dispersive effect (one needs the high frequency
portions of the solution to move to spatial infinity if one has any hope of gaining
regularity locally), and totally fails to hold in the periodic setting (Exercise 4.18).
Thus the above iteration argument does not extend in any obvious way to the
periodic setting (in contrast with the classical theory for s > 3/2, which does not
exploit dispersion and thus works equally well in periodic and nonperiodic settings).
Nevertheless, there is still a smoothing effect available for the periodic setting, first
observed by Bourgain [Bou], that can recover the derivative loss, but it requires the
special structure of the nonlinearity (in particular, the fact that the nonlinearity
can be expressed in conservative form ∂x(3u2) as well as in non-conservative form
6u∂xu), as well as an exploitation of the gauge freedom (4.3) to normalise u to have
mean zero. The smoothing effect then follows from a certain nonresonant property
of the nonlinearity; the nonlinearity is quite rough, but it oscillates in spacetime
at different frequencies to the Airy equation, and so its influence on the solution is
milder than what one first expects due to self-cancellation.

To illustrate this “hidden smoothing effect”, let us start with a heuristic dis-
cussion. By (4.3) we may assume that the initial datum u0 has mean zero; since
the mean is preserved by the evolution (for classical solutions at least), this ensures
that u has mean zero for all time. Now let us write the KdV equation in Duhamel
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SolutionInitial datum

in0
u

Forcing term

H
s

Solution

Solution

u in C   H
0 s

D   u in L   L

[Holder in time] (gain power of T) D  (uu  ) in L
s

x

2

t,x

s+1 2

t

8

x

t x

x

1
t

H
s
xuu  in L

x

Forcing term

u in L   L
2 8

tx
[Fractional Leibnitz
rule]

energy estimates]
smoothing, and
[Maximal, local

Figure 1. Iteration scheme for KdV using local smoothing and
maximal function estimates. Note the interchange of time and
space integration at various locations in the scheme. The situation
for mKdV is similar, but with u in L4

xL
∞
t rather than L2

xL
∞
t , and

with a nonlinearity of u2ux rather than uux.

form,

(4.15) u(t) = e−t∂xxxu0 + 3
∫ t

0

e−(t−t′)∂xxx∂x(u(t′)u(t′)) dt′.

We iterate this in the usual fashion. Let us just look at the first nonlinear iterate,
which can be described explicitly as

(4.16) e−t∂xxxu0 + 3
∫ t

0

e−(t−t′)∂xxx∂x(e−t
′∂xxxu0 × e−t

′∂xxxu0) dt′.

To simplify the computations it will be convenient to temporarily allow u0 to be
complex. To study this bilinear integral, let us pick a very simple choice of initial
datum, namely the two-frequency function

u0 = |k1|−seik1x + |k2|−seik2x

for two distinct nonzero frequencies k1, k2 ∈ Z; note that the requirement that
k1, k2 �= 0 comes from the mean zero hypothesis. Also note that u0 has a bounded
Hs
x norm. We can apply the free Airy flow and observe that

e−t
′∂xxxu0 = |k1|−seik1x+ik3

1t
′
+ |k2|−seik2x+ik3

2t
′
.

Thus, the integral in (4.16) will contain a cross term which looks something like

C|k1|−s|k2|−s
∫ t

0

e−(t−t′)∂xxx∂x(ei(k1+k2)x+(k3
1+k3

2)t′) dt′
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where we shall use C to denote various unimportant numerical constants. One can
compute

e−(t−t′)∂xxx∂x(ei(k1+k2)x+(k3
1+k3

2)t′) = i(k1 + k2)ei(k1+k2)x+(k1+k2)
3(t−t′)+(k3

1+k3
2)t′

and so one is left with an expression of the form

C
k1 + k2

|k1|s|k2|s e
i(k1+k2)x+(k1+k2)

3t

∫ t

0

ei(k
3
1+k3

2−(k1+k2)
3)t′ dt′.

Note that we may assume k1 +k2 �= 0 since otherwise this expression would vanish.
Now for the crucial fact. Since k1, k2, and k1 + k2 are all non-zero, the time

frequency k3
1 + k3

2 − (k1 + k2)3 in the above time integral is also nonzero. Indeed,
from the identity

(4.17) k3
1 + k3

2 − (k1 + k2)3 = −3k1k2(k1 + k2)

we see that ∫ t

0

ei(k
3
1+k3

2−(k1+k2)3)t′ dt′ =
ei(k

3
1+k3

2−(k1+k2)3)t − 1
−3ik1k2(k1 + k2)

).

These rather large denominators can counteract the factor of k1 + k2 which ul-
timately arose from the derivative in the nonlinearity, and thus are a reflection
of a smoothing effect caused by time oscillation (non-resonance). Thus the first
nonlinear iterate contains terms such as

(4.18)
C

|k1|s+1|k2|s+1
)ei(k1+k2)x+(k3

1+k3
2)t,

(absorbing the sign of k1 and k2 into the unspecified constant C) which has an Hs
x

norm of

O(
|k1 + k2|s

|k1|s+1|k2|s+1
).

This expression will be bounded for any s ≥ −1, and so one can now hope that an
iteration scheme will converge in Hs

x for any s ≥ −1. However, while this would be
sufficient to bound the first iterate, a difficulty arises with the second iterate, when
interacting a term such as (4.18) with a linear term such as |k2|−se−ik2x−ik3

2t. This
gives a contribution to the second iterate which is of the form

C

∫ t

0

e−(t−t′)∂xxx∂x[
C

|k1|s+1|k2|s+1
)ei(k1+k2)x+(k3

1+k3
2)t′ |k2|−se−ik2x−ik3

2t
′
dt′]

which simplifies to

C

|k1|s|k2|s+1

∫ t

0

eik1xeik
3
1t dt′ =

Ct

|k1|s|k2|2s+1
eik1x+ik

3
1t

which has an Hs
x norm of O(t|k2|−2s−1). Since we are only looking at a local

existence theory, we can set t to be bounded, but k2 can be arbitrarily large, so we
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shall need s ≥ −1/2 if we are to have a hope of keeping the iteration scheme under
control7

Indeed, the periodic KdV equation is analytically locally wellposed in subcriti-
cal sense in Hs

x(T) for all s ≥ −1/2, see [KPV4], [CKSTT2]. In order to capture
the above smoothing effects arising from nonresonance, the Xs,b spaces introduced
in Section 2.6 are an ideal tool. It is easier to explain the method in the nonperiodic
KdV setting, in which local wellposedness in Hs

x(R) is established for all s > −3/4.
The key estimate here is the bilinear estimate

(4.19) ‖∂x(uv)‖Xs,b′−1
τ=ξ3 (R×R)

�s ‖u‖Xs,b

τ=ξ3(R×R)‖v‖Xs,b

τ=ξ3(R×R)

for all test functions u, v, where s > −3/4 and b′ > b > 1/2 are exponents depending
only on s; see [KPV4] and Figure 2. Using this and the estimates in Section 2.6,
it is a straightforward matter to obtain a local existence theory8. In the periodic
case, the analogous bilinear estimate is

‖∂x(uv)‖Xs,−1/2
τ=ξ3 (R×T)

�s ‖u‖Xs,1/2
τ=ξ3 (R×R)

‖v‖
X

s,1/2
τ=ξ3 (R×T)

for all s ≥ −1/2; see [KPV4]. However there is a technical issue, especially for
large initial data because some of the linear estimates break down at the b = 1/2
endpoint. To resolve this one needs to augment the Xs,b spaces with some more
technical norms, and also to apply a rescaling argument which replaces the circle
T = R/2πZ with a rescaled circle T = R/2πλZ; see [CKSTT2] for full details.
The scheme is briefly summarised in Figure 3.

The above technology can also be applied to the modified KdV equation (4.8)
to establish analytic local wellposedness in the subcritical sense in Hs

x(T) for all
s ≥ 1/2. It is convenient to apply the counterpart of the Galilean transform (4.3) for
this equation, combined with L2

x conservation, to replace (4.8) by the renormalised
equation

(4.20) ∂tv + ∂xxxv = 6(v2 − 1
2π

∫
T

v2 dx)∂xv.

This equation largely eliminates a number of “nonresonant” frequency interactions
in mKdV, where the analogue of the denominator (4.17) vanishes, though a single
resonant “self-interaction” remains; see Exercises 4.20, 4.21.

7Actually, when |k2| � |k1| there is an interesting cancellation in the second iterate which
ameliorates this term. Namely, the above bad term in the second iterate came from interacting
the k1 mode with the k2 mode, followed by a −k2 mode. There is a similar term coming from
interacting the k1 mode with the −k2 mode and then the k2 mode. These two terms cancel each
other almost completely when |k2| � |k1|. Unfortunately when |k1| is very close (or equal) to |k2|
the cancellation is not significant and one can in fact rigorously demonstrate various mild forms
of illposedness below this regularity. See [KPV4], [CCT], [CKSTT12]. Interestingly, while the
solution map is known to not be uniformly continuous for s < −1/2, it remains continuous all the
way down to s ≥ −1 due to the completely integrable nature of the equation; see [KTop] and
Exercise 4.21.

8One can either use the standard Duhamel formulation (4.15) on a time interval I by localizing
the Xs,b spaces to a slab I × R, or else study global iterates of a smoothly truncated Duhamel
formulation such as

u(t) = η(t)e−t∂xxxu0 + 3η(t)

� t

0
e−(t−t′)∂xxx∂x(u(t′)u(t′)) dt′

for some smooth cutoff function η which equals 1 on I. The two methods are more or less
equivalent, though the former is somewhat more convenient technically; see [Bou], [Gin] for
further discussion.
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Solution

u in C   H
0 s
t x

SolutionInitial datum
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u
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s
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x
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[Corollary 2.10]
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Figure 2. Iteration scheme for KdV using Xs,b estimates, in the
nonperiodic setting; the smooth time cutoff η(t) has been sup-
pressed for clarity. The main technical task is to verify the bilinear
estimate (4.19); all other components of the argument use the stan-
dard machinery from Section 2.6.

As these local wellposedness results were obtained by an iteration method, it
should be no surprise that by refining these arguments one can also establish a
stability theory and a persistence of regularity theory; we will not present these
results here. However, the iterative arguments do not give a scattering theory,
largely because the iteration is in subcritical spaces rather than critical spaces.

Exercise 4.11. Obtain an analogue of (4.11) for the higher energies Ek(t) :=∑k
j=0

∫
R
∂jxu(x)2 dx for any integer k ≥ 2, by the same type of integration by parts

argument.

Exercise 4.12. Use a Gronwall inequality argument to establish uniqueness
of classical solutions to KdV from any given initial datum. (In fact, the Gronwall
argument should give uniqueness in the class of solutions u such that u and ∂xu
are both bounded in L1

tL
∞
x .)

Exercise 4.13. Use a Duhamel iteration argument based on energy estimates
to show global existence (forward in time) for the Cauchy problem ∂tu

(ε)+∂xxxu(ε)+
ε∂xxxxu

(ε) = 6u∂xu; u(0) = u0 for any u0 ∈ L2
x and 0 < ε� 1. (You will need the

bound
‖∂xe−t(∂xxx+ε∂xxxx)f‖L∞

x
� (εt)−3/4‖f‖L2

x

for any t > 0, which can be established through Fourier analysis. The reason for the
fourth order viscosity term is to make the (εt)−3/4 factor integrable in time.) Also
show that the solution is smooth for all t > 0. Then, develop an analogue of (4.11)
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Solution

u in C   H
0 s
t x

Initial datum

in0
u H

s
x

Solution

u in X
s,1/2

Solution

u in Y
s,0

uu  in Y
x

Forcing term
s,−1

uu  in X
x

Forcing term
s,−1/2

[bilinear estimates]

[Exercise 2.70]

[Exercise 2.70]

Figure 3. Iteration scheme for KdV using Xs,b estimates, in the
periodic setting. The endpoint b = 1/2 forces one to also utilise the
auxiliary Y s,b spaces from Exercise 2.70 in order to retain energy-
type estimates. Also, there is no longer a gain of a power of T ,
which means that to get a local theory for large data one must
rescale the torus T. See [Bou], [KPV4], [CKSTT2].

forH2
x solutions to these equations, with bounds uniform in ε. Show that if u0 ∈ H2

x,
then as ε→ 0, the solutions u(ε) converge in C0

tH
1
x([0, T ]×R) to a H2

x weak solution
to KdV for some T > 0 depending only on ‖u0‖H2

x
. (One can upgrade this weak

solution to a strong solution, and establish uniqueness and continuous dependence
on the data, by more sophisticated versions of these arguments; see [Tzv] for a
summary.) While these arguments are superceded by the low regularity theory, they
have the advantage of not needing to exploit any linear dispersion or smoothing
phenomena (they work equally well in the periodic and nonperiodic settings), and
thus also can be used to construct solutions to dispersionless equations such as the
inviscid Burgers equation ∂tu = 6u∂xu.

Exercise 4.14 (Global weak solutions). [Kat2], [KF] By adapting the argu-
ment used in Exercise 2.53, establish the bound∫

I

∫
|x|≤R

u2
x dxdt �I,R,‖u(0)‖L2

x
1

for any classical nonperiodic solution u to KdV, any time interval I, and any R > 0.
Use this and a weak compactness argument to construct a global weak L2

x solution
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u ∈ L∞
t L

2
x(R × R), which solve the Duhamel equation in the distributional sense

u(t) = e−t∂xxxu(0) + 3
∫ t

0

e−(t−t′)∂xxx∂x(u(t′)2) dt′

from arbitrary L2
x initial data u(0). A similar argument allows one to construct

global weak L2
x solutions to the modified KdV equation (4.8); interestingly, despite

the presence of a subcritical L2
x conservation law at this regularity, no construction

of strong L2
x solutions (let alone L2

x wellposed solutions) are known. Indeed, the
equation is somewhat unstable at this regularity; see [CCT]. One can even extend
this technique to obtain global weak solutions for KdV when the initial datum is
merely a finite measure; see [Tsu2].

Exercise 4.15. Show that the estimate (4.14) fails for s < 1/4. (Hint: start
with a solution to the Airy equation with a bump function initial datum, and then
rescale it to be small.)

Exercise 4.16. Show that the estimate (4.13) fails for s < 3/4. (Hint: use
Exercise 2.4, constructing approximate solutions to the Airy equation with a spatial
frequency ∼ N , a spatial width ∼ √

N for each fixed time, and traveling for distance
∼T N2 over the time interval [0, T ], where N is a large parameter.)

Exercise 4.17. Assume for sake of this exercise that the fractional Leibnitz
rule and Principle A.7 are rigorous, even when applied in L∞ type spaces. Show
that the nonperiodic KdV equation is locally wellposed in Hs

x in the subcritical
sense for s > 3/4, and the nonperiodic modified KdV equation is locally wellposed
in the subcritical sense for s ≥ 1/4. (For the KdV equation, iterate as in Proposition
1.38 using the norms ‖u‖S := ‖u‖C0

tH
s
x

+ ‖〈∇〉s∂xu‖L∞
x L2

t
+ ‖u‖L2

tL
∞
x

and ‖F‖N =
‖F‖L2

tH
s
x
. For the mKdV equation, argue similarly but using the L4

tL
∞
x norm

instead of the L2
tL

∞
x norm.) You may find Figure 1 useful. For a fully rigorous

proof of wellposedness, see [KPV2].

Exercise 4.18 (Lack of local smoothing in the periodic case). Let ε, T > 0
and 1 ≤ q, r ≤ ∞. Show that there is no estimate of the form

‖〈∇〉εu‖Lq
tL

r
x([0,T ]×T) � ‖u(0)‖L2

x

or

‖〈∇〉εu‖Lr
tL

q
x([0,T ]×T) � ‖u(0)‖L2

x

for classical solutions u to the periodic Airy equation. (Hint: use plane wave
solutions.)

Exercise 4.19. Write down an explicit invertible transformation which con-
verts classical solutions of periodic mKdV (4.8) to classical solutions of the renor-
malised periodic mKdV (4.20).

Exercise 4.20. [CKSTT12] Let v be a classical solution to (4.20). Show that
(4.21)
∂tv+∂xxxv = −6

∑
k∈Z

ik|v̂(k)|2v̂(k)eikx+2ik
∑

k1+k2+k3=k;k1+k2,k2+k3,k3+k1 	=0

v̂(k1)v̂(k2)v̂(k3)eikx,
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or if one uses the ansatz v(t, x) =
∑

k∈Z ak(t)e
ikx+ik3t,

∂tak(t) = −6ik|ak(t)|2ak(t)
+ 2ik

∑
k1+k2+k3=k;k1+k2,k2+k3,k3+k1 	=0

ak1(t)ak2(t)ak3 (t)e
−3i(k1+k2)(k2+k3)(k3+k1)t.

Since the time-frequency (k1 + k2)(k2 + k3)(k3 + k1) is nonzero, the terms in this
series should be considered “nonresonant”. (Compare with (1.55).)

Exercise 4.21. [CCT], [CKSTT12] Consider the following equation on the
circle T:

(4.22) ∂tu+ ∂xxxu = −6
∑
k∈Z

ik|û(k)|2û(k)eikx; u(0, x) = u0(x).

This is the resonant approximation for the renormalised periodic mKdV equation
(4.21), in which we throw away all of the nonlinearity except for the term coming
from the self-interaction of each Fourier mode with itself. Solve this equation ex-
plicitly and conclude that this equation is globally uniformly wellposed in Hs

x(T)
for all s ≥ 1/2, while for s < 1/2 the solution map is globally wellposed but not
globally uniformly wellposed, thus the solution map is continuous but not uniformly
continuous. Also verify the fact (not immediately obvious from the above formu-
lation) that if the initial datum is real, then the solution remains real for all time.
There is some evidence that (4.22) is in fact a rather good approximation to the
(renormalised) periodic mKdV equation; see [CCT], [CKSTT12].

Exercise 4.22. [KPV4] Show that the periodic mKdV equation is not ana-
lytically wellposed in Hs

x(T) for s < 1/2. (The previous exercise should provide a
hint as to what kind of initial data to try here.) In fact the equation is not uni-
formly wellposed at these regularities either; see [CCT]. Nevertheless the equation
is wellposed for all s ≥ 0; see [KTop]. Thus the behaviour of the periodic mKdV
equation resembles that of the model equation

4.2. Correction terms

We cannot direct the wind, but we can adjust the sails. (Bertha
Calloway)

As with NLS and NLW, the conservation laws for KdV can be combined with
the local wellposedness theory to obtain global wellposedness. For instance, conser-
vation of the L2

x norm E[u] =
∫
R
u2 dx for nonperiodic KdV, combined with the L2

x

local wellposedness theory (in the subcritical sense), easily implies global wellposed-
ness for the nonperiodic KdV in L2

x(R), a result of Bourgain [Bou]. A standard
persistence of regularity argument then yields global wellposedness in Hs

x(R) for
all s ≥ 0. Similarly one has global wellposedness for periodic KdV in L2

x(T). For
mKdV, similar results hold for H1

x(R) and H1
x(T) (note that the Miura transform

suggests heuristically that all results for mKdV should exist at one derivative higher
regularity than the counterpart for KdV.)

There is now however a gap between the local theory and the global theory,
as the local theory can be extended down to H

−3/4
x (R) in the nonperiodic case

and H−1/2
x (T) in the periodic case. There are no immediately obvious conservation
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laws at these regularities which would allow one to make the local analysis global9.
Nevertheless, it is possible to construct almost conserved quantities at regularities
lower than L2

x to establish global wellposedness. For instance, in [CKSTT] the
I-method, as sketched in Section 3.9, was used to establish global wellposedness of
nonperiodic KdV in Hs

x for s > −3/10 (an earlier result in this direction, using the
Fourier restriction norm method, was in [CST]). This argument relied on almost
conservation of the modified energy

E[Iu] =
∫
R

(Iu)2 dx,

where I is the Fourier multiplier Îu(ξ) = mN (ξ)û(ξ) = m(ξ/N)û(ξ) as before, with
the slight difference that m(ξ) is now |ξ|s for |ξ| ≥ 2 rather than |ξ|s−1 (since we
are perturbing off of an L2

x conservation law rather than an H1
x conservation law).

Indeed, a computation as in Section 3.9 shows that

(4.23) ∂tE[Iu] = 6
∫
R

Iu∂x[I(u2) − (Iu)2] dx

and it turns out to be possible using the Xs,b theory to establish the almost con-
servation law

(4.24) E[Iu(t)] ≤ E[Iu(0)] +Oε,s(N−3/4+ε)

for any ε > 0, |t| ≤ 1, and s > −3/4, provided that E[Iu(0)] = O(1); see (4.24).
Iterating this one as in Section 3.9 yields the global wellposedness in Hs

x(R) for
s > −3/10; we leave this as an exercise.

Improving the error term in (4.24) would lead directly to an improvement in
the range of global wellposedness; the numerology is that a decay of O(N−α) would
allow one to control regularities s down to − 3α

2α+6 (provided that a corresponding
local theory also exists down to this range). Thus to get down to s > −3/4 would
require a decay bound of Oε,s(N−3+ε) or so.

It is unlikely that the modified energy E[Iu] is so stable as to admit such a good
decay bound (though an unpublished computation from the authors of [CKSTT2]
improves the exponent −3/4 to −1). However, one can improve the argument by
adding a correction term to E[Iu] that improves its derivative. At present, the time
derivative of E[Iu(t)] is a trilinear expression in u which involves a commutator and
one spatial derivative. It is possible to modify E[Iu] to a modified quantity E2(t)
so that the time derivative is now a quadrilinear expression in u which involves
a commutator and one negative derivative10 (see Exercise 4.24). To motivate this

9In the periodic case, it is possible to use the spectral gaps of the Hill operator L = −∂xx +u
as a conserved quantity; these gaps are nonlinear analogues of the Fourier coefficient magnitudes
|û(k)|. Using these gaps, together with a variant of the Xs,b theory, one can establish global
existence of periodic KdV solutions whose initial datum is a small finite measure; see [Bou5].
Some related techniques appear in [KTop].

10A scaling heuristic (comparing the two terms ∂xxxu and u∂xu in (4.1)) indicates that each
additional factor of u should be balanced by two negative derivatives. One expects the negative

derivatives to contribute further negative powers of N and so it is desirable to make the error term
involve as many factors of u as possible. This is ultimately a reflection of the subcritical setting,
which means that the terms in an iteration procedure should get better as the order of iteration
progresses.
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phenomenon, start by considering the quantity

E[∂xu] =
∫
R

(∂xu)2 dx,

which is the analogue of E[Iu] but with I replaced by the derivative operator ∂x.
This quantity is not conserved. However, we have already seen that the modified
quantity

H(t) =
∫
R

(∂xu)2 + 2u3 dx

is conserved: the time derivative is zero. Inspired by this, one can (after much
trial and error) work out a similar correction term E2(t) to E[Iu]; see Exercise
4.24. This can ultimately lead to an almost conservation law for E2(t) similar to
(4.24) with an error term of Os,ε(N−3/2+ε) (this is another unpublished calculation
from the authors of [CKSTT2]), which leads to global wellposedness in Hs

x for
s > −1/2.

To get all the way down to s > −3/4, a second correction term is needed. It
is difficult to guess this term purely by trial and error, but fortunately there is a
systematic way to uncover an entire asymptotic series of correction terms, which
each term improving the order of multilinearity in the derivative by one. Let u
be a classical solution to periodic KdV. It is convenient to work use the Fourier
expansion

u(t, x) =
1
2π

∫
R

eixξû(t, ξ) dξ,

and then define the multilinear form

Λk(m)(t) :=
1

(2π)k

∫
ξ1+...+ξk=0

m(ξ1, . . . , ξk)û(t, ξ1) . . . û(t, ξk) dξ1 . . . dξk−1

for any integer k ≥ 1 and any smooth function11 m : Rk → C. Thus for instance
Λk(1)(t) =

∫
R u

k dx, while E[Iu](t) = Λ2(mN (ξ1)mN (ξ2))(t). We can take Fourier
transforms of (4.1) (using the conservative form 3∂x(u2) of the nonlinearity) to
obtain the formula

∂tû(t, ξ) = iξ3û(t, ξ) + 3iξ
∫
ξ1+ξ2=ξ

û(t, ξ1)û(t, ξ2) dξ1

which leads to the derivative formula

(4.25) ∂tΛk(m) = iΛk(αkm) + 3iΛk+1(Xm)

where αk(ξ1, . . . , ξk) := ξ31 + . . .+ ξ3k, and Xm : Rk+1 → C is the extension12 of m,
defined by

Xm(ξ1, . . . , ξk, ξk+1) :=
k∑
j=1

(ξj + ξj+1)m(ξ1, . . . , ξj−1, ξj + ξj+1, ξj+2, . . . , ξk+1).

Thus for instance,

∂tE[Iu] = ∂tΛ2(mN (ξ1)mN (ξ2)) = 3iΛ3((ξ1+ξ2)mN (ξ1+ξ2)mN (ξ3)+(ξ2+ξ3)mN (ξ1)mN (ξ2+ξ3))

11Actually, only the values of m on the hyperplane {ξ1 + . . .+ ξk = 0} are relevant.
12One can simplify this formula by assuming symmetry on m, and then symmetrising the

Λk+1 form; see [CKSTT2]. We have taken a slightly different approach here to emphasise that

symmetry is not absolutely essential for this approach to work.
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since α2 = ξ31 + ξ32 vanishes on the hyperplane ξ1 + ξ2 = 0. Using symmetry and
the constraint ξ1 + ξ2 + ξ3 = 0, one can simplify this to

(4.26) ∂tE[Iu] = 6iΛ3(m(ξ1)(ξ2 + ξ3)(m(ξ2 + ξ3) −m(ξ2)m(ξ3)))

which is simply the Fourier transform of (4.23). The commutator structure is
reflected by the cancellation possibilities in the expression m(ξ2 +ξ3)−m(ξ2)m(ξ3).

The formula (4.25) a way to iteratively improve an almost conservation law
via correction terms. Suppose one has already constructed an almost conserved
quantity E(t) whose derivative is given by a k-linear expression Λk(M):

∂tE(t) = Λk(M).

This is for instance the situation in (4.26). Then if we define the modified almost
conserved quantity

Ẽ(t) := E(t) + iΛk(
M

αk
)

(assuming for this discussion the nonresonant hypothesis that M/αk is smooth)
then we see from (4.25) that Ẽ(t) has a derivative which is one order better than
that of E(t):

∂Ẽ(t) = −3Λk+1(X [
M

αk
]).

If one applies this procedure to E[Iu] one obtains the quantity E2(t) mentioned
earlier (Exercise 4.24). It turns out that the denominator α3 does not cause a
problem thanks to the identity

α3 = ξ31 + ξ32 + ξ33 = −3ξ1ξ2ξ3

which holds whenever ξ1 +ξ2 +ξ3 = 0 (cf. (4.17)). One can continue this procedure
for another iteration, taking advantage of the variant identity

α4 = ξ31 + ξ32 + ξ33 + ξ34 = −3(ξ1 + ξ2)(ξ1 + ξ3)(ξ1 + ξ4)

when ξ1 + ξ2 + ξ3 + ξ4 = 0 (cf. Exercise 2.75), to create a new almost conserved
quantity E4(t) whose time derivative is a quintilinear expression in u (which morally
speaking contains three negative derivatives in it, as well as commutator structure).
Exploiting this, one can (after many computations) establish global wellposedness of
the nonperiodic KdV equation in Hs

x(R) for all s > −3/4, and then using the Miura
transform one obtains global wellposedness of the nonperiodic mKdV equation also
for s > 1/4; see [CKSTT2]. In fact one obtains an almost conservation law for
E4 with an error of Os,ε(N−3− 3

4+ε), which is more than sufficient to conclude the
argument13. Global wellposedness for the endpoints s = −3/4 and s = 1/4 remains
open. The same arguments also extend to the periodic setting (after some obvious
changes, for instance restricting the frequency variables ξ to be integers), obtaining
global wellposedness for periodic KdV and mKdV down to s ≥ −1/2 and s ≥ 1/2
respectively, matching the uniformly wellposed local theory (though not going as
far as the completely integrable wellposedness theory from [KTop]).

13It is likely that further correction terms would improve this further. It seems that at every
stage the multipliers will be smooth, since if one starts with m equal to a polynomial in ξ then

this procedure will terminate in finite time yielding some combination of the standard conserved
quantities for KdV, which are all given by smooth multilinear multipliers. This smoothness is a
consequence of the complete integrability, and fails for other equations such as NLS, thus hinting
at a limitation to this method for those equations.
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The method of correction terms has also been applied to the one-dimensional
derivative nonlinear Schrödinger equation

(4.27) i∂tu+ ∂xxu = iµ∂x(|u|2u)

with µ ∈ R to obtain global wellposedness in Hs
x(R) for s > 1/2 [CKSTT5] as-

suming a small mass condition, almost matching the known local wellposedness for
this equation which extends to s ≥ 1/2 [Tak]. Here the equation is not completely
integrable, but there is enough cancellation present that one can add a single cor-
rection term without introducing any singularities in the multiplier. This equation
is also notable for requiring a gauge transformation to eliminate an unfavourable
component (iµ|u|2∂xu); we shall use this technique again in Section 4.4.

The correction term method was reinterpreted in [Bou10] as a special case of
the method of normal forms. This method seeks to improve the order of nonlinearity
in an equation (e.g. transforming a quadratic nonlinearity into a cubic one, as with
the Miura transform) by an appropriate nonlinear change of variables14. This can
be formally be done for the KdV equation, in fact one can in principle transform it
all the way to the linear Airy equation (Exercise 4.27), which goes some way towards
explaining the multitude of conservation laws and almost conservation laws for this
equation. For other equations, any attempt to remove the nonlinearity completely
seems to introduce severe singularities in the change of variables due to resonances
(which correspond to the vanishing of the denominators αk in the above framework).
However one can still exploit the normal forms method by dividing the nonlinearity
into “resonant” and “nonresonant” components, and only transforming away the
nonresonant component, leaving behind a smaller and more manageable resonant
nonlinearity (which is an essential part of the nonlinear dynamics and cannot be
easily ignored). See [Bou10] for more details.

Exercise 4.23. Use the almost conservation law (4.24), the localHs
x wellposed-

ness theory, and a scaling argument to establish global wellposedness for KdV in
Hs
x for s > −3/10. More generally, relate an error term of O(N−α) in an almost

conservation law with the regularity of − 3α
2α+6 . Note that with this argument, an

infinite amount of decay in the error term would be needed in order to get ar-
bitrarily close to the scaling regularity −3/2; however the local theory runs into
difficulties long before this point, and so infinite decay is not necessary in order for
the global theory to match up with the local theory.

Exercise 4.24. Suppose that u is a classical solution to nonperiodic KdV
with mean zero, so that the primitive v := ∂−1

x u is well defined. Show that the
Hamiltonian can also be written as

H(t) =
∫
R

(∂xu)2 − 2(∂xu)∂x(v2) dx.

Now show that if we set

E2(t) :=
∫
R

(Iu)2 − 2(Iu)I(v2) dx

then we have the almost conservation law

∂tE2(t) = 12
∫
R

u[u, I2](vu) dx

14In the paper [Bou10], one applies the change of variables to the Hamiltonian H(u) rather
than to the equation itself; this ensures that the evolution retains its Hamiltonian structure.
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where [u, I2](vu) = uI2(vu)−I2(uvu) is the commutator of u and I2 applied to vu.
(This law can be proven either by integration by parts or by the formula (4.25);
it is instructive to do it both ways in order to contrast the two techniques.) Show
that E2(t) is obtained from E(t) by the correction term procedure described in the
text.

Exercise 4.25. Use the machinery of this section to verify that the KdV
equation does indeed conserve the quantity (4.7). (You may find Exercise 4.24 to
be useful.)

Exercise 4.26. [Oza2] Let u be a classical solution to (4.27). Show that if
one applies the gauge transformation

w(t, x) := e−iµ
�

x
−∞ |u(t,y)|2 dyu(t, y)

then w solves the equation

i∂tw + ∂xxw = −iµw2∂xw − µ2

2
|w|4w.

To see why this is an advantageous formulation, define the energy

E2(t) :=
∫
R

|w|2 + |∂xw|2 + |∂xxw|2 dx
and establish the a priori almost conservation law

|∂tE2(t)| �µ E2(t)2 + E2(t)4,

by repeating the proof of (4.10). Observe that the same argument will not work
when applied to the original equation (4.27) due to the unfavourable location15 of
the derivative.

Exercise 4.27. [Ros] In this exercise we shall work formally, ignoring all issues
of convergence or of vanishing denominators. Let u be solution to KdV. For any
multiplier m(ξ1, . . . , ξk), define the function Tk(m) by

Tk(m)(t, x) :=
1

(2π)k

∫
Rk

m(ξ1, . . . , ξk)eix(ξ1+...+ξk)û(t, ξ1) . . . û(t, ξk) dξ1 . . . dξk

thus for instance Tk(1) = uk. Show that for any k ≥ 1, there exists a formal change
of variables

uk := u+ T2(m2) + . . .+ Tk(mk)
for some explicit (and possibly singular) multipliers m2, . . . ,mk which are rational
functions independent of u, such that the transformed field uk solves the equation

∂tuk + ∂xxxuk = Λk+1(Mk+1)

for some rational function Mk+1. Formally, this transforms KdV to an equation
in which the nonlinear terms are of order k + 1 or greater. The modified almost
conserved quantities described in the text can be essentially corresponded to the
unmodified almost conserved quantities E[Iuk] for the transformed fields uk. If one
continues the asymptotic expansion to k → ∞ then we have formally conjugated
the KdV equation to the Airy equation.

15A term involving ∂xw is only likely to be significant when w is high frequency, but then
such a term is likely to be highly nonresonant, concentrated in spacetime frequency space near the
opposite parabola τ = +ξ2 to the Schrödinger dispersion relation τ = −ξ2. Terms involving ∂xw
are substantially more dangerous, but in this case can be eliminated via the gauge transform.
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4.3. Symplectic non-squeezing

It is easier for a camel to go through the eye of a needle, than for
a rich man to enter into the kingdom of God. (Matthew 19:24)

In controlling the large data (non-perturbative) global behaviour of solutions
to nonlinear dispersive equations, we have already seen two important techniques:
those of conservation laws (and their almost conserved relatives), as well as those
of monotonicity formulae. To this short list, one can also add the techniques of
complete integrability, for special equations such as the KdV equation, and the
induction on energy technique that we introduce in the next chapter. It is fair to
say, however, that our set of tools for the non-perturbative global theory is still far
from adequate in many cases, especially when compared against the much better
understood local theory. But in the study of non-perturbative global behaviour of
Hamiltonian ODE (as opposed to PDE), somewhat more is known, especially if one
studies emsembles (sets, or perhaps probability measures) of data and their evolu-
tion, as opposed to a single initial datum and the solution thereof. For instance, we
have Liouville’s theorem (Exercise 1.31), which asserts (under reasonable conditions
on the Hamiltonian) that the volume of an open set of initial data is preserved by
the evolution of an Hamiltonian ODE. This, for instance, prevents a large ball of
data in phase space from being compressed into a small ball (which might be the
case for a more dissipative equation, as in Proposition 1.41), and rules out certain
types of attractors for the flow. To put it another way, the volume of an open set
is a symplectic invariant - it is preserved by all Hamiltonian flows, and even by the
slightly larger class of symplectomorphisms. One can then ask whether there are
any further symplectic invariants available, which would yield further obstructions
as to whether one set of initial data can flow to another via a Hamiltonian flow. One
can of course place topological constraints (e.g. one cannot flow from a connected
set to a disconnected one), but it is a remarkable discovery of Gromov [Gro] shows
that other invariants exist beyond volume and topology.

Theorem 4.2 (Symplectic non-squeezing). [Gro] Let Cn be a standard complex
phase space. Let z(0) ∈ Cn, ζ ∈ C, R > r > 0, and 1 ≤ k ≤ n. Let B(z0, R) be
the ball B(z0, R) = {z ∈ CN : |z − z(0)| ≤ R}, where |(z1, . . . , zn)| = (|z1|2 + . . .+
|zn|2)1/2, and Ck(ζ, r) = {(z1, . . . , zN ) ∈ CN : |zk − ζ| ≤ r}. Then there does not
exist any flow map S(t) associated with a (possibly time-dependent) Hamiltonian
flow, such that S(t) maps B(z0, R) into a subset of Ck(ζ, r).

To state the symplectic non-squeezing theorem informally, a Hamiltonian flow
cannot squash a large ball into a narrow cylinder, despite the fact that the cylinder
has infinite volume. A variant of the theorem shows that one also cannot flow an n-
dimensional ball via a Hamiltonian evolution through an n−2-dimensional sphere of
narrower radius. This theorem is especially surprising in light of Darboux’ theorem
(cf. Exercise 1.26), which asserts that all symplectic forms are locally equivalent
and thus indicates that there is a large class of symplectomorphisms available. It
is a result of fundamental importance in symplectic geometry, leading in particular
to the theory of symplectic rigidity which we will not discuss here.

Gromov’s original proof of this deep theorem, based on the theory of pseudo-
holomorphic curves, is beyond the scope of this text, though see Exercise 4.28 for
the much simpler linear version of this argument. An alternate proof, based on the
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concept of symplectic capacity, appears in [HZ]; again, see Exercise 4.29 for the
simpler linear version.

The nonsqueezing theorem implies certain “instability” results16 for solutions
to Hamiltonian ODE. For instance, we have

Corollary 4.3. Let Cn be a standard complex phase space, let H ∈ C2(Cn →
R) be a Hamiltonian of quadratic growth (to ensure global solutions), and let u be
a classical solution to the Hamiltonian flow (1.28). Then for any R > r > 0, any
times t0, t1 ∈ R and any 1 ≤ k ≤ n there exists another classical solution ũ to
(1.28) such that |ũ(t0) − u(t0)| ≤ R but |ũ(t1)k − u(t1)k| > r.

Thus the Hamiltonian flow cannot have any sort of “uniform attractor” prop-
erty in the kth coordinate, in the sense that arbitrary perturbations of size R to an
initial datum necessarily dwindle to size r or less in the kth coordinate after a fixed
amount of time.

The known proofs of the nonsqueezing theorem rely heavily on the finite di-
mensionality of the phase space, and do not immediately extend to Hamiltonian
PDE, even when one already has a global continuous solution map (i.e. global
wellposedness) in the phase space. Nevertheless, for certain periodic Hamiltonian
PDE it is possible to extend the nonsqueezing theorem by first using the Fourier
transform to express the Hamiltonian PDE as an infinite-dimensional Hamiltonian
ODE, and then showing that the infinite-dimensional ODE can be approximated in
some weak sense by a sequence of finite-dimensional Hamiltonian ODE. This was
first achieved by Kuksin [Kuk2], [Kuk3] under a certain compactness hypothesis
on the nonlinearity (roughly speaking, one needs the nonlinear term in the Duhamel
formula to be higher regularity than the linear term). In the periodic setting, this
compactness property is available for the nonlinear Klein-Gordon equation but not
for first-order equations such as NLS or KdV. The case of the one-dimensional cubic
periodic NLS,

(4.28) i∂tu+ ∂xxu = µ|u|2u
with µ = ±1 was treated in [Bou2]; recall from Exercise 3.37 that this equation is
globally wellposed in L2

x. Using the Fourier expansion u(t, x) =
∑
k∈Z û(t, k)e

ikx we
can write this equation (for classical solutions at least) as the infinite-dimensional
ODE

(4.29) ∂tû(t, k) = −i|k|2û(t, k) − iµ
∑

k1−k2+k3=k

û(t, k1)û(t, k2)û(t, k3).

This is formally a Hamiltonian system with Hamiltonian

H(u(t)) =
∑
k

1
2
|k|2|û(t, k)|2 + µ

∑
k1−k2+k3−k4=0

û(t, k1)û(t, k2)û(t, k3)û(t, k4)

in the phase space l2(Z) = {(û(k))k∈Z :
∑

k∈Z |û(k)|2 <∞} with symplectic form

ω((û(k))k∈Z, (v̂(k))k∈Z) =
∑
k∈Z

Im(û(k)v̂(k)).

16More precisely, nonsqueezing rules out certain very strong types of stability, that one would
for instance expect from a dissipative equation. Corollary 4.3 is not the strongest statement one
could conclude from the nonsqueezing theorem, but is one of the simplest to state, so we shall use
it for sake of demonstration.
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Note that there are nontrivial difficulties in making this formalism rigorous, not
least of which is the fact that H is not even fully defined on the phase space, let
alone twice continuously differentiable. However, we can define finite-dimensional
approximations to this flow by considering the truncated Hamiltonian

HN (u(t)) =
∑

k:|k|≤N

1
2
|k|2|û(t, k)|2+µ

∑
k1−k2+k3−k4=0:|k1|,...,|k4|≤N

û(t, k1)û(t, k2)û(t, k3)û(t, k4)

for some large frequency cutoff N , which leads to the truncated flow

(4.30) ∂tû(t, k) = −i|k|2û(t, k)− iµ
∑

k1−k2+k3=k:|k1|,...,|k4|≤N
û(t, k1)û(t, k2)û(t, k3).

on the truncated phase space l2N , defined as the subset of l2(Z) on which û(k)
vanishes for |k| > N . This truncated phase space is isomorphic to the finite-
dimensional space C2N+1 and thus this flow obeys a nonsqueezing theorem.

In order to pass from the truncated flow to the untruncated flow, the following
approximation theorem was established in [Bou2].

Proposition 4.4 (Uniform weak approximation by finite-dimensional flow).
[Bou2] Let N � 1 and T > 0. Let S(T ) : l2(Z) → l2(Z) denote the evolution
map associated to the NLS (4.29) for time T , and let SN (T ) : l2N → l2N be the
flow associated to the truncated NLS. Let k0 ∈ Z, and let u0 ∈ l2N be such that
‖u0‖l2 ≤ A for some A > 0. Then for any k ∈ Z we have

|(S(T )u0)k − (SN (T )u0)k| �A,T,k N
−σ

for some absolute constant σ > 0.

It is important here that this approximation property hold for arbitrarily large
data and long times, that the bound is uniform for all data u0 of a given size, and
that the bound goes to zero as N → ∞. It asserts that the flow SN (T ) becomes
an increasingly good approximation to S(T ) as long as one is only measuring the
solution at a fixed set of frequencies k. The theorem is proven by exploiting a
smoothing effect in the “nonresonant” components of the nonlinearity (the resonant
components have no smoothing, but turn out to influence S(T ) and SN(T ) equally,
so their net effect is negligible), and then using the stability theory of the equation.
This approximation theorem allows one to apply a limiting argument to the finite-
dimensional nonsqueezing theorem and obtain

Corollary 4.5 (Nonsqueezing for NLS). [Bou2] Let u be a global classical
solution to (4.28). Then for any R > r > 0, any times t0, t1 ∈ R and any k ∈ Z
there exists another global classical solution ũ to (4.28) such that 1√

2π
‖ũ(t0) −

u(t0)‖L2
x(T) ≤ R but |ˆ̃u(t1, k) − û(t1, k)| > r.

The factor of 1√
2π

is an artefact of our Fourier transform conventions and should
be ignored. We leave the derivation of Corollary 4.5 as an exercise.

More recently, the same type of analysis was applied to the KdV equation in
[CKSTT12]. Here the natural phase space is Ḣ−1/2

x (T), after normalizing the
solutions to have mean zero (see Exercise 4.1). The final conclusion is very similar,
namely

Theorem 4.6 (Nonsqueezing for KdV). [CKSTT12] Let u be a global classical
solution to KdV. Then for any R > r > 0, any times t0, t1 ∈ R and any k ∈
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Z there exists another global classical solution ũ to KdV such that 1√
2π

‖ũ(t0) −
u(t0)‖Ḣ−1/2

x (T)
≤ R but |k|1/2|ˆ̃u(t1, k) − û(t1, k)| > r.

There is an additional technical difficulty with the proof however, which is that
the naive analogue of Proposition 4.4 for KdV fails due to the lack of a smooth-
ing effect for the nonresonant portion of the nonlinearity. However, this can be
rectified by choosing a different type of finite-dimensional approximation than the
rather rough truncation scheme used to create (4.30). More precisely, instead of
truncating the Hamiltonian abruptly at the frequency cutoff N , one instead chooses
a smoother truncation using a multiplier (not dissimilar to the “I” multipler in Sec-
tion 3.9 or Section 4.2) to temper the Hamiltonian smoothly between frequencies
N/2 and N . In order to obtain the counterpart to Proposition 4.4 for this tempered
KdV flow, it becomes necessary to invert a (tempered) Miura transform and work
instead with a tempered mKdV flow, which does enjoy a smoothing effect for the
nonresonant portions of the nonlinearity and to which the arguments from [Bou2]
can be applied. See [CKSTT12] for details.

Exercise 4.28 (Linear non-squeezing). Let S : Cn → Cn be a linear map
which is a symplectomorphism (thus S is invertible, and S and S−1 preserve the
symplectic form ω). Let R > r > 0. Show that the inverse image S−1(Ck(0, r)) of
the cylinder Ck(0, r) takes the form

S−1(Ck(0, r)) = {z ∈ Cn : ω(z, u)2 + ω(z, v)2 < r2}
where u = S−1ek, v := S−1iek are such that ω(v, u) = 1. Conclude that S−1(Ck(0, r))
does not contain the ball B(0, R). (Hint: first show that the parallelogram with
sides iv and iu has Euclidean area at least 1. Then write

S−1(Ck(0, r)) = {z ∈ Cn : 〈z, iu〉2 + 〈z, iv〉2 < r2}
where 〈, 〉 is the real inner product on Cn, and show that the cross-sectional Euclid-
ean area of S−1(Ck(0, r)) formed by intersection with the plane spanned by iu and
iv is at most πr2.) This cross section is a simple example of a pseudoholomorphic
curve, and is a linear toy model for the nonlinear argument of Gromov [Gro].

Exercise 4.29 (Comparison principle for symplectic Hamiltonians). Let (D, ω)
be a 2n-dimensional symplectic vector space, and let H,H ′ : D → R+ be positive
definite quadratic forms on D. Let λ1 ≥ . . . ≥ λn > 0 and λ′1 ≥ . . . ≥ λ′n > 0 be
the frequencies of H and H ′ respectively, as defined in Exercise 1.38. Show that if
H(z) ≥ H ′(z) for all z ∈ D (or equivalently, that the ellipsoid {z : H ′(z) ≤ 1} is
contained in the ellipsoid {z : H(z) ≤ 1}), then λj ≥ λ′j for all 1 ≤ j ≤ n. Thus
larger ellipsoids have smaller frequencies and thus longer orbits. (Hint: Normalise
H ′ to be the Euclidean form H ′(x) = |x|2 on R2n, so that H = |A−1x|2 for
some self-adjoint invertible 2n × 2n matrix A of operator norm at most 1, and
ω(x, y) = x ·Jy for some skew-adjoint real 2n×2n matrix J . Relate the frequencies
of H to the spectrum of J , and the frequencies of H ′ to the spectrum of AJA.
You may wish to use the minimax characterisation of the jth eigenvalue.) Use this
fact (and the invariance of frequencies under symplectomorphisms) to give another
proof of the conclusion of Exercise 4.28. This comparison principle relating the
symplectic “size” or “capacity” of a set (such as an ellipsoid) with the length of
the orbits supported on it is a linear toy model for the nonlinear argument of Hofer
and Zehnder [HZ].
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Exercise 4.30. Use Corollary 4.3, Proposition 4.4, and the global L2
x well-

posedness (and persistence of regularity) theory for 1D periodic cubic NLS to es-
tablish Corollary 4.5.

4.4. The Benjamin-Ono equation and gauge transformations

The mighty oak is knocked down by the wind; but the reed bends
and stands up again. (Proverbial)

We have already seen that the KdV equation, the modified KdV equation, and
the one-dimensional cubic NLS are completely integrable systems. There are a
handful of other nonlinear dispersive equations (mostly one dimensional) that are
completely integrable; one particularly simple one is the Benjamin-Ono equation

(4.31) ∂tu+H∂xxu = u∂xu

where u : R × R → R is a real scalar field, and H is the Hilbert transform, which
one can define via the Fourier transform as

Ĥf(ξ) := −isgn(ξ)f̂(ξ).

A useful heuristic is to think of H as being like ±i, or more precisely equal to −i
when applied to positive frequencies and +i when applied to negative frequencies.

The Benjamin-Ono equation arises as a model for one-dimensional waves in
deep water [Ben], [Ono]. It is similar in form to the KdV equation (4.1), but with
the Airy-type dispersive operator ∂t + ∂xxx replaced with a dispersive operator
∂t +H∂xx which is essentially of Schrödinger type (think of H as being ±i). This
change significantly reduces the dispersion present in the equation; the relationship
between velocity and frequency is now given by the dispersion relation v = 2|ξ|
rather than v = −3ξ2. This reduction of dispersion also reduces the amount of
smoothing present in this equation, and as such the derivative in the nonlinearity
will cause significantly greater problems than for KdV. Fortunately, we shall see
that the second-order nature of the dispersive term allows us to treat the derivative
nonlinearity via gauge transformations, a trick we have already seen with the deriv-
ative NLS in Exercise 4.26 and which we shall return to for the wave map equation
in Section 6.2.

The Benjamin-Ono equation is completely integrable [AF]. It enjoys an infinite
number of conserved quantities, including the mass

∫
R u dx, the L2

x norm
∫
R u2 dx,

the Hamiltonian

(4.32) H(u) :=
∫
R

uH∂xu− 1
3
u3 dx

and the higher order quantity

(4.33) H2(u) :=
∫
R

(∂xu)2 − 3
4
u2H∂x − 1

8
u4 dx.

These conserved quantities are already enough to give a priori control on the L2
x(R),

H
1/2
x (R), and H1

x(R) norms; see Exercise 4.33. Thus as soon as one obtains a local
wellposedness theory in the subcritical sense at these regularities, one can extend
it to a global theory by the usual arguments. One can also use these conservation
laws, together with local smoothing effects, to establish global weak solutions at
these regularities (cf. Exercise 4.14); see [GV7], [Tom], [Sau3].
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We now turn to the local wellposedness theory. For high regularities, such as
s > 3/2, one can use penalisation methods and a priori energy bounds (as with
the classical KdV theory) to establish local existence; see [Sau3], [Ior]. The main
point (also exploited in the KdV theory) is that the structure of the nonlinearity
u∂xu allows for an energy cancellation which compensates for the derivative in
the nonlinearity. One also can obtain global existence of classical solutions17 by
similar methods. To go below this threshold 3/2, one might hope to use iterative
arguments as with the KdV equation. However, the lack of dispersion introduces
a severe difficulty with this approach, even when s is large. In particular, the
solution map is known to not be analytic [MST] or uniformly continuous [KTzv2]
in Hs

x(R) for any regularity s; this defeats any attempt to use an iterative argument
as was done for NLS, NLW, or KdV, no matter how sophisticated the spaces one
uses to iterate18. These results (as with their counterparts discussed in Section 3.8
are proven by computation of iterates, and construction of approximate (and then
exact) solutions respectively, and are a consequence of a certain bad “high-low”
frequency interaction. To illustrate the problem heuristically, let us work with the
model equation

(4.34) ∂tu− i∂xxu = u∂xu

where u : R × R → C is now a complex field; this is the same as (4.31) but
with the Hilbert transform H replaced by −i. This equation will exhibit the same
high-low frequency dynamics as the original Benjamin-Ono equation but has the
advantage of being explicitly solvable by an algebraic transformation, namely the
Cole-Hopf transformation [Col], [Hop]. For simplicity let us consider a classical
solution u ∈ C∞

t Sx(R × R). We first integrate the equation by setting F (t, x) :=
1
2

∫ x
−∞ u(t, y) dy, which leads to the equation

∂tF − i∂xxF = (∂xF )2.

To solve this equation, we set w := e−iF ; since ∂xxw = (−i∂xxF − (∂xF )2)e−iF ,
we conclude that w solves the free Schrödinger equation

i∂tw + ∂xxw = 0.

One can now recover solutions to (4.34) by first solving for w explicitly and then
reversing the above steps; however we shall shortly see that there is a phase in-
stability in the Cole-Hopf transformation which leads to a breakdown of uniform
continuity. Suppose for instance that we select an initial datum for w = w(a) of the
form

w(a)(0, x) := exp(iaφ(x/N)) +N−s−1eiNxφ(x+N)
where N � 1 is a large frequency parameter, a ∼ 1 is a parameter, and φ ∈
C∞

0 (R) is a test function supported in [−1, 1]. Thus, w(a) consists at time zero
of a broad low-frequency wave (depending on the parameter a) which equals 1
outside of [−N,N ], together with a high-frequency wave perturbation supported

17There is a slight technicality due to the slow decay of the Hilbert transform kernel, which
means that even classical solutions do not decay rapidly at spatial infinity, although in practice
there is still sufficient decay to justify all integration by parts computations. We gloss over this
technical detail.

18Because of this, the Benjamin-Ono is closer in spirit to a quasilinear dispersive equation
rather than a semilinear one, in that the low frequencies have a nontrivial effect on the high
frequency evolution. See [Tzv] for further discussion.



4.4. THE BENJAMIN-ONO EQUATION AND GAUGE TRANSFORMATIONS 219

on [−N + 1, N − 1]. For short times |t| � 1, the solution w(t, x) to the free
Schrödinger equation is essentially of the form

w(a)(t, x) ≈ exp(iaφ(x/N)) +N−s−1eiNxe−iN
2tφ(x +N − 2Nt)

(cf. Exercise 2.4); this reflects the fact that the high frequency bump will travel at
speed 2N while the speed of the low-frequency wave is negligible. (More rigorous
and exact formulae can of course be given, for instance by the method of station-
ary phase, but we will not do this as this is only a heuristic discussion.) Taking
logarithms via Taylor expansion, we thus obtain

F (a)(t, x) ≈ aφ(x/N) − iN−s−1e−iaφ(x/N)eiNxe−iN
2tφ(x+N − 2Nt)

and on differentiating we obtain

u(a)(t, x) ≈ N−1aφ(x/N) − iN−se−iaφ(x/N)eiNxe−iN
2tφ(x +N − 2Nt)

(the eiNx factor is by far the most oscillatory quantity in the second term, and so
the dominant term will arise when the derivative falls on this factor; cf. Principle
A.7). Since φ(x +N − 2Nt) is localised at x = 2Nt−N +O(1), we obtain

u(a)(t, x) ≈ N−1aφ(x/N) − iN−se−iaφ(2t−1)eiNxe−iN
2tφ(x+N − 2Nt).

The first term N−1aφ(x/N) is negligible in Hs
x(R) (it has a norm of Os,a(N−1/2),

but the second term has norm Os(1). The point is that the parameter a, which
initially only affected the low frequencies of the wave, has now influenced the high
frequency component via the nonlinear phase correction e−iaφ(2t−1). This phase
correction vanishes when t = 0 but becomes significant for later times t. Because
of this, one can see by varying the a parameter that one can construct solutions
bounded in Hs

x norm which are arbitrarily close in that norm at time zero, but are a
significant distance apart at a later time |t| � 1 due to the above phase decoherence
effect; this is enough to destroy the uniform wellposedness of the equation for any
s ≥ −1/2. See [KTzv2], [Tzv] for more details (in the context of the original
Benjamin-Ono equation rather than this model equation).

To summarise, there is a nonlinear interaction between very low frequencies
(e.g. frequency ∼ 1/N) and very high frequencies (e.g. frequency ∼ N) in the
Benjamin-Ono equation which quickly causes the latter to exhibit a phase insta-
bility. (Note that this phase instability does not affect the energy of the equation,
which can help explain why the classical Benjamin-Ono theory does not detect this
problem.) There are a number of ways to deal with this instability. One approach
is simply to assume as a hypothesis that the low frequency components of the so-
lution are negligible, by imposing a moment condition on the initial datum; for
instance one can assume that the Fourier transform û(0, ξ) of the initial datum
has some vanishing at ξ = 0 in some weighted L2

ξ sense. It turns out that such
moment conditions can be preserved by the flow (this is related to the conservation
of the mean

∫
R u dx, which is essentially the Fourier coefficient at ξ = 0), and so

it is likely that one can make an iteration argument (e.g. using Xs,b type spaces)
succeed in this case even for quite low regularities.

To deal with solutions with nontrivial low-frequency components below the
regularity 3/2, there are a number of ways to proceed. One way is to establish local
smoothing effects for the nonlinear Benjamin-Ono equation directly, via energy
methods as in Exercise 4.14, as opposed to starting with local smoothing estimates
for the linear equation and then extending to the nonlinear equation by an iteration
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argument as was done for the KdV equation in Section 4.1. The point is that as the
local smoothing estimate can be proven by energy methods, one can continue to
exploit the energy cancellation. As with KdV, the local smoothing estimate has to
be combined with other estimates such as maximal function estimates, which have
to be proven by perturbing from the linear equation (without exploiting the energy
cancellation) and thus leads to some inefficiency in the argument. This method
allows one to extend the wellposedness theory down to s > 9/8; see [Pon], [KPV],
[KK].

A second technique is to view some or all of the nonlinearity as a linear com-
ponent of the equation, but with a variable coefficient which happens to depend on
the solution itself. This reduces the size of the “genuinely nonlinear” component of
the equation, at the cost of making the “linear” component more complicated. For
instance, one could rewrite (4.31) as

(∂t +H∂xx − u∂x)u = 0

and try to obtain a priori control on various norms of u (e.g. Strichartz or lo-
cal smoothing norms) by viewing the operator ∂t + H∂xx − u∂x for fixed u as a
variable-coefficient Schrödinger operator. This approach was carried out in [KTzv],
establishing wellposedness down to s > 5/4. A more sophisticated paradifferential
approach is to break u up into Littlewood-Paley components PNu, with each com-
ponent obeying the equation

(∂t +H∂xx)PNu = PN (u∂xu).

Heuristically (see Principle A.5), the worst term in PN (u∂xu) occurs when the ∂xu
term is high frequency and u is low frequency, leading to the informal approximation
PN (u∂xu) ≈ (P<Nu)∂x(PNu). One then moves part of the nonlinearity on the
right-hand side over to the left, obtaining something like

(∂t +H∂xx − (P<Mu)∂x)PNu = . . .

where M is a frequency cutoff depending on N that one can optimise in. (Choosing
M too large means that the linear operator becomes hard to manage; choosing M
to small means that the nonlinear term becomes more troublesome.) This approach
turns out to work well in conjunction with the gauge transform approach, which
we turn to next.

The final technique that has been successfully applied to the low regularity
Benjamin-Ono problem is to emulate the Cole-Hopf gauge transformation that was
so effective in solving the model problem (4.34). This gauge transform is part of
a more general transformation which can be used to ameliorate derivative nonlin-
earities whenever the linear component of the equation is second-order in space.
To illustrate the method, consider an abstract scalar one-dimensional Schrödinger
equation of the form

i∂tu(t, x) + ∂xxu(t, x) = ia(t, x)∂xu(t, x) + F (t, x)

where a(t, x) is some real-valued coefficient function and F (t, x) is an additional
forcing term. One can attempt to eliminate the derivative term ia(t, x)∂xu(t, x) by
making the gauge transform19 w(t, x) := u(t, x)eiΦ(t,x), where the phase Φ will be

19One can view this more geometrically, by regarding u not as a complex scalar field, but
rather as a section of a complex line bundle (thus viewing the Schrödinger equation in the context of
U(1) (magnetic) gauge theory). The gauge transform then corresponds to choosing an appropriate
trivialisation of this bundle. See Section 6.2 for further development of this perspective.
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chosen later. A direct computation yields

i∂tw + ∂xxw = (i∂tu(t, x) − (∂tΦ)u+ ∂xxu+ 2i(∂xΦ)∂xu+ i(∂xxΦ)u− (∂xΦ)2u)eiΦ

= i(a+ 2∂xΦ)eiΦ∂xu+ (−∂tΦ + i∂xxΦ − (∂xΦ)2)w + eiΦF.

This may look rather messy, but the main point is that the derivative term ia∂xu(t, x)
has been replaced by i(a+ 2∂xΦ)eiΦ∂xu. Since we are free to choose Φ as we wish,
we can then arrange for a + 2∂xΦ to be small, for instance by setting Φ(t, x) :=
− 1

2

∫ y
∞ a(t, y) dy. This is not always the most optimal choice, as making Φ too large

may cause some of the lower order terms in the above expression to become difficult
to handle, and some trial and error can be needed to find an efficient compromise
choice of Φ that removes the worst components of the derivative nonlinearity while
preventing the new terms introduced from becoming too unpleasant;20 see for in-
stance [HO]. Note that this gauge transform works particularly well if a is real,
because this makes Φ real also and so the gauge transform remains bounded in an
L∞
x sense even if a and Φ are large. Thus the gauge transform method is mostly

suited for derivative nonlinearities that are somehow “skew-adjoint”21.
Let us now return to the Benjamin-Ono equation. At first glance, we do not

seem to be able to apply the above machinery, because of the presence of the Hilbert
transform in the equation. However this can be easily fixed by introducing the Riesz
projections P±, defined via the Fourier transform by

P̂+f(ξ) := 1[0,+∞)(ξ)f̂(ξ); P̂−f(ξ) := 1(−∞,0](ξ)f̂(ξ).

Note that 1 = P+ + P− and H = −iP+ + iP−. Also, since u is real, one can
reconstruct u from u+ := P+u by the formula u = u+ + u+. Now we can apply P+

to (4.31) to obtain the nonlinear Schrödinger equation

(4.35) (i∂t + ∂xx)u+ = iP+(u∂xu).

This equation can be gauge transformed in a number of ways. The first suc-
cessful approach, in [Tao7] was by mimicking the Cole-Hopf transformation as
closely as possible; see Exercise 4.36. This transformed the equation into one which
could be controlled using a perturbative argument (i.e. Duhamel’s formula) and
Strichartz estimates; this eventually led to a local wellposedness result in the sub-
critical sense22 in H1

x(R), with the solutions constructed lying in the Strichartz
space S1 locally in time. One can then use the conservation laws to extend this
local existence to be global. However it was difficult to use this gauge transform to
go lower than H1

x, as Strichartz estimates no longer seemed sufficient for the per-
turbative part of the argument, and more advanced spaces such as Xs,b and local
smoothing spaces were needed. A new difficulty emerged, namely that the gauge

20One can also perform this trick in higher dimensions, though in general one cannot expect
to remove the entire derivative nonlinearity due to curvature obstructions; see Section 6.2. Al-
ternatively one can use pseudodifferential gauge transforms, which roughly speaking are fancier
versions of the gauge change u �→ ueiΦ in which the phase shift Φ is allowed to depend on the
frequency of u. See [Chi].

21More precisely, one needs the relevant gauge group to be compact. This is the case for
“magnetic” distortions of the Laplacian (in which case the group is U(1)), or more generally for
“Yang-Mills” distortions arising from a compact Lie group.

22Actually the uniqueness statement obtained here was somewhat weak; the solution was
established to be the unique limit of classical solutions, but it was not shown to be unique in a
spacetime normed vector space such as S1. Indeed, the use of the gauge transform makes the
recovery of a strong uniqueness result rather difficult.
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transformation in [Tao7] was so nonlinear that it was difficult to keep it bounded
in these more delicate spaces. Thus it became necessary to reduce the strength of
the gauge transformation, permitting more terms to enter the nonlinearity. It is
here that the paradifferential approach mentioned earlier becomes useful. Applying
a Littlewood-Paley projection to (4.35), one obtains

(i∂t + ∂xx)PNu+ = iPNP+(u∂xu).

Using the intuition (from Principle A.7) that the worst terms in the nonlinearity
arise from low-high frequency interactions, with the derivative falling on the high
frequency, we can extract out a main term i(P<Mu)PN∂xu+ from the right-hand
side, where M is a parameter that we can set to depend on N as we please, and
move it to the left, obtaining

(i∂t + ∂xx − i(P<Mu)∂x)PNu+ = i(P>Mu)PN∂xu+ + i[PNP+, u]∂xu+.

This can then be gauge transformed by considering the function wN := eiΦNPNu+,
where ΦN is chosen by the formula ΦN (t, x) := − 1

2

∫ x
−∞ P<Mu(t, y) dy in order to

remove the derivative nonlinearity on the other side. If the parameter M is chosen
correctly, one can then hope to obtain an equation with a nonlinearity mild enough
to be controllable by a perturbative argument, and with a gauge transform also mild
enough to preserve the spaces used in the perturbation argument. Taking M to be
a power of N , this program was carried out in [BP], using local smoothing and Xs,b

spaces to obtain local wellposedness for s > 1/4 (and hence global wellposedness for
s ≥ 1/2, by the conservation laws); taking M to be bounded instead (and using the
projection P<Me−tH∂xxu(0) of the free solution, rather than the nonlinear solution
P<Mu, to perform the gauge transform), local (and hence global) wellposedness
was obtained in [IK] all the way down to s ≥ 0; the s = 0 endpoint is particularly
delicate and requires some technical refinements of the Xs,b spaces to avoid certain
logarithmic divergences. It is not yet known whether the s = 0 endpoint is truly
the limit of the wellposedness theory, though it seems that even with the gauge
transform, the equation cannot be dealt with perturbatively for s < 0. The scale-
invariant regularity is s = −1/2, but (as with the KdV equation) it is unlikely that
the wellposedness theory will come close to that limit for this equation.

Exercise 4.31. Verify the formula

Hf(x) :=
1
π

lim
ε→0

∫
|x−y|>ε

f(y)
x− y

dy

for all test functions f ∈ C∞
0 (R). (This can be done for instance using methods of

contour integration.)

Exercise 4.32. Verify the conservation of mass, L2
x norm, Hamiltonian (4.32),

and higher order Hamiltonian (4.33) for classical solutions to the Benjamin-Ono
equation. Assume that the solutions have sufficient regularity and decay at infinity
to justify all integration by parts computations. (For the latter two, it may be
convenient to use the Fourier-analytic formalism from Section 4.2.)

Exercise 4.33. Use the conserved quantities of the Benjamin-Ono equation,
combined with the Gagliardo-Nirenberg inequality, to establish the a priori bounds

‖u(t)‖Hs
x(R) �s,‖u(0)‖Hs

x(R)
1
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for all classical solutions u to the Benjamin-Ono equation, for s = 0, 1/2, 1, and all
times t for which the solution exists. (In fact, one can establish these bounds for
any non-negative integer or half-integer s.)

Exercise 4.34. Establish an analogue of (4.11) for the Benjamin-Ono equa-
tion, and then repeat the arguments from Exercise 4.13 to construct local weak
H2
x(R) solutions to (4.31) from arbitrary H2

x(R) data.

Exercise 4.35. [Col],[Hop] Obtain an explicit formula to construct global
classical solutions for the viscous Burgers equation ∂tu = ε∂xxu + u∂xu for any
ε > 0 and from arbitrary classical (i.e. Schwartz) initial data.

Exercise 4.36. [Tao7] Let u be a classical solution to the Benjamin-Ono
equation. Show that there exists a smooth function F which is a primitive to u in
the sense that ∂xF = 1

2u, and which solves the integrated Benjamin-Ono equation

(4.36) ∂tF +H∂xxF = (∂xF )2.

Then formally set w := P+(e−iF ) (ignoring the technical issue that e−iF is not
absolutely integrable and so has a singular Fourier transform at the origin) in
analogy with the Cole-Hopf transformation, and conclude the Schrödinger equation

i∂tw + ∂xxw = −2iP+(wP−∂xxF ).

This equation is more tractable than (4.36) because both derivatives are now falling
on the low frequency term (if the F term had higher frequency than the w term
then the expression P+(wP−∂xxF ) would vanish). In practice, the singularity at
the frequency origin causes some difficulty and one has to smooth out the Riesz
projections P+, P− near the origin before one can obtain a good wellposedness
theory; see [Tao7].





CHAPTER 5

Energy-critical semilinear dispersive equations

The truly privileged theories are not the ones referring to any par-
ticular scale of size or complexity, nor the ones situated at any
particular level of the predictive hierarchy, but the ones that con-
tain the deepest explanations. (David Deutsch, “The Fabric of
Reality”)

In the preceding two chapters, we established local and global theory for a vari-
ety of equations, but primarily those with conserved quantities that were subcritical
with respect to scaling. As stated in Principle 3.1, this means that we expect the
contribution of the high frequencies to behave almost linearly, leaving only the low
frequencies to exhibit genuinely nonlinear behaviour. This makes both the local
and global theory relatively straightforward; the local theory is usually settled by
a standard perturbative argument, while the global existence (resp. scattering)
theory will typically follow from conservation laws (resp. decay estimates).

We now turn to equations involving a conserved quantity (specifically1, the
energy) which is critical with respect to scaling. We shall focus on three specific
equations, in increasing order of difficulty: the three-dimensional energy-critical
defocusing NLW

(5.1) �u = −∂ttu+ ∆u = |u|4u; u(0, x) = u0(x); ∂tu(0, x) = u1(x)

for complex scalar fields in R1+3, the three-dimensional energy-critical defocusing
NLS

(5.2) i∂t + ∆u = |u|4u; u(0, x) = u0(x)

for complex scalar fields in R × R3, and the energy-critical wave map equation,
which will be discussed in the next chapter. The main results2 of this chapter will
be the global existence of large energy solutions to both of these equations, as well as
scattering and persistence of regularity. These energy-critical large data results are
highly non-trivial3 and state-of-the-art, requiring almost all of the deepest and most
powerful tools that we currently possess for understanding the global behaviour of

1The mass-critical NLS, with p = pL2
x

= 1 + 4
d
, is also of great interest, but the large

data theory here is still undeveloped, even in the defocusing spherically symmetric case. There is
however much recent work on the focusing mass-critical equation for solutions close to the ground
state soliton; see [MR], [MR2], [MR3] and the references therein.

2We will present the NLW and radial NLS arguments in more or less complete detail, but
the nonradial NLS arguments are somewhat lengthy and only the main points will be summarised
here. The wave map arguments are lengthier still and the next chapter will consist mostly of
outlines.

3On the other hand, it is a substantially easier matter to construct global weak energy-class

solutions for both of these equations by standard viscosity methods; see Exercise 3.56. However,
there does not appear to be any easy way to upgrade these weak solutions to strong, wellposed,
or classical solutions, as the construction of these weak solutions do not exclude the scenario

225
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nonlinear dispersive and wave equations; they build upon the methods already
introduced in Chapter 3 but also require several new ideas as well.

For critical equations, there is a delicate balance between the linear and non-
linear parts of the equation; both the high frequencies and low frequencies4 can
exhibit nonlinear behaviour, at short times and long times respectively, though the
nonlinear part of the equation can in some sense only dominate the linear part
“by a constant factor” when the energy is finite (this heuristic can be justified by
Principle 3.20 and Sobolev embedding). This causes new difficulties for both the
local theory and the global theory, in large part because one is now more or less
forced to work exclusively5 with scale-invariant norms, which severely limits the
tools available; for instance, one usually cannot afford to use Hölder’s inequality
in time to gain a quantity depending on the length of the time interval, and so
the time of existence given by the local theory will depend on the profile of the
data and not just on its norm. Because of this, the energy conservation law is not
sufficient by itself to convert local wellposedness to global wellposedness; the energy
of a solution could concentrate to a point in finite time, causing the lifespan of the
local theory to shrink to zero as time progresses. For similar reasons, it is no longer
the case that a decay estimate will automatically ensure scattering, especially if
the decay estimate is not scale-invariant. For instance, the interaction Morawetz
gives a global a priori L4

t,x estimate on any (classical) solution to a defocusing non-
linear Schrödinger equation in R3 with finite energy and mass, which is sufficient
to imply scattering in the intermediate cases 7/3 < p < 5 between the L2

x-critical
and H1

x-critical exponents, but is not known to imply scattering in the L2
x-critical

endpoint p = 7/3 and only implies scattering in the H1
x-critical endpoint p = 5

after an enormous amount of additional reasoning.
In short, the study of scale-invariant equations tends to force one to use scale-

invariant arguments, at least until a privileged scale in the solution is located. A
key theme that then emerges is that of interaction between scales: how the high-
frequency (fine-scale) components of the solution interact with the low-frequency
(coarse-scale) components, both over short times and long times. There have been
many tools developed to control this interaction, including bilinear Strichartz esti-
mates that show that interactions of different frequency scales tend to be weaker

of energy concentration. The small energy (or local-in-time) theory is also significantly easier,
requiring only the perturbative techniques from Chapter 3.

4In the energy-critical case, one can sometimes hope to use the mass to obtain better control
on the low frequencies than what the energy alone would give. However, if there is movement of
energy from low frequencies to high, then eventually (after rescaling) one can end up in a situation
in which the control on the mass (which is supercritical) has become so weak to be useless. This
suggests that in order to exploit mass conservation effectively in an energy critical problem, one
must somehow limit the movement of energy from low frequencies to high; see Sections 5.3, 5.5.

5As we shall see, we can eventually break this requirement of scale invariance by identifying a
privileged scale corresponding to the solution under study, which we can then normalise to be the
unit scale. At that point, both supercritical and subcritical norms become (in principle) available
for use again. If one is only interested in global regularity rather than global wellposedness, it is
possible to have one norm which is subcritical instead of critical (e.g. the L∞

t,x norm), as long

as the entire argument is linear in that norm; this typically makes it easier to deal with “high-
high” frequency interactions but does not particularly resolve the issue of having to understand
“low-high” frequency interactions, and of having to control the movement of energy from low
frequencies to high. See Exercise 5.6.
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than interactions of comparable frequency scales; nonconcentration estimates, of-
ten based on monotonicity formulae that show that energy that is spread out at
a coarse scale cannot contract itself into a fine scale without some energy loss (or
“flux”); almost conservation laws, which can control the movement of energy and
mass from high frequencies to low and vice versa, and approximate monotonicity
formulae, such as the frequency-localised interaction Morawetz estimate for NLS,
which give usable decay estimates on various frequency components of the solution.

One notable difficulty in trying to apply these tools is that a typical large energy
solution will have a significant amount of energy at multiple scales, leading to a
very complicated system of interactions between scales. However, there is a powerful
technique of Bourgain, known as the induction on energy argument, which allows
one to restrict attention to “minimal energy blowup solutions”. Such solutions,
which are somewhat analogous to ground states in elliptic theory, turn out to be
strongly localised in both space and frequency, which makes the application of the
above tools significantly easier.

As in the subcritical cases, one first begins with the perturbative theory, in which
some smallness condition (e.g. small energy) on the data or solution is assumed;
in such cases one can usually obtain all the control on the solution one needs from
the Duhamel formula. A good rule of thumb here is that when a suitably scale-
invariant norm of the solution is small, then one expects the linear and nonlinear
solutions to be very similar. The nonperturbative theory then handles the case when
no smallness condition is available, for instance if the energy is finite but large. A
key task in such cases is to obtain some sort of (scale-invariant) decay estimate that
ensures that the solution becomes suitably small again once one localises in time
or space, as this allows one (in principle at least) to enter the range of applicability
of the perturbative theory and extend the solution beyond its current lifespan. An
important class of such estimates are provided by spacetime bounds on the solution,
e.g. LqtLrx(I×Rd) bounds on the solution for some q <∞; note that the monotone
convergence theorem ensures that such norms shrink to zero as I shrinks to a point,
thus allowing the perturbative theory to be applied at the endpoints of the interval
I to extend the lifespan of the solution. Thus (scale-invariant) spacetime bounds
are highly prised in this type of analysis.

5.1. The energy-critical NLW

Nothing travels faster than the speed of light - with the possible
exception of bad news, which obeys its own special laws. (Douglas
Adams, “The Hitchhiker’s Guide to the Galaxy”)

We now study the equation (5.1) in more detail, following the work in [Stru2],
[Gri], [SStru2], [Gri2]. Recall that this equation has a scaling symmetry

(5.3) u(t, x) �→ 1
λ1/2

u(
t

λ
,
x

λ
)

and has a conserved energy

E[u[t]] :=
∫
R3

1
2
|∂tu(t, x)|2 +

1
2
|∇u(t, x)|2 +

1
6
|u(t, x)|6 dx

which is invariant under the above scaling. This energy is a priori only conserved for
classical solutions, but standard limiting arguments show that it is also conserved
for Ḣ1

x × L2
x-wellposed solutions. Note that endpoint Sobolev embedding allows
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us to control the nonlinear component 1
6

∫
R3 |u(t, x)|6 dx of the energy by some

quantity depending only on the linear component
∫
R3

1
2 |∂tu(t, x)|2 + 1

2 |∇u(t, x)|2.
If the energy is small, then we then expect to have linear behaviour thanks to
Principle 3.20, but the situation is less clear when the energy is large.

It turns out that perturbative theory shows that shows that this equation is
locally wellposed in Ḣ1

x × L2
x in the critical sense. We will leave the details to

exercises, though we will record here the key Strichartz estimate that is needed in
the proof. (See also Figure 4, as well as Figure 2 from Chapter 2.)

Proposition 5.1 (Strichartz estimate). Let I be a time interval, and let Ẇ 1(I×
R3) denote the norm

‖u‖Ẇ 1(I×R3) := ‖∇t,xu‖L∞
t L2

x(I×R3) + ‖u‖L∞
t L6

x(I×R3) + ‖u‖L4
tL

12
x (I×R3).

If t0 ∈ I and u solves the wave equation �u = F ;u(t0) = u0;u(t1) = u1 on I × R3

in the sense of Duhamel’s formula (2.14), then we have the Strichartz estimate

‖u‖Ẇ 1(I×R3) � ‖u0‖Ḣ1
x(R3) + ‖u1‖L2

x(R3) + ‖F‖L1
tL

2
x(I×R3).

We will be interested in the following four questions, which are in increasing
order of difficulty:

• Global regularity: If the initial data u0(x), u1(x) is smooth, does this
ensure that a smooth (classical) solution to (5.1) exists for all time?

• Global wellposedness in the energy norm: If the initial data u0(x), u1(x)
has finite energy, does this ensure that a Ḣ1

x ×L2
x-wellposed solution u to

(5.1) exists for all time?
• Asymptotic completeness (scattering): If u is a globally wellposed Ḣ1

x×L2
x

solution to (5.1), does u converge in the energy class to a linear solution
u+(t, x) as t→ +∞?

• Spacetime bounds: Can one control the size of a globally wellposed Ḣ1
x ×

L2
x solution u to (5.1) in scale-invariant spacetime norms by a quantity

depending only on the energy E[u]?
We will focus first on the global wellposedness problem; the global regularity

then follows from persistence of regularity arguments, and can also be done directly
by a variant of the arguments below; see exercises. The scattering will be discussed
in the exercises; the spacetime bounds follow from the scattering arguments together
with some additional tools from concentration compactness and inverse Sobolev
theory (as in Proposition A.4), see [BG]. For now, we shall show

Theorem 5.2. [Stru2], [Gri], [SStru2], [Kap3], [Gri2] One has global reg-
ularity for (5.1) (thus smooth initial data leads to smooth global solutions) as well
as global wellposedness in Ḣ1

x(R
3)×L2

x(R
3) (thus finite energy initial data leads to

Ḣ1
x × L2

x-wellposed solutions on arbitrarily large bounded time intervals).

The global regularity result was first established in [Stru2] in the spherically
symmetric case and in [Gri] in general. The global wellposedness was established
in [SStru2], [Kap3], with simplifications and generalisations in [Gri2]. For small
energy, see [Rau]; in this perturbative regime, the arguments work both for the
focusing and defocusing equation.

We now begin the proof of Theorem 5.2, focusing primarily on the global well-
posedness problem. By time reversal symmetry we only need to construct solutions
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forwards in time. We will argue by contradiction, supposing that the Ḣ1
x × L2

x-
wellposed solution breaks down at some maximal time of existence 0 < T∗ < ∞,
thus we have a wellposed solution on the spacetime slab [0, T∗)×R3 which cannot
be extended any further. The wellposedness theory guarantees that the solution has
a finite Ẇ 1([0, T∗−ε]×R3) norm for any ε > 0, but allows for the Ẇ 1([0, T∗)×R3)
norm to be infinite. We are assuming finite energy, thus we have E[u] ≤ E0 for
some 0 < E0 <∞. In particular we have the preliminary energy bounds

(5.4) ‖∂tu‖L∞
t L2

x([0,T∗)×R3) + ‖u‖L∞
t Ḣ1

x([0,T∗)×R3) + ‖u‖L∞
t L6

x([0,T∗)×R3) �E0 1.

These bounds will not immediately allow one to use the perturbative theory to
extend the solution beyond T∗, as there is no smallness condition on E0 and the
L∞
t norm does not decay upon localising the time interval [0, T∗). Nevertheless

we will eventually be able to combine (5.4) with additional perturbative and non-
perturbative arguments to obtain some useful decay estimates.

The first step is to use the perturbative theory to establish a good blowup
criterion for the solution - in other words, to quantify some sense in which the
solution is becoming badly behaved as t→ T∗. There are many such blowup criteria
available, but they are not all equally useful. For instance, if one was dealing with
classical solutions instead of finite energy solutions, then standard persistence of
regularity theory (Exercise 3.21) would allow one to obtain the blowup criterion

‖u‖L∞
t L∞

x ([0,T∗)×R3) = ∞,

since if u were bounded uniformly in spacetime then one could use Gronwall’s
inequality to keep all the Hs

x norms bounded up to time T∗, and then the local
wellposedness theory in those norms would allow one to continue the solution fur-
ther. However such a criterion is not ideal for two reasons; firstly, it is a subcritical
criterion rather than a critical one (so it becomes increasingly hard to disprove in
the fine-scale limit t → T∗), and secondly it is a global-in-space criterion rather
than a local-in-space one (which again makes it difficult to disprove). We can ad-
dress the first issue by using a scale-invariant perturbation theory, such as the one
based on Strichartz estimates; we will address the second issue by finite speed of
propagation. (See however Exercise 5.6 for an approach using a variant of the L∞

t,x

norm.)
The scale-invariant perturbation theory is developed in Exercise 5.2. One con-

sequence of that theory is that if the energy E[u[0]] of the initial data is sufficiently
small, then one has a global H1

x × L2
x-wellposed solution (the classical analogue of

this first appeared in [Rau]). This already gives an extremely weak blowup crite-
rion, namely that we must have E[u[0]] ≥ ε0 for some absolute constant ε0 > 0.
This is clearly too weak to be of any use, since we can defeat it simply by select-
ing E0 and the energy of the initial data to be sufficiently large. However we can
strengthen the criterion substantially by exploiting finite speed of propagation. For
any open set Ω ⊂ R3 and for any time t0 let EΩ[u[t0]] denote the local energy

EΩ[u[t0]] :=
∫

Ω

1
2
|∂tu(t, x)|2 +

1
2
|∇u(t, x)|2 +

1
6
|u(t, x)|6 dx

and for any t0 < t1 ≤ +∞ let D+(Ω, t0, t1) denote the truncated forward domain of
dependence

D+(Ω, t0, t1) := {(t, y) ∈ [t0, t1) × R3 : B(y, t− t0) ⊆ Ω},
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*

B(x  , 3(T  − t))
*

(small energy here)

(T  , x  )
*

D  (B(x, 2(T  − t))+

time t

time T

Figure 1. If the solution has small energy on B(x, 3(T∗ − t)),
then by localising the data at t and then using the small energy
global theory and finite speed of propagation, one can continue the
solution beyond the spacetime point (T∗, x).

t=0

t = T
*

t = T
*

+ε

Figure 2. Gluing together multiple local solutions to extend the
maximal time of existence.

where B(x, r) := {y ∈ R3 : |y − x| < r} denotes the ball of radius r centred at x.
We can now localise the small energy wellposedness theory and obtain

Proposition 5.3 (Blowup implies energy concentration). If u is an H1
x ×L2

x-
wellposed solution with a maximal time of existence 0 < T∗ < ∞, then there exists
x ∈ R3 such that

lim sup
t→T−

∗

EB(x,3(T∗−t))[u[t]] ≥ ε0

for some absolute constant ε0 > 0.

Remark 5.4. The factor 3 is artificial and will shortly be removed.

Proof. (Sketch) Suppose for contradiction that we have the energy non-concentration
property

(5.5) lim sup
t→T+

∗

EB(x,3(T∗−t))[u[t]] < ε0
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for all x ∈ R3. The idea is now to use the local theory to construct local solutions
to (5.1) beyond each point (x, T∗), use finite speed of propagation and uniqueness
to show that they are all consistent with each other, and then glue them together
to advance the maximal time of existence T∗, obtaining the desired contradiction.

Let us temporarily fix x ∈ R3. From (5.5) we can find a time t = t(x) for which

EB(x,3(T∗−t))[u[t]] < ε0.

Applying Exercise A.18, we can thus smoothly localise the data u[t] = (u(t), ∂tu(t))
to the ball B(x, 3(T∗ − t)), leaving the values on B(x, 2(T∗ − t)) unchanged, and
keeping the total energy at O(ε0). If ε0 is small enough, we can then apply the local
wellposedness theory from Exercise 5.2 to construct a global H1

x-wellposed solution
to (5.1) from this data; finite speed of propagation6 then shows that this solution
agrees with the actual solution u on the domain of dependence D+(B(x, 2(T∗ −
t)), t, T∗). We can glue this to the Ẇ 1 solution u that already exists on [0, t] × R3

(cf. Exercise 3.11), and obtain a combined Ẇ 1
loc solution u(x) to (5.1) on the

spacetime domain

Σx := ([0, t(x)] × R3) ∪ D+(B(x, 2(T∗ − t(x))), t(x),∞),

thus u(x) solves the Duhamel formulation

u(x)(t) = cos(t
√−∆)u0 +

sin(t
√−∆)√−∆

u1 −
∫ t

0

sin((t− t′)
√−∆)√−∆

(|u(x)|4u(x)(t′)) dt′

on this domain. (Note that the finite speed of propagation properties of the prop-
agator sin((t−t′)√−∆)√−∆

will ensure that this formulation is meaningful on the rather
unusual spacetime domain Σx.) The main point is that Σx contains an open neigh-
bourhood of (T∗, x) (and of (0, x) for any 0 < t < T∗), and that x was completely
arbitrary. Also, further application of finite speed of propagation and uniqueness in
the Ẇ 1 class will show that any two solutions u(x), u(y) will agree with each other
on their common domain of existence; we omit the details.

At this point we would like to use a compactness argument to extend the
domain of existence uniformly forward in time, but of course the spatial domain
R3 is not compact. To resolve this issue we use monotone convergence again and
observe that for a sufficiently large radius R we have

ER3\B(0,R)[u[0]] < ε0.

We can thus (by a minor variant of Exercise A.18) truncate the initial data smoothly
to the exterior of the ball B(0, R), leaving the data unchanged outside of B(0, 2R)
and having an energy of O(ε0). Using similar arguments to before, one can now
create a Ẇ 1

loc solution u>2R to (5.1) on the domain D+(R3\B(0, 2R)) which will
agree with all the u(x) on their common domain of existence. This takes care
of all but a bounded region of space (if we restrict time to a bounded interval
such as [0, 2T∗]), and so a simple compactness argument then allows one to cover
[0, T∗] × R3 by a finite number of these domains of existence, and so by gluing

6Strictly speaking, the finite speed of propagation property from Proposition 3.3 was only

proven for smooth solutions. However, the wellposed nature of these solutions allows one to perturb
both solutions slightly so that they are smooth (possibly shrinking the region B(x, 2(T∗−t)) where
the initial data agree by an epsilon). One can then apply Proposition 3.3 to these regularised
solutions and then take limits. We leave the details to the reader.
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those finite number of solutions together we can extend the original solution u to
[0, T∗ + ε) × R3 for some ε > 0, contradicting the definition of T∗ as desired. �

One can improve the blowup criterion here by using the following easy propo-
sition:

Proposition 5.5 (Exterior energy decay). Let u be as in Proposition 5.3. Then
we have

inf
σ>0

lim sup
t→T−

∗

EB(x,T∗−t+σ)\B(x,T∗−t)[u[t]] = 0

for all x ∈ R3. In particular we have

lim sup
t→T−

∗

EB(x,A(T∗−t))\B(x,T∗−t)[u[t]] = 0

for all 1 < A <∞.

This Proposition follows easily from the energy flux machinery that we develop
later in this section and is deferred to an exercise. Using it, we can eliminate the
factor of 3 that appears in the conclusion of Proposition 5.3. Thus to exclude
blowup and prove Theorem 5.2, we merely have to prevent a non-zero fraction of
the energy from concentrating in the interior of a backwards light cone⋃

0<t≤T∗

{t} ×B(x, T∗ − t) = {(t, y) ∈ [0, T∗) × R3 : |y − x| < (T∗ − t)}.

This should be contrasted with the NLS blowup solution (3.15), in which a non-
zero fraction of the conserved mass will concentrate in a backwards cone {(t, y) ∈
[−1, 0)× Rd : |y| < At} for any A > 0.

Establishing energy non-concentration in this interior cone turns out to be
rather difficult to do directly (the energy flux arguments that so easily give Proposi-
tion 5.5 do not apply here). The problem lies with the linear components

∫
1
2 |∂tu(t, x)|2+

1
2 |∇u(t, x)|2 of the energy, which contain derivatives of the solution and are difficult
to make small. It would be more convenient to have a blowup criterion that did not
involve derivatives. Exercise 5.2 already provides a clue as to how to obtain such a
criterion, as it asserts that a global solution will exist whenever the L4

tL
12
x norm of

the linear solution is sufficiently small (depending only on the energy bound E0).
One can localise this as before to a domain of dependence D+(Ω, t0, t1). By arguing
as in Proposition 5.3 we obtain

Proposition 5.6 (Blowup implies spacetime norm concentration). If u is an
H1
x × L2

x solution with energy at most E0 with a maximal time of existence 0 <
T∗ <∞, then there exists x ∈ R3 such that

lim sup
t→T−

∗

‖ut‖L4
tL

12
x (D+(B(x,2(T∗−t)),t,T∗)) ≥ ε1

for some constant ε1(E0) > 0 depending only on E0, where ut with initial data
ut[t] = u[t].

This criterion no longer requires one to control any derivatives of u, but it
does require one to solve the linear wave equation repeatedly. Fortunately one can
use the perturbative theory (and exterior energy decay) once more to convert this
criterion into a much more tractable one:
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(T  , x  )
*

t = t0

*
σ0

Figure 3. The geometry of Proposition 5.7. The potential energy
is small inside the small cone, whereas the full energy is small
between the small cone and the large truncated cone. This makes
it safe to apply a cutoff that is constant except on the shaded
region. Finite speed of propagation then allows one to control the
linear development of u[t0] inside the dotted cone.

Proposition 5.7 (Blowup implies potential energy concentration). If u is an
H1
x × L2

x solution with energy at most E0 with a maximal time of existence 0 <
T∗ <∞, then there exists x ∈ R3 such that

lim sup
t→T−

∗

∫
B(x,T∗−t)

|u(t, y)|6 dy ≥ ε2

for some constant ε2(E0) > 0.

Remark 5.8. This is significantly stronger (and easier to use) than Proposition
5.3, since one now only needs to obtain decay for the nonlinear component of the
energy, which has no derivatives. (Compare this with Exercise 3.52 and Principle
3.20.)

Proof. Suppose for contradiction that for every x ∈ R3 that we have

lim sup
t→T−

∗

∫
B(x,T∗−t)

|u(t, y)|6 dy < ε2,

where ε2 = ε2(E0) is to be chosen later. If we fix x ∈ R3, we thus see from this and
Proposition 5.5 that there is a σ > 0 and 0 < t0 < T∗ such that∫

B(x,T∗−t+σ)

|u(t, y)|6 dy +
∫
B(x,T∗−t+σ)\B(x,T∗−t)

|∇t,xu(t, y)|2 dy = O(ε2)

for all t0 ≤ t ≤ T∗. By moving t0 closer to T∗ if necessary, we may assume that
T∗ − t < 0.1σ for all t0 ≤ t ≤ T∗. Thus we have plenty of room outside of the
light cone on which the energy is small, and thus on which it will be safe to localise
without introducing unmanageable errors7.

We now invoke Exercise A.18 and localise the data φ[t0] smoothly to the annular
regionB(x, 0.9σ)\B(x, 0.1σ), leaving it unchanged on the annulusB(x, 0.8σ)\B(x, 0.2σ)

7Another way to proceed would be to localise Proposition 5.1, and hence all the attendant
local theory, to domains of dependence; this allows one to avoid the smooth truncations that
appear in this argument. However, the smooth truncation argument can be useful in situations
in which the local theory is difficult to localise to bounded domains, due for instance to the need

to develop the theory of fractional Sobolev spaces in this setting. In any event, the trick of safely
localising a solution by first locating a region where the solution is small, and then using a smooth
cutoff adapted to that region, is worth remembering as it appears in many other arguments in
this field (e.g. Exercise 2.49 or Proposition 5.15).
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and with an Ḣ1
x ×L2

x norm of O(ε1/62 ) (note that the estimates from Exercise A.18
are uniform in the radius of the balls involved), and thus we have a global solution to
(5.1) from this data with a Ẇ 1 norm of O(ε1/62 ). Using finite speed of propagation
to match this solution to u on the annular slab [t0, T∗) × (B(x, 0.7σ)\B(x, 0.3σ)),
we conclude in particular that

(5.6) ‖u‖L4
tL

12
x ([t0,T∗)×(B(x,0.7σ)\B(x,0.3σ))) = O(ε1/62 ).

Now let χ be a bump function adapted to B(x, 0.7σ) which equals one onB(x, 0.3σ).
Then on [t0, T∗) × R3, uχ is a Ẇ 1

loc solution to the perturbed NLW

�(uχ) = |(uχ)|4uχ+ 1B(x,0.7σ)\B(0.3σ)[O(|u|5) +Oσ(|∇u|) +Oσ(|u|)].
The main point is that errors O(|u|5) are localised to the region where the solution
is known to be small. Applying Proposition 5.1 (and (5.4)) we see that

‖uχ‖L4
tL

12
x ([t0,t]×R3) �E0 ‖|(uχ)|4uχ‖L1

tL
2
x([t0,t]×R3)

+ ‖|u|5 +Oσ(|∇u| + |u|)‖L1
tL

2
x([t0,t]×(B(x,0.7σ)\B(0.3σ)).

for any t0 < t < T∗. Applying (5.6), (5.4), and Hölder (cf. Figure 4) we conclude

‖uχ‖L4
tL

12
x ([t0,t]×R3) �E0 ‖uχ‖4

L4
tL

12
x ([t0,t]×R3) +O(ε4/62 ) +Oσ((T∗ − t0)).

If t0 is sufficiently close to T∗, and ε2 sufficiently small, we can use a continuity
argument to conclude that

‖uχ‖L4
tL

12
x ([t0,T∗)×R3) �E0 ε2.

Applying the Strichartz analysis once more, we also see that

‖(uχ)lin‖L4
tL

12
x ([t0,T∗)×R3) �E0 ε2,

where (uχ)lin is the solution to the linear wave equation with initial data uχ[t0] at
time t0. Using finite speed of propagation, and then letting t0 → T−

∗ , we conclude
that

lim sup
t→T−

∗

‖ut‖L4
tL

12
x (D+(B(x,2(T∗−t)),t,T∗)) �E0 ε2

for each x ∈ R3. But this contradicts Proposition 5.6. �

To summarise so far, the task of proving Theorem 5.2 has been reduced (by
perturbative theory, energy conservation and finite speed of propagation) to the
task of establishing a non-concentration result for the potential energy. Indeed,
by spatial translation invariance it will now suffice to show the following estimate,
which is the heart of the matter.

Proposition 5.9 (Non-concentration of potential energy). [Stru2], [SStru2],
[Gri2] If u is an H1

x ×L2
x solution with energy at most E0 with a maximal time of

existence 0 < T∗ <∞, then

(5.7)
∫
B(0,T∗−t)

|u(t, x)|6 dx = ot→T−
∗

(1),

where we use ot→T−
∗ (1) to denote any quantity depending on t whose magnitude

goes to zero as t→ T−
∗ .
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Note that this is a scale-invariant estimate, in the sense that the left-hand side
is naturally a dimensionless quantity with respect to the scaling; for comparison,
(5.4) provides a trivial bound of O(E0) for this quantity. Using Principle 3.20,
Proposition 5.9 thus becomes an assertion that the evolution becomes asymptoti-
cally linear as one approaches a point (0, T∗) in spacetime.

To prove Proposition 5.9 we need to introduce some more non-perturbative
methods, based monotonicity formulae. To justify certain formal computations
(such as energy identities) let us assume for the moment that u is in fact smooth on
[0, T∗) ×R3; this hypothesis can be removed once the computations are concluded
by the usual limiting arguments and the local wellposedness theory, but we shall
gloss over those standard details here.

Our main tool will be the nonlinear stress-energy tensor (3.32), contracted
against various geometrically natural vector fields. The divergence-free nature of
this tensor (3.33), together with its positive definiteness, will give us a rich source
of useful estimates, mostly arising from Stokes formula (2.48). For instance, the
Morawetz inequality in Exercise 3.46 (which is essentially obtained by contracting
the stress-energy tensor against the radial vector field x

|x| · ∇) shows that∫ T∗

0

∫
R3

|u(t, x)|6
|x| dxdt �E0 1

which in particular implies that∫ T∗

0

1
T∗ − t

∫
B(0,T∗−t)

|u(t, x)|6 dxdt �E0 1.

This is already very close to Proposition 5.9, implying that the potential energy goes
to zero in some logarithmically averaged sense. It is possible to continue working
with this estimate and eventually obtain the above Proposition, but we shall adopt
another approach that takes more advantage of the geometry of the light cone;
for further discussion of these techniques see [CKla], [SStru2], [Keel]. First, we
repeat the derivation of (2.50) (based around contracting the stress-energy tensor
against the time vector field X = ∂t) and obtain the flux bound

FluxT∗ [0, t1] ≤ E0

for all 0 ≤ t1 < T∗, where

FluxT∗ [t0, t1] :=
∫
t0<t<t1,|x|=T∗−t

TαβXαnβdS.

A direct computation using (3.32) allows one to express the flux more explicitly as
(5.8)

FluxT∗ [t0, t1] :=
∫ t1

t0

∫
∂B(0,T∗−t)

1
2
|Lu(t, x)|2 +

1
2
|∇/ u(t, x)|2 +

1
6
|u(t, x)|6 dσ(x)dt

where L is the inward null vector field L = ∂t − x
|x| · ∇, ∇/ u denotes the angular

derivatives of u, and dσ is induced Lebesgue measure on the sphere ∂B(0, T∗−t). In
particular the flux is always positive (this is a finite speed of propagation assertion,
reflecting the fact that energy can escape the light cone {|x| ≤ T∗ − t} as t → T−

∗ ,
but cannot enter it). Since monotone bounded sequences must converge, we thus
have the flux decay property

(5.9) lim
t1→T−

∗
FluxT∗ [t0, t1] ≤ ot0→T−

∗
(1).
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In particular we have

(5.10)
∫ T∗

t0

∫
∂B(0,T∗−t)

|Lu(t, x)|2 + |∇/ u(t, x)|2 + |u(t, x)|6 dσ(x)dt = ot0→T−
∗ (1).

This provides our first decay estimate that “beats” scaling (the scaling heuristic
would predict that the left-hand side is dimensionless and should thus only have
a bound of the form O(1)). It is not yet the decay estimate we really need - it
controls the solution on the boundary of the light cone instead of the interior - but
it does give confidence that the boundary terms that could arise from integration
by parts in the interior of the light cone will be manageable. It also rather easily
gives energy decay outside the light cone; see Exercise 5.3.

The estimate (5.10) already controls the potential energy |u|6 and two compo-
nents |Lu|, |∇/ u| of the linear energy on the boundary of the cone. It can also be used
to control the lower order expression M(t) := ( 1

(T∗−t)2
∫
∂B(0,T∗−t) |u(t, x)|2 dσ)1/2,

which measures the average value of |u|2 on the sphere, thanks to a kind of “Sobolev
trace theorem” argument (cf. Exercise A.25). On the one hand, from Minkowski’s
inequality we have

|∂tM(t)| ≤ (
1

(T∗ − t)2

∫
∂B(0,T∗−t)

|Lu(t, x)|2 dσ)1/2

and hence by integration, Cauchy-Schwarz, and (5.10)

M(t) = M(t0) + ot0→T−
∗ ((T∗ − t)−1/2)

for all t0 ≤ t ≤ t1 < T∗. On the other hand, from from Hölder’s inequality and
(5.10) we have

(
∫ t1

t0

(T∗−t)2M(t)2 dt)1/2 � (T∗−t0)(
∫ t1

t0

∫
∂B(0,T∗−t)

|u(t, x)|6 dσdt)1/6 � ot0→T−
∗

(T∗−t0).

Combining these two estimates (setting t1 to be the midpoint of t0 and T∗, say)
gives the scale-invariant mass bound

M(t0) = ot0→T−
∗

((T∗ − t0)−1/2)

or in other words

(5.11)
∫
∂B(0,T∗−t)

|u(t, x)|2 dσ = ot→T−
∗ (T∗ − t).

Again, this is a decay estimate that beats the natural scale-invariant bound of
OE0(T∗ − t) (which can in fact be deduced from (5.4), the fundamental theorem
of calculus, and Minkowski’s inequality). This is more evidence that any integral
involving the boundary of the light cone will enjoy a good decay estimate.

Now we return to controlling the solution inside the light cone. Here we will
use the scaling vector field S = (t − T∗)∂t + x · ∇x, centred at the apex (T∗, 0) of
the light cone. Inspired by (2.55), we will use the vector field8

Pα := TαβSβ + Reu∂αu.

8The reader should be cautioned that because g00 = −1, there is a sign change whenever a
0 index moves from the subscript to the superscript or vice versa. For instance, ∂0u = −∂tu and
S0 = −S0 = T∗ − t.
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Unlike the linear case, Pα is not quite divergence free9. Nevertheless, the divergence
takes a simple form. Starting with

∂αP
α = (∂αTαβ)Sβ + gαβTαβ + Re∂αu∂αu+ Reu∂α∂αu

and using (3.33) and the trace formula

gαβTαβ = −Re∂αu∂αu− 2
3
|u|6

we conclude that

∂αP
α =

1
3
|u|6.

Thus P has a positive divergence, which implies that
∫
R3 P

0(t, x) dx is monotone
non-decreasing in time. Let us now localise this to the light cone, introducing the
quantity

Q(t) :=
∫
B(0,T∗−t)

P 0(t, x) dx.

The above divergence formula then gives

∂tQ(t) =
∫
B(0,T∗−t)

|u|6
3

dx−
∫
∂B(0,T∗−t)

(P 0 +
xj
|x|Pj) dσ.

This is an approximate monotonicity formula for Q(t) (using the heuristic from
(5.10) that expressions arising from the boundary of the light cone should be small);
it implies in particular that

(5.12) Q(t1) ≥ Q(t0) +
∫ t1

t0

∫
∂B(0,T∗−t)

(P 0 +
xj
|x|Pj) dσ.

for any 0 ≤ t0 < t1 < T∗. Now Q formally vanishes at the endpoint t = T∗
due to the vanishing of the vector field S here; indeed, from the crude bound
P 0(t1, x) = O((T∗ − t1)(|∇u|2 + |∂tu|2 + |u|6)) for x ∈ B(0, T∗ − t1), together with
(5.4), we have

(5.13) Q(t1) = OE0((T∗ − t1)).

Inserting this back into (5.12) and taking limits as t1 → T−
∗ , we obtain an upper

bound for Q(t0):

Q(t0) ≤ lim inf
t1→T−

∗

∫ t1

t0

∫
∂B(0,T∗−t)

(P 0 +
xj
|x|Pj) dσ.

The right-hand side is an integral on the boundary of the cone and can be controlled
by the flux. Indeed, a computation shows that on this boundary we have

P 0 +
xj
|x|Pj =

1
T∗ − t

PαSα

=
1

T∗ − t
(|Su|2 − ReuSu)

= O((T∗ − t)|Lu|2 +
1

T∗ − t
|u|2)

9This is due, ultimately, to the non-conformal nature of the nonlinearity. With the cubic
nonlinearity |u|2u, which is conformal, we recover the divergence free property.
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where we have used the fact that S is null and equal to −(T∗− t)L on the boundary
of the cone. From (5.8) and Hölder’s inequality (or (5.11)) we thus have the bound

(5.14) Q(t0) ≤ ot0→T−
∗

(T∗ − t0).

This is a upper decay property for Q that again beats the natural scale-invariant
estimate, which is (5.13). To exploit it, we need to obtain some sort of lower
bound10 for Q as well. This will be achieved by exploiting the positivity of the
stress-energy tensor. Indeed we have

Q(t) =
∫
B(0,T∗−t)

(T∗ − t)(
1
2
|∂tu|2 +

1
2
|∇u|2 +

1
6
|u|6) − Re(∂tu(x · ∇u+ u)) dx.

This would be positive except for the last term. To deal with that term, we use
Cauchy-Schwarz11 to write

|Re(∂tu(x · ∇u+ u))| ≤ T∗ − t

2
|∂tu|2 +

1
2(T∗ − t)

|x · ∇u+ u|2.

On the other hand, another Cauchy-Schwarz shows that

1
2(T∗ − t)

|x · ∇u|2 ≤ T∗ − t

2
|∇u|2

when x ∈ B(0, T∗ − t), so we conclude that

Q(t) ≥ T∗ − t

6

∫
B(0,T∗−t)

|u|6 dx+
1

2(T∗ − t)

∫
B(0,T∗−t)

|x · ∇u|2 − |x · ∇u + u|2 dx.

Now from the identity

|x · ∇u|2 − |x · ∇u + u|2 = 2|u|2 −∇ · (x|u|2)
and interation by parts, we conclude (throwing away the non-negative term 2|u|2)
that

Q(t) ≥ T∗ − t

6

∫
B(0,T∗−t)

|u|6 dx− 1
2

∫
∂B(0,T∗−t)

|u|2 dσ.

Combining this with (5.11) and (5.14) we at last obtain the desired decay (5.7) of
the potential energy. This proves Proposition 5.9 and hence Theorem 5.2.

Exercise 5.1. Prove Proposition 5.1.

Exercise 5.2 (Ḣ1
x(R

3) critical NLW solutions). Use Proposition 5.1 and a
Duhamel iteration scheme to show that (5.1) is locally wellposed in Ḣ1

x(R
3) ×

L2
x(R

3) in the critical sense. More precisely, given any R > 0 there exists ε0 =

10Thus our argument here hinges on the conflict between three separate facts: that Q(t) is
mostly increasing (in the absence of energy flux), that Q(t) is mostly non-negative, and that Q(t)

converges to 0 as t → T−∗ . Each of these arises in a different way from the interaction between
the scaling vector field and the stress-energy tensor.

11The reader will note here that there are many positive terms that we are simply discarding
here. Indeed this argument bounds several more components of the energy than just the potential

energy; see for instance [Keel], [Nak3] for further discussion, and how the additional terms can
be used to obtain better control on the solution. However it seems difficult to use these arguments
to obtain decay of the entire energy without using the perturbative Strichartz theory, as there is
too much cancellation occuring in the top order terms.
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Figure 4. The iteration scheme in Ḣ1
x × L2

x for the three-
dimensional quintic NLW d = 3, p = 5 (which is H1

x-critical).

ε0(R) > 0, such that whenever (u∗,0, u∗,1) ∈ Ḣ1
x(R

3) × L2
x(R

3) has norm at most
R, and I is a time interval containing 0 such that

‖ cos(t
√−∆)u∗,0 +

sin(t
√−∆)√−∆

u∗,1‖L4
tL

12
x (I×R3) ≤ ε0

then for any (u0, u1) in the ball B := {(u0, u1) ∈ Ḣ1
x(R

3)×L2
x(R

3) : ‖(u0−u∗,0, u1−
u∗,1)‖Ḣ1

x(R3)×L2
x(R3) ≤ ε0} there exists a unique strong Ḣ1

x solution u ∈ Ẇ 1(I×R3)

to (3.2), and furthermore the map u0 �→ u is Lipschitz from B to Ẇ 1(I × R3).

Exercise 5.3. Establish Proposition 5.5 by using flux decay (as in (5.9)), the
energy identity (i.e. (2.48) with X = ∂t), and the monotone convergence theorem.
(No Strichartz theory is required, except in the minor sense that the wellposedness
theory is needed in order to justify various classical computations at this low level
of regularity.)

Exercise 5.4. Prove Proposition 5.6.

Exercise 5.5. Show that (5.1) is globally wellposed in Hk
x(R3) ×Hk−1(R3)

for any integer k ≥ 1. (For k = 1 this is essentially Theorem 5.2, though one needs
an easy additional argument to deal with the inhomogeneous component of the H1

x
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norm. For the higher k, use induction on k and a persistence of regularity argument
based on modifying the iteration scheme in Exercise 5.2.) The same result holds
for non-integer k but requires the fractional chain rule.

Exercise 5.6 (Classical approach to global regularity). [Stru2] Let u be a
classical, spherically symmetric solution to (5.1) on [0, T∗) × R3 with energy at
most E0. Establish the Duhamel formula

u(t, x) = ulin(t, x) +
1
|x|

∫ t

0

∫
||x|−|t−t′||≤|y|≤|x|+|t−t′|

|u(t′, y)|4u(t′, y)
|y| dydt′

for all (t, x) ∈ [0, T∗)×R3, where ulin is the solution to the linear wave equation with
initial data ulin[0] = u[0]. (Hint: use Exercises 2.12, 2.13.) Using this formula and
the continuity method, show that if ulin obeys the pointwise estimate |ulin(t, x)| ≤
A|x|−1/2+θ for some 0 < θ < 1/2 and all (t, x) ∈ [0, T∗) × R3, and we have the
smallness condition ‖u‖L∞

t L6
x([0,T∗)×R3) ≤ ε0 for some sufficiently small ε0 > 0

depending only on θ and E0, then we have |u(t, x)| ≤ 2A|x|−1/2+θ for all (t, x) ∈
[0, T∗) × R3. (Hint: use the radial Sobolev estimate, Exercise A.19, to control the
nonlinear potential |u|4. Notice how this argument is linear in the subcritical norm
‖|x|1/2−θu‖L∞

t,x
.) If in addition ulin is bounded on [0, T∗) × R3, apply Duhamel’s

formula again to conclude that u is bounded also. (If θ is small, one may have to
iterate Duhamel’s formula a few times.) This type of argument can be used to show
that classical solutions stay bounded (and thus can be continued in time) as long as
the potential energy does not concentrate, thus allowing one to conclude a global
regularity result from Proposition 5.9 without resorting to Strichartz estimates. A
similar argument also works in the absence of spherical symmetry; see [Gri].

Exercise 5.7. [BS] Let u be a global Ḣ1
x(R3)×L2

x(R3) solution to (5.1). Show
that the potential energy

∫
R3

1
6 |u(t, x)|6 dx decays to zero as t→ ±∞. (Hint: first

establish this inside a light cone by modifying the argument used to prove Propo-
sition 5.9. Then choose the light cone in such a way that the initial data has small
energy outside of this cone, and use finite speed of propagation.) Combine this with
Strichartz analysis (as in Propositions 3.25, 3.24) to show that the Ẇ 1(R × R3)
norm of u is finite, and that the solution scatters in Ḣ1

x(R
3) × L2

x(R
3) to a linear

solution. This result can also be combined with a concentration compactness argu-
ment to show that the Ẇ 1 norm is in fact controlled by some quantity depending
only on the energy; see [BG]. It is also likely that such a result could also be ob-
tained by the machinery developed for NLS that we shall discuss in the remaining
sections of this chapter. See also [Nak3] for a more “linear” proof of this decay
estimate which holds for a wider class of nonlinearities.

5.2. Bubbles of energy concentration

If you can look into the seeds of time, and say which grain will grow
and which will not, speak then unto me. (William Shakespeare,
“Macbeth”)

We now turn to the energy-critical defocusing NLS (5.2), which has scaling
symmetry

(5.15) u(t, x) �→ 1
λ1/2

u(
t

λ2
,
x

λ
)
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and the the conserved energy

E[u(t)] :=
∫
R3

1
2
|∇u|2 +

1
6
|u|6 dx

which is invariant under scaling. From Sobolev embedding we clearly have the
bounds

‖u‖2
Ḣ1

x(R3)
� E[u] � ‖u‖2

Ḣ1
x(R3)

+ ‖u‖6
Ḣ1

x(R3)

so control of the energy is essentially equivalent to control of the Ḣ1
x norm.

This looks very similar to the NLW, but note that the scaling (5.15) scales time
twice as strongly as space. This eventually makes the momentum have a different
scaling than the energy, which means that the Morawetz estimates that we shall
develop will be supercritical rather than critical, which was the case with the NLW.
This will cause serious trouble, as it is only the critical decay estimates which can
be used to control the global evolution effectively12. A related problem also arises
from the infinite speed of propagation, which makes it difficult to localise in space
or to exploit the geometry of spacetime structures such as the light cone. We shall
eventually resolve these issues by isolating privileged scales of interaction, which
allow one to access supercritical quantities after a suitable localisation, and which
also give some approximate finite speed of propagation properties.

Our aim for the rest of the chapter is to establish the following analogue of
Theorem 5.2 for this equation.

Theorem 5.10. [CKSTT11] One has global regularity for (5.2) (thus smooth
initial data lead to smooth global solutions) as well as global wellposedness in Ḣ1

x(R3)
(thus finite energy initial data leads to Ḣ1

x × L2
x-wellposed solutions on arbitrarily

large bounded time intervals).

For small energies, this result is in [CWeis2]. For spherically symmetric data,
the problem is already quite difficult; the global wellposedness was established in
[Bou7], [Bou9], with a more classical argument yielding global regularity given
shortly afterwards in [Gri5]; see also [Tao9] for a simplified proof and a generalisa-
tion to higher dimensions. The case of general large energy data was more difficult
still, and was achieved in [CKSTT11] using many of the techniques developed in
earlier papers. The higher dimensional general energy case was treated in [RV],
[Vis].

The local existence theory from Proposition 3.17 already gives local existence
of Ḣ1

x(R3)-wellposed solutions for large energy initial data, and global existence
for small data; persistence of regularity then asserts that these solutions can be
approximated in Ṡ1 by classical solutions. By refining the argument, one can also
show that a Ḣ1

x(R
3)-wellposed solution can be continued as long as the L10

t,x norm
of the solution remains finite (see exercises). Because of this, Theorem 5.10 will
follow from the following bound. For every energy E > 0, let M(E) denote the

12This is in contrast with the energy-subcritical, mass-supercritical NLS, where can use
interpolation between energy and mass to turn any spacetime estimate, regardless of its scaling,
into a critical estimate as in Proposition 3.24.
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quantity13

M(E) := sup{‖u‖L10
t,x(I∗×R3)},

where I ranges over all compact time intervals and u ranges over all classical solu-
tions to (5.2) in I∗ × R3 with energy E[u] less than or equal to E; we also adopt
the convention that M(E) = 0 when E ≤ 0.

Theorem 5.11. [CKSTT11] M(E) is finite for every E.

We leave the deduction of Theorem 5.10 from Theorem 5.11 to the exercises,
and now focus attention on proving Theorem 5.11. In the radial case, this result
was first obtained in [Bou7]; see also [Bou9], [Tao9], while for E sufficiently small
the result follows from Proposition 3.17 (recall that Ṡ1 controls L10

t,x by Sobolev
embedding). Observe that this is an a priori estimate - we only need to establish
it for solutions that are already classical on the domain I∗ × R3 of existence. It is
also invariant with respect to the scaling (5.15); in other words, the quantity M(E)
is dimensionless.

It turns out to be convenient to argue by contradiction, assuming that M(E) =
+∞ for some energy E. This means that we can find classical solutions u : I∗ ×
R3 → C of energy E or less with arbitrarily large L10

t,x norm; we shall refer to
such solutions informally14 as blowup solutions. We will then aim to analyze such
solutions as much as possible, and eventually obtain some sort of contradiction.
One can view this strategy in terms of blowup scenarios. A priori, one could
imagine many scenarios in which a solution could end up having extremely large
L10
t,x norm; it could concentrate at a point, exhibit soliton-type behaviour for large

times, and so forth. However, each of the tools available to us - perturbation theory,
conservation laws, Morawetz estimates, etc. - allow us to eliminate some of these
scenarios, and gain better control and understanding of the remaining scenarios. If
we apply enough of these tools, we can eventually hope to eliminate all the blowup
scenarios and thus obtain Theorem 5.11.

There is a powerful idea of Bourgain, namely induction on energy, which greatly
expedites this strategy. We will come to this idea later in this chapter, but for now
let us see how much of the structure of the solution we can understand without
inducting on energy. Since E[u(t)] ≤ E for all times t ∈ I∗, we have the preliminary
energy bounds

(5.16) ‖u‖L∞
t Ḣ1

x(I×R3) + ‖u‖L∞
t L6

x(I×R3) �E 1.

Now let us pick a small number η = η(E) > 0 to be chosen later. If the L10
t,x norm

of u is less than η then we are done, so suppose the L10
t,x norm exceeds η. Then we

can subdivide I∗ into finitely many intervals I1 ∪ . . . ∪ IJ , such that

(5.17) ‖u‖L10
t,x(Ij×R3) ∼ η

13The L10
t,x norm is a convenient norm to use here, and can be thought of as measuring the

total amount of “nonlinearity” present in the solution u. However, it could be replaced by any
other scale-invariant norm, as long as there was a fungibility in time property: it is crucial that
a time interval with large norm can be split into a number of smaller intervals with small norm.

14A more precise term would be nearly blowing up solutions, since the solution remains
classical throughout the compact time interval I∗, and the L10

t,x norm is merely extremely large

instead of infinite. To envisage such a solution, one can start by imagining some sort of self-similar
type solution, perhaps resembling (3.15), that genuinely blows up at some time T∗ > 0, and then
to truncate the solution to the compact interval [0, T∗ − ε] for some very small ε.
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on each of these intervals. The task is now to bound the number J of intervals in
terms of the energy; indeed if we obtain a uniform bound

(5.18) J = OE,η(1),

then we haveM(E) � ηOE,η(1)1/10 = OE(1) as desired, since η will ultimately only
depend on E. Note that we presently have no control on the sizes of the intervals Ij ;
indeed, the relative sizes of these intervals determines the type of “blowup scenario”
that one has, and controlling both the size and number of these intervals will be a
key objective later in the argument.

If we use the heuristic that the L10
t,x measures the net amount of nonlinear

behaviour exhibited by the solution, these intervals are thus a threshold between
linear and nonlinear behaviour; we expect the solution to behave mostly linearly
within each interval, while also demonstrating a small but non-trivial amount of
nonlinear behaviour. Indeed, if η is chosen sufficiently small, we have

‖u‖Ṡ1(Ij×R3) �E 1

and
‖u− ei(t−tj)∆/2u(tj)‖Ṡ1(Ij×R3) �E η2

for all intervals Ij and all tj ∈ Ij (Exercise 5.8). This implies in particular that the
linear solutions are large in L10

t,x:

‖ei(t−tj)∆/2u(tj)‖L10
t,x(Ij×R3) ∼ η.

This already conveys quite a bit of information about u on Ij , and how it con-
centrates in spacetime, but we will establish this kind of information by a slightly
different route15. From the Ṡ1 control on u and Sobolev embedding we can obtain
the estimate

‖u‖L6
tL

18
x (Ij×R3) � ‖∇u‖

L6
tL

18/7
x (Ij×R3)

� ‖u‖Ṡ1(Ij×R3) �E 1

(for instance); comparing this with (5.17) using Hölder’s inequality we can conclude
a lower bound on potential energy:

‖u‖L∞
t L6

x(Ij×R3) �E,η 1.

(Compare this with Principle 3.20, recalling that (5.17) is guaranteeing an “η” of
nonlinear behaviour on the interval Ij .) Thus there exists a time tj ∈ Ij such that

‖u(tj)‖L6
x(R3) �E,η 1.

On the other hand, (5.16) tells us that ‖u(tj)‖Ḣ1
x(R3) �E 1. We can thus apply

Proposition A.4 and conclude that there exists a frequency Nj and a location xj ∈
R3 such that

(5.19) (
∫
|x−xj|�E,η1/Nj

|PNju(tj)|r)1/r �E,η N
1
2− 3

r

j

for all 1 ≤ r ≤ ∞; informally, this means that PNju has magnitude ∼ N
1/2
j on

the average on a ball B(xj , 1/Nj) at time tj . Actually, we can also control PNju(t)

15Basically, we shall process the above information using an inverse Sobolev theorem rather

than an inverse Strichartz theorem. The two approaches are more or less equivalent at the H1
x

regularity. For the L2
x critical problem, there is no use for Sobolev or inverse Sobolev theorems

(which in any case are not Galilean invariant), and one must use more delicate inverse Strichartz
theory; see for instance [Bou8].
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(a)

(b) (c)

N
−1

N
−2

u ~ N
1/2

I

Figure 5. Bubbles of energy concentration which are (a) larger
than their associated time interval; (b) comparable to their time
interval; (c) smaller than their time interval. As we shall see, bub-
bles of the form (a) cannot be “responsible” for the large L10

t,x norm
on the interval, whereas bubbles of the form (c) can only occur for
a few “exceptional” intervals, so that one can focus attention on
the bubbles (b).

for nearby times as well, by a simple argument (reminiscent of that used to justify
Principle 3.1). Applying PNj to the equation (5.2) we have

i∂tPNju(t) = −∆PNju(t) + PNj (|u|4u(t)).

From Bernstein (A.6) and (5.4) we have16

‖∆PNju(t)‖L∞
x

� N
3/2
j ‖∆PNju(t)‖L2

x
�E N

5/2
j

and
‖PNj (|u|4u)‖L∞

x
� N

5/2
j ‖|u|4u‖

L
6/5
x

�E N
5/2
j

and hence we have the pointwise bound

(5.20) ∂tPNju(t, x) = OE(N5/2
j ).

From this and (5.19) we thus see that

(5.21) (
∫
|x−xj|�E,η1/Nj

|PNju(t)|r)1/r �E,η N
1
2− 3

r

j

for all times t with |t−tj | �η,E N−2
j . Thus we have located, near each time interval

Ij , a “bubble” of energy concentration, of spatial diameter ∼η,E N−1
j and lifespan

∼η,E N−2
j , on which the solution u has magnitude roughly N1/2

j . In particular, u
has a significant portion of potential energy invested in this bubble. (There is also
a significant amount of kinetic energy in this bubble too; see Exercise 5.13.)

At present, there is no relationship between the lifespan of the bubble, which
is roughly N−2

j , and the lifespan |Ij | of the time interval Ij that generated it; it

16The powers of Nj here will always be the “right” ones, consistent with dimensional analysis

or scale invariance. Indeed, if one desired, one could apply (5.15) to normalise Nj = 1.
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may be possible for the bubble to be so low-frequency that it significantly outlasts
the interval Ij , or so high-frequency that it disperses well within the interval Ij .
However, it turns out that we can eliminate both of these scenarios by additional
arguments. Let us first dispose of the low-frequency bubbles when N−2

j �E,η |Ij |.
This turns out to be quite easy, because such bubbles cannot contribute significantly
to the L10

t,x(Ij × R3) norm. We use Hölder in time and Bernstein (A.5) in space,
followed by (5.16), to compute

‖P≤Nu‖L10
t,x(Ij×R3) � |Ij |1/10‖P≤Nu‖L∞

t L10
x (Ij×R3)

� |Ij |1/10N1/5‖u‖L∞
t L6

x(Ij×R3)

�E |Ij |1/10N1/5.

Thus we see that ifN := c|Ij |−1/2 for some small c = c(E, η) > 0, then ‖P≤Nu‖L10
t,x(Ij×R3)

will be small compared with (5.17), and so we can conclude

(5.22) ‖P>Nu‖L10
t,x(Ij×R3) ∼ η.

We can then run the previous arguments to construct the same type of bubble as
before, but with the additional property that Nj ≥ N , or in other words N−2

j �E,η

|Ij |; we omit the details.
To eliminate the high-frequency bubbles requires more work. The first argu-

ment of this type appeared in [Bou7], and in fact the induction on energy argument
was developed precisely to eliminate this scenario. A more elementary argument
was then found in [Tao9], based on the long-time decay and smoothing properties
of the fundamental solution17, which we now present here. Let us write the entire
interval I∗ as I∗ := [t−, t+], and define the two linear solutions u−, u+ on I∗ × R3

by
u±(t) := ei(t−t±)∆/2u(t±).

From (5.16) and Strichartz estimates we have

‖u±‖L10
t,x(I∗×R3) � ‖u(t±)‖Ḣ1

x(R3) �E 1.

Let us declare an interval Ij to be exceptional if

‖u+‖L10
t,x(Ij×R3) + ‖u−‖L10

t,x(Ij×R3) � η2,

thus the number of exceptional intervals is at most OE,η(1).

Proposition 5.12. [Bou7], [Tao9] Let Ij be an unexceptional interval. Then
there exists a time tj ∈ Ij , a frequency Nj ∼E,η |Ij |−1/2, and a position xj ∈ R3

such that (5.21) holds for all times t with |t− tj | �η,E N−2
j . (In particular, (5.21)

holds for a subset of Ij of measure ∼η,E |Ij |.

17Informally, the fundamental solution decays so quickly, and is so smoothing, that a high-
frequency bubble can only be “caused” either by significant local concentration of the nonlinearity
(i.e. the interval Ij has to have size comparable to the lifespan of the bubble) or by the data at t−
or t+; the effects of more distant nonlinearities are too weak to create a bubble of concentration

by themselves. One can also view this argument in the contrapositive; if a bubble is very small
compared with its ambient interval Ij where the solution behaves linearly, then the bubble should
be able to escape either to t− or t+ as if it evolved linearly, because it will disperse by the time
the nonlinearity is significant enough to interact with it.
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Proof. It is convenient to use time translation invariance and scaling to set
Ij = [0, 1]. From (5.17) we have at least one of

(5.23) ‖u‖L10
t,x([1/2,1]×R3) ∼ η

or
‖u‖L10

t,x([0,1/2]×R3) ∼ η

holding true. Let us assume the former; the latter will be similar (but we will
replace u− by u+ in the argument below). Since Ij is unexceptional, we conclude
that

‖u− u−‖L10
t,x([1/2,1]×R3) ∼ η.

From Duhamel’s formula we have

u(t) − u−(t) =
∫ t

t−
ei(t−t

′)∆/2(|u(t′)|4u(t′)) dt′.

From Strichartz we have

‖
∫ t

0

ei(t−t
′)∆/2(|u(t′)|4u(t′)) dt′‖L10

t,x([1/2,1]×R3) � ‖
∫ t

0

ei(t−t
′)∆/2(|u(t′)|4u(t′)) dt′‖Ṡ1([0,1]×R3)

� ‖|u|4|∇u|‖
L

10/7
t,x ([0,1]×R3)

� ‖u‖4
L10

t,x([0,1]×R3)‖∇u‖L10/3
t,x ([0,1]×R3)

� η4‖u‖Ṡ1([0,1]×R3)

�E η
4.

Subtracting this, we conclude that the function

v(t) :=
∫ 0

t−
ei(t−t

′)∆/2(|u(t′)|4u(t′)) dt′

(which is the cumulative nonlinear contribution of the solution before Ij) obeys the
bound

‖v‖L10
t,x([1/2,1]×R3) ∼ η.

Now we show that the dispersion of the free Schrödinger equation creates some
extra smoothing in v. For any h ∈ R3, let v(h)(t, x) := v(t, x − h) be the translate
of v, and similarly define u(h)(t, x) := u(t, x− h). Then we have

v(h)(t) − v(t) :=
∫ 0

t−
ei(t−t

′)∆/2(|u(h)(t′)|4u(h)(t′) − |u(t′)|4u(t′)) dt′

and hence by (2.22)

‖v(h) − v‖L∞
t L∞

x ([1/2,1]×R3) �
∫ 0

t−
〈t′〉−3/2‖|u(h)(t′)|4u(h)(t′) − |u(t′)|4u(t′)‖L1

x(R3)

for all t ∈ [1/2, 1]. Now from (5.16) we have

‖u(h)(t′) − u(t′)‖L2
x(R3) � |h|‖∇u(t′)‖L2

x(R3) �E |h| and

‖u(h)(t′) − u(t′)‖L6
x(R3) � ‖u(t′)‖L6

x(R3) �E 1
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and hence by Hölder’s inequality

‖|u(h)(t′)|4u(h)(t′)−|u(t′)|4u(t′)‖L1
x(R3)

� ‖u(h)(t′) − u(t′)‖L3
x(R3)(‖u(h)(t′)‖L6

x(R3) + ‖u(t′)‖L6
x(R3))4

�E |h|1/2.
Inserting this back into our dispersive estimate we obtain the Hölder continuity
bound

‖v(h) − v‖L∞
t L∞

x ([1/2,1]×R3) �E |h|1/2.
On the other hand, since u, u−, and

∫ t
0
ei(t−t

′)∆/2(|u(t′)|4u(t′)) dt′ are bounded in
Ṡ1(Ij × R3) by OE(1), v is also, and hence

‖v(h) − v‖L∞
t L6

x([1/2,1]×R3) �E 1.

Interpolation and Hölder in time then yields the higher regularity estimate

‖v(h) − v‖L10
t,x([1/2,1]×R3) �E |h|1/5;

adding back in u− and
∫ t
0
ei(t−t

′)∆/2(|u(t′)|4u(t′)) dt′ gives

‖u(h) − u‖L10
t,x([1/2,1]×R3) �E |h|1/5 + η2.

Expressing P>N ′u = u− P≤Nu as an average of shifts of the form u− u(h), with h
mostly of magnitude O(1/N ′), we conclude that

‖P>N ′u‖L10
t,x([1/2,1]×R3) �E (N ′)−1/5 + η2

for any N ′. Taking N ′ to be sufficiently large depending on η and E, we conclude
from (5.23) that

‖P≤N ′u‖L10
t,x([1/2,1]×R3) ∼ η;

repeating the argument used to derive (5.22), we conclude

‖PN≤·≤N ′u‖L10
t,x([1/2,1]×R3) ∼ η

for some small N depending on η and E. The claim now follows by repeating the
bubble construction arguments from before. �

To summarise, we have started with a blowup solution on a time interval I∗,
which we then subdivided into smaller intervals I1 ∪ . . . ∪ IJ . Our objective is to
obtain the bound (5.18) on the number of intervals, where η is a small quantity
depending on the energy (actually one can take η = c〈E〉C for certain absolute
constants c, C > 0). There are OE,η(1) exceptional intervals on which we do not
have good control of the solution, but on all other intervals Ij we have a bubble of
spatial width ∼E,η |Ij |1/2 and lifespan ∼E,η |Ij | on which the solution is essentially
of size |Ij |−1/2. This is quite a strong description of the solution; the only thing
missing is a knowledge of the size and number of the intervals Ij . As the figures
in this section illustrate, there are a number of possible scenarios concerning these
intervals.

Let us first dispose of a minor issue, namely the exceptional intervals. If J =
OE,η(1) then we are done, so we may assume that J is large comapred with the
number of exceptional intervals. From the pigeonhole principle we see that there
exists a run of consecutive unexceptional intervals of cardinality ∼E,η (1). Thus
we may restrict I∗ to that run and assume without loss of generality that there are
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x

t

Figure 6. A string of bubbles of roughly comparable lifespan and
frequency, centred near the origin. This “stationary pseudosoliton”
scenario can eventually be excluded by ordinary Morawetz esti-
mates.

no unexceptional intervals18 in I∗; any bound on the number J of intervals we get
in this case will automatically imply a similar bound on the general case, losing a
factor of OE,η(1) which is certainly tolerable.

We have gone about as far as we can go using perturbation theory tools
(Strichartz estimates and dispersive estimates), together with energy conservation.
To conclude the argument we will need two other conservation laws, namely the
mass conservation and the momentum conservation (which leads to Morawetz es-
timates). The argument is different in the radial and nonradial cases; in the next
section we address the simpler radial case, and then in the rest of the chapter we
treat the nonradial case.

Exercise 5.8 (Nonlinear solution small implies linear solution small). Let u
be a Ṡ1(I × R3) be a strong solution to (5.2) with energy at most E. Show that
if ‖u‖L10

t,x(I×R3) ≤ η for some sufficiently small η = η(E) > 0 depending only on
E, then we have the bounds ‖u − ei(t−t0)∆/2u(t0)‖Ṡ1(I×R3) �E η2 for all t0 ∈ I,

18Strictly speaking, the definition of “exceptional” and “unexceptional” is determined by the
original interval I∗, not the new one, but this will have no impact since we are only using the
concept of unexceptional interval in order to obtain the bubble property in Proposition 5.12.
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x

t

Figure 7. A string of bubbles of roughly comparable lifespan and
frequency, centred at varying locations in space. This “moving
pseudosoliton” scenario (which only occurs in the non-radial set-
ting) will eventually be excluded by interaction Morawetz esti-
mates.

and ‖u‖Ṡ1(I×R3) �E 1. (Hint: modify the proof of Proposition 3.17. Alternatively,
apply Lemma 3.31.)

Exercise 5.9 (Blowup criterion). Deduce Theorem 5.10 from Theorem 5.11.
(Hint: use Exercise 3.53 or Exercise 5.8.) Also prove the partial result that if M(E)
is finite, then one has global Ḣ1

x(R3) solutions for any initial datum with energy
less than E.

Exercise 5.10 (Spacetime bound implies global wellposedness). Using The-
orem 5.11 (and Lemma 3.31), show that for any Ḣ1

x(R3) initial datum u0 with
energy at most E, the global Ḣ1

x solution obeys the global Strichartz bounds
‖u‖Ṡ1(R×R3) �E 1. Furthermore the map u0 �→ u is locally Lipschitz from Ḣ1

x(R3)
to Ṡ1(R × R3).

Exercise 5.11 (Spacetime bound implies scattering). Using Theorem 5.11 and
Theorem 5.10, show that the wave operator Ω+ : Ḣ1

x(R
3) → Ḣ1

x(R
3) for (5.2) exists

and is a homeomorphism. (Modify the proofs of Proposition 3.22 and Proposition
3.24.)
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x

t 0

t

Figure 8. A string of bubbles of rapid shrinking lifespan and in-
creasing frequency. This “rapidly self-similar blowup” scenario will
eventually be excluded by spatially-localised almost conservation
of mass.

Exercise 5.12. Show that the function E �→ M(E) is continuous at every
point for which M(E) is finite. (Use Lemma 3.31.) In particular, the set of E for
which M(E) is finite is open.

Exercise 5.13 (Concentration of kinetic energy). Show that the bubbles con-
structed above not only contain a significant fraction of potential energy, but also a
significant fraction of kinetic energy also; more precisely, show that

∫
|x−xj|�E,η1/Nj

|∇u(t, x)|2 dx �E,η

for all times t with |t− tj | �E,η N
−2
j . (You may need to take a ball of somewhat

larger radius than what one had for the potential energy concentration. One can
argue by contradiction, using Exercise A.18 and Sobolev embedding.)

5.3. Local Morawetz and non-concentration of mass

Nature herself has never attempted to effect great changes rapidly.
(Quintilian)

We will now complete the proof of (5.18), and hence Theorem 5.11, in the
spherically symmetric case. This case is easier because one can now place the
location xj of the energy bubble near the spatial origin, or more precisely one can
set |xj | = OE,η(N−1

j ) (see Exercise A.20). Thus, on each interval Ij , the solution
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Figure 9. A string of bubbles of slowly shrinking lifespan and in-
creasing frequency. This “slowly self-similar blowup” scenario can
be excluded by ordinary Morawetz estimates in the radial case; in
the nonradial case, one needs to exploit frequency-localised almost
conservation of mass.

u has size ∼E,η |Ij |−1/2 on a significant fraction of the cylinder {(t, x) ∈ Ij × R3 :
|x| �E,η |Ij |1/2}.

It remains to control the size and number of the intervals Ij . Up until now, we
have relied mostly on perturbation theory and conservation of energy; we have not
even utilised the defocusing nature of the nonlinearity, other than to ensure that
both the linear and nonlinear components of the energy stay bounded. To proceed
further, it turns out that we will need to exploit (spatially localised) conservation of
mass (to deal with situations in which the intervals Ij fluctuate rapidly) as well as
Morawetz estimates arising from conservation of momentum (to deal with situations
in which the intervals Ij are stable in size).

Let us first discuss the mass conservation law. We have conservation of global
mass

M(t) := (
∫
R3

T00(t, x) dx)1/2 = (
∫
R3

|u(t, x)|2 dx)1/2

but this is not directly useful to us because it is supercritical with respect to scaling
(and thus cannot be used to establish critical bounds such as (5.18), as we have no
subcritical bound to interpolate it against). However, we can be more effective by
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using localised masses

MB(x0,r)(t) := (
∫
R3

T00(t, x)χ2(
x − x0

r
) dx)1/2 = (

∫
R3

|u(t, x)|2χ2(
x− x0

r
) dx)1/2

where B(x0, r) is the ball of radius r centred at x0, and χ is a fixed non-negative
bump function supported on the ball B(0, 2) which equals one on B(0, 1). As we
shall see, these localised masses will be useful for extending control of a solution on
a time interval Ij to control at nearby times also, extending a little bit beyond the
timescales already controlled using the cruder estimate (5.20).

From (5.16) and Hölder we have the bound

(5.24) MB(x0,r)(t) �E r.

In fact, we can say a bit more: if B(x1, r1), . . . , B(xk, rk) are balls which are lacu-
nary in the sense that ri+1 ≥ 2ri, then we have

(5.25)
k∑
i=1

1
r2i
MB(xi,ri)(t)

2 �E 1;

see Exercise 5.14. Thus while an individual ball B(xi, ri) may capture a large mass
(compared with its radius), one cannot have too many distinct balls doing so at the
same time.

The localised masses obey an almost conservation law, with the degree of con-
servation improving when the radius of the ball increases. Indeed, from (2.35) and
integration by parts19 we have

∂t(MB(x0,r)(t)
2) =

∫
R3

T0j(t, x)∂jχ2(
x − x0

r
) dx �χ

1
r

∫
R3

|u(t, x)||∇u(t, x)||χ(
x − x0

r
)|.

Applying Cauchy-Schwarz and (5.16) we can bound the right-hand side byOE(MB(x0,r)(t)/r),
thus leading to the Lipschitz bound

(5.26) ∂tMB(x0,r)(t) = OE,χ(
1
r
)

(cf. Exercise 2.48). Comparing this with (5.24), it seems that this Lipschitz control
is only useful for a duration OE,χ(r2), which is more or less what the bound (5.20)
also gives. However, because we have the improved estimate (5.25), we can say a
bit more, namely the following purely combinatorial property on the unexceptional
intervals:

Lemma 5.13 (Local non-concentration of mass). [Gri5], [Bou7], [Tao9] Let
t0 be a time, let A > 1, and let Ij1 , . . . , Ijk be unexceptional intervals with the
lacunarity properties |Iji+1 | ≤ 1

2 |Iji |, and dist(t0, Iji ) ≤ A|Iji |. Then we have
k = OA,E,η(1).

This shows that the concentration of time intervals that is depicted in Figure
8 cannot occur indefinitely; it is similar in spirit to Proposition 5.9. (For a closer
analogue of this Proposition for radial critical NLS, see [Gri5].) The intuition is
that as the intervals contract, the energy bubble gets pushed to higher and higher
frequencies, and thus loses a lot of mass (since for a fixed amount of energy, mass and
frequency are inversely proportional). Eventually there is so much mass lingering
at so many scales that one contradicts (5.16).

19One has to regularise the solution and the nonlinearity, and then take limits, to justify
these sorts of computations; we omit the (rather boring) details.
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Proof. Let C = C(E, η,A) � 1 be a large number to be chosen later. From
Proposition 5.12, we see that for each interval Iji there exists a time ti ∈ Iji and a
position xi such that

MB(xi,C|Iji
|1/2)(ti) �E,η |Iji |1/2

if C is chosen large enough. Applying (5.26) and the fundamental theorem of
calculus we see that

MB(xi,C|Iji
|1/2)(t0) −MB(xi,C|Iji

|1/2)(ti) � A|Iji |
1

C|Iji
so again if C is chosen large enough we have

MB(xi,C|Iji
|1/2)(t0) �E,η |Iji |1/2.

The claim now follows from (5.25). �

Having excluded the “self-similar blowup” scenario of intervals that pile up in
a lacunary fashion, we need to also exclude the opposing “pseudosoliton” scenario
in which the intervals stay roughly constant for long periods of time. Here, the
mass conservation law is not of much use, as we do not have the movement of
energy between scales that is necessary to contradict mass conservation. Instead,
we need to rely on the repulsive nature of the nonlinearity (since we already know
that the focusing equation admits soliton solutions, whose intervals Ij will have
the same size indefinitely in time). The main tool here is the Morawetz inequality,
which exploits the fact that a defocusing nonlinearity converts inward momentum to
outward momentum but not vice versa. The formulation of the Morawetz inequality
in (3.38) is not directly useful for us as it is supercritical with respect to scaling. The
variant formulation in (3.39) suffers from the same problem (due to the supercritical
mass component in the inhomogeneous H1

x(R3) norm). However, just as the mass
conservation law was made useful by localising in space, the Morawetz inequality
can similarly be made useful via a spatial cutoff. We start with the general virial
identity (3.36), and replace the weight function a(x) = |x| by the truncated weight
a(x) = |x|χ(x/R), where χ is as before and R > 0 is a radius parameter that we
will select later. We obtain

∂t

∫
R3

Im(u(t, x)∇a(x) · ∇u(t, x)) dx

=
∫
|x|≤R

|∇/ u(t, x)|2
|x| dx+O(

1
R

∫
R≤|x|≤2R

|∇u(t, x)|2 dx)

+
4
3

∫
|x|≤R

|u(t, x)|6
|x| dx+O(

1
R

∫
R≤|x|≤2R

|u(t, x)|6 dx)

+ π|u(t, 0)|2 +O(
1
R3

∫
R≤|x|≤2R

|u(t, x)|2 dx).

All three of the error terms can be bounded by OE(1/R) using (5.16) and Hölder’s
inequality (or (5.24)). We conclude in particular the approximate monotonicity
formula

∂t

∫
R3

Im(u(t, x)∇a(x) · ∇u(t, x)) dx �
∫
|x|≤R

|u(t, x)|6
|x| dx+OE(1/R).
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We integrate this on a time interval I ⊂ I∗ to obtain∫
I

∫
|x|≤R

|u(t, x)|6
|x| dx � sup

t∈I
|
∫
R3

Im(u(t, x)∇a(x) · ∇u(t, x)) dx| +OE(|I|/R).

Now the function ∇a is bounded by O(1) and is supported on the ball of radius
2R. Applying Cauchy-Schwarz and (5.16), (5.24) we conclude that

|
∫
R3

Im(u(t, x)∇a(x) · ∇u(t, x)) dx| �E R.

It is now natural to essentially match the two error terms OE(|I|/R) and OE(R)
by setting R := A|I|1/2 for some arbitrary parameter A > 0, thus obtaining the
spatially localised Morawetz inequality

(5.27)
∫
I

∫
|x|≤A|I|1/2

|u(t, x)|6
|x| dx �E,A |I|1/2,

introduced by Grillakis [Gri5] and Bourgain [Bou7]. Unlike the untruncated
Morawetz inequality, this inequality has a right-hand side which grows with the
time interval I. However, the crucial point is that the right-hand side still grows
slower than |I|. Thus the repulsion effect quantified by this estimate is still enough
to preclude pseudosoliton type behaviour near the spatial origin for extended pe-
riods of time, since for such solutions the left-hand side should grow linearly in
|I|.

Observe that if Ij is an unexceptional interval contained in I, then we already
have a large potential energy∫

|x|�E,η|Ij |1/2
|u(t, x)|6 dx �E,η 1

for a set of times t in Ij of measure ∼E,η |Ij |, thanks to Proposition 5.12 and the
fact that |xj | = OE,η(|Ij |1/2) in the radial case. In particular we see that∫

Ij

∫
|x|�E,η|I|1/2

|u(t, x)|6
|x| dxdt �E,η |Ij |1/2.

We can thus convert the Morawetz inequality into a purely combinatorial statement

(5.28)
∑

Ij⊆I, unexceptional
|Ij |1/2 �E,η |I|1/2

for any interval I ⊆ I∗. This estimate is rather strong and asserts that one cannot
have any long string of essentially consecutive unexceptional intervals Ij of compa-
rable size. Note that this is the only place so far where we have used the assumption
of spherical symmetry.

It turns out that the combinatorial estimates in (5.28) and Lemma 5.13 are
already sufficient to yield the desired estimate (5.18) without any further PDE tools,
by the following argument from [Bou7]. As mentioned in the preceding section,
we may assume without loss of generality that all intervals Ij are unexceptional.
Observe that if I is any union of consecutive Ij , then

|I| =
∑
Ij⊆I

|Ij | ≤ ( sup
Ij⊆I

|Ij |1/2)
∑
Ij⊆I

|Ij |1/2.

Applying (5.28), we conclude a useful fact: if I is any union of consecutive Ij , then
one of the Ij must have size |Ij | ∼E,η |I|, so in particular dist(t, Ij) = OE,η(|Ij |) for
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Figure 10. Construction of the intervals Iji .

all t ∈ I. We can iterate this fact as follows. Set I(1) := I∗, thus I(1) is the union
of J intervals Ij . Let Ij1 be an interval in I(1) of maximal length; by the above
fact, we have |Ij1 | ∼E,η |I(1)|. Let us remove from I(1) all the intervals Ii of length
|Ij1 |/2 or greater; there are at most OE,η(1) such intervals. This disconnects I(1)

into OE,η(1) connected intervals, so by the pigeonhole principle, one of them, say
I(2), must contain �E,η J −OE,η(1) intervals Ii, each of which has length at most
|Ij1 |/2. Let Ij2 be the largest interval in I(2); by the above fact, |Ij2 | ∼E,η |I(2)|.
Thus there are at most OE,η(1) intervals of length |Ij2 |/2 or greater in I(2); we
remove these and locate a connected component I(3) with as many intervals in it as
possible. We can continue in this fashion for �E,η log J steps, obtaining a sequence
of intervals Ij1 , Ij2 , . . . , Ijk with |Iji+1 | ≤ 1

2 |Iji |. If we let t0 be an arbitrary time
in jk, we see from construction that dist(t, Iji ) = OE,η(Iji) for all i = 1, . . . , k.
Applying Lemma 5.13, we conclude that k = OE,η(1). Since k �E,η log J , we
obtain (5.18) as claimed.

Exercise 5.14. Prove (5.25). (Hint: first establish that 1
r2i
MB(xi,ri)(t)

2 �∑
N min((riN)0.1, (riN)−0.1)N2‖PNu(t)‖2

L2
x(R3). Alternatively, use Exercise A.6.

In the case when all the xj = 0, one could also proceed by Hardy’s inequality,
Lemma A.2)

Exercise 5.15. [Tao9] By going through the above arguments more carefully,
establish a bound M(E) � exp(〈E〉C) for some absolute constant C > 0 for Theo-
rem 5.11 in the spherically symmetric case.
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Exercise 5.16. Let u : I×R3 → C be a radial Schwartz solution to (5.2) with
initial datum u0, and let I1, . . . , IJ be as above. Use (3.38) to establish that

J∑
j=1

|Ij |1/2 � ‖u0‖L2
x

and use (3.42) to establish the weaker estimate

J∑
j=1

|Ij |3/2 � ‖u0‖3
L2

x
.

These estimates are not of direct use for establishing (5.18) because they involve the
supercritical mass ‖u0‖L2

x
. However they do highlight the fact that the interaction

Morawetz estimate (3.42) is weaker, and “three times more supercritical”, than
(3.38).

5.4. Minimal-energy blowup solutions

The more minimal the art, the more maximum the explanation.
(Hilton Kramer)

In the preceding sections, we have obtained global wellposedness and regularity
for the energy-critical NLS (5.2) by obtaining structural information on putative
blowup solutions - in particular, showing that a significant fraction of the energy
of the solution was invested in a chain of bubbles in spacetime - and then using
the conservation laws available to eliminate the various combinations in which a
large number of bubbles could occur in a single solution. One of the major tools in
achieving the latter was the spatially localised Morawetz inequality (5.27), which
exploited the defocusing nature of the nonlinearity to repel the solution from the
origin and thus to exclude pseudosoliton solutions such as the one depicted in Figure
6, or a slowly focusing solution such as the one in Figure 9. While this inequality
was supercritical rather than critical, it could be localised20 in space and time to
give useful control on the geometry of the bubbles of the solution.

Once one moves to the non-radial setting, however, the solution can now be
arbitrarily far away from the origin, and the ordinary Morawetz inequality becomes
much less useful. As in the subcritical case, it is now natural to turn instead to
the interaction Morawetz inequality. This already gives a global a priori bound
on the L4

t,x norm of u, but this bound involves the mass as well as the energy
and is supercritical with respect to scaling, and so does not have direct application
to either global existence or scattering problems. One can hope to localise this
bound in spacetime as with the ordinary Morawetz inequality, but it turns out that
the interaction Morawetz inequality is too supercritical for this to be of any use.
Indeed, the numerology (see Exercise 5.16) suggests that the interaction Morawetz

20This is part of a more general phenomenon, that supercritical conservation laws can be

used to give partial regularity results, which typically control things like the Hausdorff dimension
of the singular set. Indeed, the estimate (5.28) is asserting, in some sense, that the solution can
only have singularities of dimension at most 1/2 in time. In contrast, the interaction Morawetz
estimate gives the apparently useless upper bound of 3/2 for the time dimension of singularities.
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inequality would localise to a bound such as21∑
Ij⊆I, unexceptional

|Ij |3/2 �E,η |I|3/2

which is in fact a trivial bound, following easily from the obvious inequality
∑

Ij⊆I |Ij | ≤
|I|.

The solution to this problem is to localise the interaction Morawetz inequality,
not just in space or time, but also in frequency, restricting attention to the high
frequencies P>Nu of the solution for some parameter N . The point is that this
component of the solution has finite mass:

‖P>Nu‖L∞
t L2

x(I∗×R3) � ‖u‖L∞
t Ḣ

1
x(I∗×R3) � N−1.

If we make the heuristic assumption that the high frequency field P>Nu obeys the
same type of interaction Morawetz estimate (3.42) as the full solution u, we are
thus led to conjecture the frequency-localised interaction Morawetz inequality

(5.29)
∫
I∗

∫
R3

|P>Nu(t, x)|4 dtdx �E N
−3,

and then by applying Proposition 5.12 we are led to an estimate of the form∑
Ij⊆I∗;|Ij |�E,ηN−1/2

|Ij |3/2 �E,η N
−3.

(ignoring exceptional intervals for simplicity). This estimate, if true, would be non-
trivial, as it would exclude scenarios such as the non-radial pseudosoliton scenario
(Figure 7) which could not previously be excluded. Unfortunately, this estimate is
still not as “strong” as (5.28), for instance it does not necessarily exclude slowly
focusing solutions such as those in Figure 9, which are also out of reach of the spa-
tially localised mass conservation technology as embodied in Lemma 5.13. We will
thus need to develop a frequency localised mass almost conservation law to exclude
such scenarios; we come to this in the next section.

In trying to execute this strategy, one runs into a major problem, namely
that the error terms are simply too large to control. Perturbation theory can give
adequate control on a single time interval Ij , but we are now trying to establish
spacetime control on a union of a (possibly very large) number of such intervals
Ij , with bounds independent of the number of such intervals. This requires some
sort of global perturbation theory. This is possible when the energy is small, but
of course we are allowing the energy to be large; in particular, the bubbles in the
solution already contain significant energy. One could then hope to just apply the
perturbation theory away from the bubbles (in some physical space or frequency
space sense), but there is no guarantee that the energy is necessarily small away
from the bubbles. For instance, imagine a solution u which at some time t is the
superposition of two bubbles, one supported near a point x with some frequency
N , and another supported near another point x′ with frequency N ′. One would
need to localise away from both bubbles before the solution became small enough
that one could hope to apply a global perturbative theory.

21In terms of the original solution, the bound would be something like�
I

�
|x|�A|I|1/2 |u(t, x)|4 dxdt �E,η,A |I|3/2, which follows immediately from (5.16) and

Hölder.
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x

t

Figure 11. The bubble combinatorics of a generic large-energy
non-radial solution could be very complicated, with bubbles pos-
sibly overlapping in space and frequency at any given time. In
particular it is not clear how to localise away from these bubbles
to obtain some sort of global perturbative control outside of the
union of these bubbles.

There are two possible ways to resolve this problem. One approach, a “concen-
tration compactness” approach, would be to apply the bubble selection procedure
(ultimately based on Proposition A.4) iteratively, so that at each time t one “cov-
ers” the bulk of the energy of the solution by a number of bubbles, with each bubble
trapping a certain amount of energy (so the total number of bubbles is bounded),
with the energy outside of the union of these bubbles being very small (and thus
hopefully controllable by perturbative methods). This approach looks fearsomely
complicated, as the sheer combinatorics of organising multiple chains of bubbles in
spacetime is several orders of magnitude more difficult than organising a collection
of consecutive time intervals Ij , and in fact this strategy has not been successfully
implemented22.

Fortunately, there is another approach, which is principle equivalent, but in
practice somewhat simpler to deal with both on a technical and intuitive level,
which is the induction on energy strategy introduced by Bourgain [Bou7], [Bou9]

22This however may ultimately need to be done if one is to attack even more difficult con-
jectures in the field, such as the soliton resolution conjecture.
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and refined in [CKSTT11]. In its original formulation, the strategy was to prove
the bound in Theorem 5.11 by an induction on the parameter E; one assumes that
M(E′) is already known to be finite for some E′ < E (in [Bou7] one essentially
takes E′ := E − η4, where η is as above), and then uses this to obtain a bound
on M(E) (in [Bou7] the bound M(E) � exp(O(〈E〉C〈M(E − η4)〉C)) is obtained
for some absolute constant C > 0). When this argument was extended to the
nonradial setting in [CKSTT11], it became convenient to recast this argument in
a contrapositive formulation, converting the induction principle to the well-ordering
principle, as this allows one to tap the “induction hypothesis” repeatedly without
having to explicitly set up any sort of nested induction loop23.

More precisely, we argue as follows. Suppose for contradiction that Theorem
5.11 failed, so that M(E) is infinite for at least one E. Since M(E) is clearly
increasing in E, and the set of E for which M(E) is finite is open (by Lemma
3.31), and is known to contain a neighbourhood of zero by the small energy theory.
Thus there must exist a critical energy 0 < Ecrit <∞ which is the minimal energy
for which M(Ecrit) = +∞. This allows us to construct minimal energy blowup
solutions24 namely Schwartz solutions u : I∗ × R3 → C to (5.2) of energy at
most Ecrit whose L10

t,x(I∗ ×R3) norm is extremely large (in [CKSTT11] this norm
is chosen to be at least 1/η6, where η6 is an extremely small number depending
ultimately on Ecrit and on various values of M(E) for E < Ecrit that is chosen at
the end of the argument). The strategy is then to obtain an L10

t,x bound for the
minimal energy blowup solution, thus leading to a contradiction that establishes
Theorem 5.11. Thus instead of proving L10

t,x bounds for arbitrary solutions, one
is reduced to establishing this only for the minimal energy blowup solutions. The
reason why this is at all advantageous is due to the following heuristic:

Principle 5.14 (Minimisation principle). A minimiser (or approximate min-
imiser) of a functional (subject to various constraints) should be expected to be irre-
ducible in the sense that it cannot be decomposed into two or more non-interacting
(or weakly interacting) and non-trivial components.

Intuitively, the justification for this principle is that if a putative minimiser
could be decomposed into two non-interacting, non-trivial components, then one
of the components should have a smaller value of the functional than the original
minimiser, a contradiction. A minimal energy blowup solution can be viewed as
a minimiser of a functional (the energy) subject to a constraint (the L10

t,x norm is
essentially infinite) and thus heuristically falls within the scope of this principle.
(See Lemma B.4 for another rigorous realisation of this principle.) Two good mo-
tivating examples of a minimal energy blowup solution to keep in mind are the
self-similar blowup solution (3.15) for the focusing L2

x-critical NLS, as well as the
soliton examples (3.7) for a general focusing NLS. The former example is known to
be the minimal-mass example that actually blows up in finite time, although it is
not known whether the solitons are the minimal mass and energy solutions which
do not obey a global spacetime bound.

23The price one pays for this convenience is that it then becomes obscured exactly what
bound on M(E) is obtained by this indirect argument. In order to obtain a quantitative bound
for M(E), one has to take the contrapositive of the entire argument, which then generates a nested
induction loop that yields the (primitive recursive) bound on M(E).

24Again, the more accurate term here is near-minimal-energy nearly-blowing-up solutions,
but this is clearly an ungainly terminology.
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x

(t,x(t))

1/N(t)(small energy here)

N

(t, N(t))
u ~ N(t)

1/2 u ~ N(t)^ −5/2

ξ ~ N(t)(small energy here) (small energy here)(small
energy here)

t t

Figure 12. In a minimal energy blowup solution, the energy is
small once one moves away from the bubble either in physical space
or in frequency space; contrast this with Figure 11. For compari-
son, we have superimposed the bubble train from previous sections
with the trajectory of position x(t) and frequencyN(t) that is given
by the machinery in this section.

As it turns out, the irreducibility properties of a minimal energy blowup solu-
tion are rather strong; they show that at each time t, the bulk of the energy is con-
centrated in frequency space at some dyadic frequency range {ξ ∈ R3 : |ξ| ∼ N(t)},
and in physical space on some dual ball {x ∈ Rd : |x − x(t)| � N(t)−1}. In the
language of the preceding sections, we not only have energy concentration on a
sequence of bubbles, but furthermore have energy localisation to these bubbles (i.e.
the energy becomes small once one moves away from the bubbles, either in physical
space or in frequency space). This is in marked contrast to general solutions (such
as the one depicted in Figure 11), where the energy can be concentrated in multiple
bubbles simultaneously.

The localisation of minimal energy blowup solutions to (5.2) was systemati-
cally studied in [Bou7], [CKSTT11], and a similar localisation established for
the nonlinear Klein-Gordon equation in [Nak2]. The statements are slightly tech-
nical to state, and certainly lengthy to prove, but the basic idea is as follows.
Suppose for contradiction that there was some time t0 for which energy localisa-
tion failed, then the solution u(t0) at that time will split into two components
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u(t0) = v(t0)+w(t0) of strictly smaller energy, which are widely separated in either
physical space or frequency. In particular, the energies E[v(t0)] and E[w(t0)] are
strictly smaller than Ecrit, and thus by the induction hypothesis one can continue
v(t) and w(t) separately in time by the NLS (5.2) and establish L10

t,x spacetime
bounds on both functions. One then exploits the separation property to ensure
that the field ũ(t) := v(t) + w(t) is an approximate solution to NLS with bounded
L10
t,x norm. Using the stability theory from Lemma 3.31, one then shows that the

exact solution u(t) also has bounded L10
t,x norm, which contradicts the hypothesis

that u was a blowup solution.
In [CKSTT11], this localisation property was first established in frequency

space, as follows:

Proposition 5.15 (Frequency delocalisation implies spacetime bound). [CKSTT11]
Let u : I∗ × R3 → C be a classical solution to (5.2) of energy at most Ecrit. Let
η > 0, and suppose there exists a dyadic frequency Nlo > 0 and a time t0 ∈ I∗ such
that we have the energy separation conditions

(5.30) ‖P≤Nlo
u(t0)‖Ḣ1

x(R3) ≥ η

and

(5.31) ‖P≥K(η)Nlo
u(t0)‖Ḣ1

x(R3) ≥ η.

If K(η) is sufficiently large depending on η, i.e.

K(η) ≥ C(η)

then we have

(5.32) ‖u‖L10
t,x(I∗×R3) �Ecrit,η 1.

Proof. (Sketch) We introduce a small parameter ε > 0 depending on η. The
first task is to find a safe location in frequency space with which to truncate the
solution into noninteracting components. If K(η) is sufficiently large depending
on ε, we can use Plancherel’s theorem and the pigeonhole principle25 to find a
frequency N∗ between Nlo and K(η)Nlo such that

‖Pε2N∗≤·≤N∗/ε2u(t0)‖Ḣ1
x(R3) � ε.

We can rescale N∗ = 1. If one then sets ulo(t0) := P<εu(t0) and uhi(t0) :=
P>1/εu(t0) it is easy to verify (if ε is small depending on η) that ulo and uhi
have strictly smaller energy than u, and more precisely that

E[ulo(t0)], E[uhi(t0)] ≤ Ecrit − cηC

for some absolute constants c, C > 0. Since M(Ecrit − cηC) is finite, we can thus
extend ulo and uhi globally via (5.2), and they will have a global Ṡ1(R × R3)
norm which is Oη,Ecrit(1). Also, because ulo and uhi were separated in frequency
by a factor of approximately 1/ε2 or so at time t0, there is a similar frequency
separation at later times26. One now investigates the extent to which ũ := ulo+uhi

25This type of pigeonholing trick is useful in any situation in which one wants to truncate
a field into two disjoint components but is worried about possible boundary effects arising from
portions of the solution near the cutoff point. See Exercise 2.49 for another instance of this
pigeonholing trick.

26More rigorously, one uses persistence of regularity type arguments to establish Ṡ2 control
on ulo and Ṡ0 control on uhi, which effectively restricts the bulk of ulo to frequencies �η,Ecrit ε

and the bulk of uhi to frequencies �η,Ecrit 1/ε. See [CKSTT11] for details.
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Figure 13. A schematic description of the proof of Proposition 5.15.

is an approximate solution to (5.2). This hinges on obtaining some sort of smallness
bound on cross-terms which schematically have the form ujhiu

5−j
lo for j = 1, 2, 3, 4.

Some of these terms can be treated effectively by standard Strichartz estimates, but
one of them (the j = 1 term) requires a certain bilinear refinement of Strichartz
estimates (Exercise 2.73) that enjoys a crucial gain over what one would obtain
from the ordinary Strichartz estimate and Hölder’s inequality in the case of high-
low frequency interactions; see [CKSTT11] for details. Ultimately one can show
that if ε is chosen sufficiently small, then ũ is indeed an approximate solution in
the sense of Lemma 3.31, which then yields the desired bound (5.32). The scheme
of the argument is summarised in Figure 13. �

As a corollary to this proposition, one can obtain frequency localisation for
minimal energy blowup solutions. It is convenient to introduce a sequence of η
parameters27

1 � η0 � η1 � . . .� η6 > 0

27The reader should not take these η values too seriously; for technical reasons it is important
to track which η goes where, but for this overview one can just treat each of the η’s as a small
quantity.
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with each ηj assumed to be sufficiently small depending on all preceding η0, . . . , ηj−1,
as well as on the critical energy Ecrit. (In practice ηj will be some explicit function
involving the values ofM(E) for E = Ecrit−c(η0, . . . , ηj−1), for various explicit c()).
Recall that a minimal energy blowup solution is a Schwartz solution u : I∗×R3 → C
to (5.2) with energy at most Ecrit and L10

t,x norm at least 1/η6. To simplify the no-
tation we allow all implicit constants in the � notation to now depend on Ecrit.

Corollary 5.16 (Frequency localisation of energy at each time). [CKSTT11]
Let u be a minimal energy blowup solution. Then for every time t ∈ I∗ there exists
a dyadic frequency N(t) ∈ 2Z such that for every η5 ≤ η ≤ η0 we have small energy
at frequencies � N(t),

(5.33) ‖P≤c(η)N(t)u(t)‖Ḣ1
x
≤ η,

small energy at frequencies � N(t),

(5.34) ‖P≥C(η)N(t)u(t)‖Ḣ1
x
≤ η,

and large energy at frequencies ∼ N(t),

(5.35) ‖Pc(η)N(t)<·<C(η)N(t)u(t)‖Ḣ1
x
∼ 1.

Here 0 < c(η) � 1 � C(η) <∞ are quantities depending on η.

A similar (but more complicated) argument gives spatial localisation also, pro-
vided we work in the “middle third” of the lifespan I∗ of the solution28. More
precisely, we split I∗ into consecutive intervals I∗ = I− ∪ I0 ∪ I+, where each sub-
interval has one-third of the L10

t,x norm:∫
I

|u(t, x)|10 dx =
1
3

∫
I∗
|u(t, x)|10 � 1/η6 for I = I−, I0, I+.

Proposition 5.17 (Physical space localisation of energy at each time). Let
u, I0, N() be as above. Then for every t ∈ I0, there exists an x(t) ∈ R3 such that

(5.36)
∫
|x−x(t)|≤C(η1)/N(t)

|∇u(t, x)|2 dx �η1 1

and

(5.37)
∫
|x−x(t)|≤C(η1)/N(t)

|u(t, x)|p dx �p,η1 N(t)
p
2−3

for all 1 < p <∞. In particular we have large potential energy

(5.38)
∫
|x−x(t)|≤C(η1)/N(t)

|u(t, x)|6 dx �η1 1,

We also have the localisation property

(5.39)
∫
|x−x(t)|>1/(η2N(t))

|∇u(t, x)|2 dx � η1.

28This restriction is analogous to the trick of excluding the exceptional intervals in Propo-
sition 5.12. Indeed we will not need to care about exceptional intervals again once we have this
proposition.
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The properties (5.36), (5.37), (5.38) were already essentially obtained in Propo-
sition 5.12, modulo some technical details such as exceptional intervals, and the fact
that the estimates there only held for a significant fraction of each interval Ij rather
than being universal for all t in the middle interval29 I0 as it is now. The main
novelty is (5.39). The justification for this estimate was that if it failed at some
time t0, then (after the same type of pigeonholing tricks used to establish Proposi-
tion 5.15) one can split u(t0) = v(t0) + w(t0), where v(t0) is supported near x(t0)
(using the natural scale of 1/N(t)) and w(t0) is supported away from x(t0). One
can then evolve v and w globally by (5.2) using the induction hypothesis, using
approximate finite speed of propagation properties as well as the pseudoconformal
law to ensure that v and w do not interact very strongly, and then use the stability
theory to paste v and w back together to obtain an L10

t,x bound on u, contradicting
the blowup hypothesis.

The functions x(t) andN(t) are essentially continuous versions of the quantities
xj and Nj introduced in the preceding sections; one can more or less just pretend
that x(t) = xj and N(t) = Nj for all t ∈ Ij ; see Exercise 5.18 and Figure 12.

The above localisation properties imply a useful inequality:

Proposition 5.18 (Reverse Sobolev inequality). Let u be a minimal blowup
solution. Then for every t0 ∈ I0, any x0 ∈ R3, and any R ≥ 0,

(5.40)
∫
B(x0,R)

|∇u(t0, x)|2 dx � η1 +Oη1,η2(
∫
B(x0,Oη1,η2(R))

|u(t0, x)|6 dx)

The deduction of this proposition from Proposition 5.17 is rather easy and is left
as an exercise. This should be compared with (5.16), which gives a bound ofO(1) for
the left-hand side of (5.40). Thus, we can assume the kinetic energy is small, except
on those regions of space on which the potential energy is also large. This reverses
the normal Sobolev embedding, which would control the potential energy by the
kinetic energy. For general functions, one cannot hope to control a higher-order
term by a lower-order one, but the strong localisation properties of the minimal
energy blowup solutions makes this possible30. This reverse Sobolev inequality plays
a vital role in establishing the frequency-localised interaction Morawetz inequality
that we discuss in the next section.

Exercise 5.17. Prove the inequality M(E1 +E2)10 ≥M(E1)10 +M(E2)10 for
any E1, E2 ≥ 0. (Hint: take two global solutions of energies less than E1 and E2

and with near-maximal L10
t,x norm, translate them to be very far apart in space,

and then superimpose them to create an approximate solution. Then use Lemma
3.31 to recover an exact solution.) This shows that M(E) grows at least as fast as

29The restriction to this middle interval is for a minor technical reason; when establishing
the concentration property (5.38) via the induction hypothesis argument, it can happen that the
solution can only be extended to one side of the time t0, and so one needs the L10

t,x norm of u to

be large on both sides of t0 in order to obtain a contradiction. See [Bou7], [CKSTT11].
30Indeed, the infinite dimensional phase space of H1

x(R3) has essentially been replaced with
a finite-dimensional one, as the state of a solution at a time t is now determined primarily by its
frequency N(t) and its position x(t). Indeed, after quotienting out by the scaling and translation

symmetries, the phase space becomes essentially compact, which explains why the kinetic and po-
tential energies (which are scale-invariant, translation-invariant norms) are now comparable. This
compactness of near-minimisers can be viewed as a “Palais-Smale” property, thus the arguments
here can be viewed as dispersive counterparts of elliptic variational theory.
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E1/10, though we expect M to in fact grow much, much faster than this. (In the
linear case, M(E) grows like E1/2.)

Exercise 5.18. Let u be a minimal energy blowup solution, and let Ij be an
unexceptional interval (setting η = η0) contained in I0. Show that N(t) ∼η0 Nj
and |x(t) − xj | �η0,η1,η2 1/Nj for all t ∈ Ij .

Exercise 5.19. [CKSTT11] Deduce Corollary 5.16 from Proposition 5.15.

5.5. Global Morawetz and non-concentration of mass

The ability to concentrate and to use your time well is everything.
(Lee Iacocca, “Iacocca: An Autobiography”)

To summarise the situation so far, we are analyzing a minimal energy blowup
solution u to (5.2) on an interval I0, aiming to establish a global L10

t,x bound and thus
a contradiction. For all times t ∈ I0, there is a frequency N(t) and a position x(t),
such that almost all the energy of u is localised to frequencies ∼ N(t) and positions
x(t) + O(1/N(t)), with the solution having magnitude roughly N(t)1/2 near x(t);
see Figure 12. One can use tools such as spatially localised mass conservation to
obtain some local Lipschitz-type control on N(t); and to replace this continuous
model of the solution by the more discrete sequence of bubbles studied earlier;
however, the main task is to obtain global-in-time control on N(t) (or equivalently
on the total number of bubbles present in the solution). As before, we need some
sort of localised almost conservation law for the mass, and some sort of localised
interaction Morawetz inequality for the momentum.

Let us begin with the Morawetz inequality. We have already asserted the type
of estimate we want, which is (5.29). We heuristically justified this estimate by
pretending that the high frequency component P>Nu of the solution behaved as if
it itself solved the equation (5.2). Let us see to what extent this is accurate. We
first (3.9) to rescale N to equal 1, and write Phi := P>1, Plo := P≤1, uhi := Phiu,
and ulo := Plou. Then by applying Phi to (5.2) we see that uhi obeys the equation

(i∂t + ∆)uhi = Phi(|u|4u);

expanding u = uhi + ulo, where ulo := P≤Nu, we obtain
(5.41)

(i∂t+∆)uhi = |uhi|4uhi−Plo(|uhi|4uhi)+
4∑
j=1

Phi(O(|uhi|j |ulo|4−j))+Phi(|ulo|4ulo).

Thus, uhi obeys a perturbed version of (5.2), with a number of additional forcing
terms; a self-interaction term Plo(|uhi|4uhi) from the high frequencies, a pure forc-
ing term Phi(|ulo|4ulo) from the low frequencies, and cross-terms O(ujhiu

4−j
lo ) that

interact high and low frequencies together. The self-interaction term, one can hope
to ignore by some sort of bootstrap argument, assuming as a bootstrap hypothesis
that uhi was already controllable in L4

t,x. (From (5.16) we already know uhi is
in L∞

t L
6
x, so that places |uhi|4uhi in L2

tL
1
x at least. The Plo projection can then

be used via Bernstein’s inequality (A.5) to get a respectable amount of spacetime
estimates on this quantity, for instance in the Strichartz norm L2

tL
6/5
x .) But for the

other terms, it appears that one needs some smallness condition on ulo. In order
to do this, it seems necessary that we keep the energy of ulo small; in light of the
frequency localisation properties in Corollary 5.16, we need the frequency cutoff N
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employed here to be less than the frequencies N(t) of the bubbles of concentration.
More precisely, define Nmin := inft∈I∗ N(t); since u is Schwartz one can easily verify
that Nmin is non-zero.

Proposition 5.19 (Frequency-localised interaction Morawetz estimate). [CKSTT11]
Let u be a minimal blowup solution. Then for all N∗ < c(η3)Nmin

(5.42)
∫
I0

∫
|P≥N∗u(t, x)|4 dxdt � η1N

−3
∗ .

It should be emphasised that unlike other Morawetz estimates (e.g. (3.42) or
(5.27)), this estimate is not an a priori estimate; it is not proved for all solutions
to NLS of a certain energy, but rather only to minimal energy solutions31.

We now briefly discuss the proof of this proposition. We rescale N∗ = 1 and
define uhi, ulo as before. The hypothesis N∗ < c(η3)Nmin ensures that ulo has very
small energy, and also that uhi has small mass (this is the source of the η1 gain on
the right-hand side of (5.42), which turns out to be crucial to closing the argument).
It turns out that this, combined with the Strichartz perturbation theory, implies a
satisfactory global Strichartz control on ulo in the Ṡ1(I0 × R3) norm; indeed, by
applying Plo to (5.2) one obtains an equation of the form

(i∂t + ∆)ulo = Plo(|uhi|4uhi) + Plo(O(|uhi|4|ulo|)) + . . .

where the terms . . . are quadratic or higher in ulo. The first term, as already men-
tioned earlier, can be handled by a bootstrap L4

t,x hypothesis on uhi and Bernstein’s
inequality (A.5); all the other terms can be handled by Strichartz type estimates,
the key being that there is a small factor η1 on the right-hand side of (5.42) that
keeps the nonlinear effects small compared to the linear evolution. Now that ulo
is well controlled, one can now hope that the error terms in (5.41) give suitably
small contributions to (5.42). This turns out to be the case in four and higher
dimensions (with some obvious adjustments to the exponents and numerology); see
[RV], [Vis]. However, in three dimensions it turns out that the u4

hiulo type terms
give an error term32, even using the L4

t,x bootstrap hypothesis on uhi and the Ṡ1

control on ulo. To resolve this, one is forced to localise the virial weight a(x) used
in the Morawetz inequality to a ball of some parameter R ≥ 1 which one chooses
later (which has the effect of restricting |x − y| to be O(R) in the error terms in
the interaction Morawetz inequality); this makes the previously troublesome error
terms manageable, but at the cost of introducing some new error terms, the worst
of which takes the form

1
R

∫
I0

∫ ∫
|x−y|�R

|uhi(t, y)|2|∇uhi(t, x)|2 dxdydt.

This is a “top order” term, being quadratic in the derivatives of uhi and arising
from the linear rather than the nonlinear portion of the equation. Such a term is
ordinarily not estimatable. However, with the aid of the reverse Sobolev inequality

31Indeed, since we will ultimately show that these minimal energy solutions do not exist, this
estimate ultimately does not apply to any solutions whatsoever! It is perhaps better to think of
this estimate as a specialised tool whose sole purpose is to show that certain scenarios, such as
the pseudosoliton in Figure 8, are impossible.

32More precisely, there is a term looking roughly like
�

I0

�
R3

�
R3 u

5
hi(t, x)ulo(t, x)uhi to

(5.42) arising from failure of momentum conservation that cannot be easily controlled; all other
terms give manageable contributions.
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in Proposition 5.18, one can replace this error term with the lower-order and more
nonlinear term

(5.43) Oη1,η2(
1
R

∫
I0

∫ ∫
|x−y|�R

|uhi(t, y)|2|uhi(t, x)|6 dxdydt)

plus another term which (oversimplifying slightly) takes the form

(5.44) η1
1
R

∫
I0

( sup
x∈R3

∫
B(x,R)

|uhi(t, y)|2 dy) dt.

These terms are still difficult to estimate purely from the spacetime control available
on uhi and ulo. However there are a few more tricks that can resolve these terms.
Firstly, we return to the derivation of the interaction Morawetz inequality (3.42).
An inspection of the proof shows that there is a term in (3.41) that was simply
discarded as being non-negative; in the current notation, this term takes the form

(5.45)
∫
I0

∫
R3

∫
R3

|uhi(t, y)|2|uhi(t, x)|6
|x− y| dxdydt.

We now save this term and observe that it is almost able to absorb the error term
(5.43) safely, except for the large implied constant in the Oη1,η2 notation. To resolve
this one needs to exploit the fact that the parameter R is at our disposal. Averaging
(5.43) over a sufficiently large number of values of R, we can bound the average
value of (5.43) by (5.45) and thus dispose of this term.

It remains to control (5.44). Here there is no issue with implied constants, as the
η1 factor is safely small, but there is a problem in estimating this quantity in the first
place; it is demanding some sort of L2

t type control on uhi which is not immediately
deducible from the L4

t,x control that is already known for uhi. Strichartz estimates
are not well suited here as they cannot fully exploit the localisation to a ballB(x,R),
which is essential if one has any hope of estimating (5.44) effectively. It turns out
that the way to proceed here is to express uhi in Duhamel form,

uhi(t) = ei(t−t±)∆/2uhi(t±) +
∫ t±

t

ei(t−t
′)∆/2(. . .) dt′

for both endpoints t−, t+ of the interval I0, and multiply these two formulae to-
gether and use the explicit fundamental solution directly to estimate the integral
of |uhi(t, y)|2 on (a smoothed out cutoff function adapted to) the ball B(x,R). The
linear terms ei(t−t±)∆/2uhi(t±) enjoy good L2

t control thanks to Strichartz esti-
mates, so it is a matter of controlling the two Duhamel integrals. There is a phase
discrepancy between the two oscillatory integrals that arise in these formulae which
turns out to be crucial to make this strategy work, and thus conclude the Morawetz
estimate. See [CKSTT11] for details.

The frequency-localised interaction Morawetz estimate in Proposition 5.19 im-
plies some spacetime control on N(t), namely

(5.46)
∫
I0

N(t)−1 dt �η0,η1,η2,η3 N
−3
min,

or in terms of the bubble lifespan intervals Ij ,∑
j

|Ij |3/2 �η0,η1,η2,η3 (sup
j

|Ij |)3/2.
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This estimate (which is a partial substitute for (5.28)) is enough to exclude the
pseudosoliton scenario in Figure 7; more generally, it yields good control on the L10

t,x

norm of the solution as long as the ratioNmax/Nmin between the maximal frequency
Nmax := supt∈I0 N(t) and minimal frequency Nmin is bounded; see exercises.

It remains to exclude the scenario in which the ratio Nmax/Nmin is large. The
local mass concentration estimate in Lemma 5.13 already excludes some of these
scenarios, namely the rapid concentration of intervals as occurs for instance in
Figure 8. However, there is a final scenario which is not excluded either by the
interaction Morawetz or the local mass concentration estimate, which is that of a
slowly focusing pseudosoliton, as in Figure 9. Here, the solution is slowly shifting
its energy from low frequencies to high, thus reducing its local mass in the process,
but the rate of transfer is too slow to be in contradiction to estimates such as (5.26).
One may hope that the localisation properties from Corollary 5.16 may show that
the global mass conservation law is also being violated, but unfortunately while
the low frequencies (� N(t)) of the solution have small energy, they can have
extremely large mass, and so the global mass conservation law gives no effective
control (Exercise 5.20).

The solution, inspired by the machinery discussed in Section 3.9, is to localise
the mass conservation law in frequency rather in space, in particular showing that
the mass of the high frequencies is an almost conserved quantity. More precisely,
one shows

Lemma 5.20 (Some mass freezes away from low frequencies). [CKSTT11]
Suppose u is a minimal energy blowup solution, and let [tmin, tevac] ⊂ I0 be such
that N(tmin) = Nmin and N(tevac)/Nmin ≥ C(η5). Then for all t ∈ [tmin, tevac],

‖P≥η100
4 Nmin

u(t)‖L2
x(R3) � η1N

−1
min.(5.47)

Again, this is not an a priori estimate; to justify the mass conservation law
one needs as a hypothesis that the energy is evacuating from medium frequencies
Nmin to the very high frequency N(tevac), which in fact is in contradiction to mass
conservation and frequency localisation of energy. Thus this lemma, like Proposition
5.19, ultimately does not apply to any real solution; instead, it is showing another
scenario to be impossible, namely the one depicted in Figure 9.

With this lemma it is an easy matter to establish that Nmax/Nmin is bounded
(see exercises), which by preceding discussion implies the desired L10

t,x bound on u,
which gives Theorem 5.11. So it remains to prove the lemma.

Note that the mass of the high frequencies uhi := P≥η100
4 Nmin

u is controlled for
all times t ∈ I0. This long time control is possible because the frequency distri-
bution mass is much more constant than the spatial distribution; the dispersion
causes even the linear solution to move around greatly in physical space, but in
frequency space the linear equation does not alter the magnitude |ûhi(t, ξ)| of the
Fourier coefficients at all, only the phase. Thus the only concern is to control the
nonlinear component of the uhi evolution, and more precisely the interaction of uhi
with the low frequencies ulo = P<η100

4 Nmin
u. (If ulo were absent, then uhi would

essentially evolve by the NLS, and one would have perfect mass conservation.) One
can compute the total change in mass from tmin to tevac and obtains a number of
terms, of which the following is typical:

(5.48)
∫ tevac

tmin

∫
R3
O(u5

hi(t, x)ulo(t, x)) dxdt.
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Clearly, to control such terms one needs spacetime integrability on uhi and ulo.
The Morawetz inequality, Proposition 5.19, already gives some L4

t,x control on uhi,
and one can similarly obtain some Strichartz control on ulo, but this is not by itself
sufficient. To proceed further one needs some additional tricks. Firstly, one can
assume as a bootstrap hypothesis (working on a subinterval [tmin, t∗] of [tmin, tevac])
that one already has an almost conservation law for the mass on the interval of
interest; this is enough to localise N(t) to be comparable to Nmin on the interval
[tmin, t∗]. Since we already know that a bound on Nmax/Nmin is sufficient to control
the L10

t,x and thence Ṡ1
t,x norm of the solution, this gives a bound on the Ṡ1 norm of

u on the interval [tmin, t∗], but this bound is very large, of the order of Oη0,...,η4(1),
and inserting this bound into an expression such as (5.48) will give an estimate
which overwhelms the main term in the mass almost conservation computation. To
resolve this, we have to turn to an unusual source, namely the frequency evacuation
hypothesis N(tevac)/Nmin ≥ C(η5). This shows that at a time tevac in the distant
future (far beyond the interval [tmin, t∗] for which one currently controls the solution,
the energy has almost entirely left the low and medium frequencies, and one can
get a good bound such as η5 for the size of these frequency components. It is
then possible to evolve the (very) low frequencies of NLS backwards in time from
tevac, aided by the Morawetz control on uhi (which persists on the entire interval
[tmin, tevac]) to show that the very low frequencies are still extremely small (of size
O(η5) in Ṡ1 norm). This additional smallness turns out to be able to compensate
for the previous losses, and allows us to estimate terms such as (5.48) adequately.
This rather unintuitive and complicated scheme is summarised in Figure 14; we of
course refer the reader to [CKSTT11] for details.

Exercise 5.20. (Markus Keel, personal communication) Let ε,N0, T > 0 be
arbitrary. Give an example of a Schwartz function u ∈ C∞

t Sx([0, T ] × R3) which
conserves both the energy and the mass, with energy and mass O(1), such that for
each time t ∈ [0, T ] there is a frequency N(t) with the energy localisation properties

‖P<N(t)/100u(t)‖Ḣ1
x(R3) + ‖P>100N(t)u(t)‖Ḣ1

x(R3) ≤ ε,

and such that N(t) = 1 and N(T ) = N0. This example shows that energy and mass
conservation alone cannot prevent energy shifting from low to high frequencies,
even with frequency localisation of the energy. (Hint: work in Fourier space. The
solution should have a reservoir of mass at very low frequencies that can compensate
for the loss of mass in the “sliding bump” that is scaling its way from medium
frequencies to high frequencies.) Note that such an example requires a rather
unusual “conspiracy” between the very low and very high frequencies; the frequency
localised mass almost conservation law in the text is based around estimates that
ensure that the interactions between these frequencies are too weak to conspire in
this manner.

Exercise 5.21. [CKSTT11] Deduce (5.46) from Proposition 5.19 and Propo-
sition 5.17.

Exercise 5.22. [CKSTT11] Show that ‖u‖L10
t,x(I0×R3) �η0,...,η3,Nmax/Nmin 1.

(It is convenient to proceed here using the intervals Ij rather than the continuous
functions N(t).)

Exercise 5.23. [CKSTT11] Use Lemma 5.20 and Corollary 5.16 to deduce
that Nmax/Nmin = Oη1,η4,η5(1). (Hint: argue by contradiction. There must be a
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Figure 14. A schematic depiction of the global mass almost con-
servation law. A continuity argument allows one to push t∗ up to
tevac, obtaining the contradiction.

time tmin where N(t) = Nmin, and a time tevac where N(tevac) = Nmax. By time
reversal symmetry one can take tevac ≥ tmin. Now use Lemma 5.20 and Corollary
5.16 to obtain the contradiction.)



CHAPTER 6

Wave maps

It is the pull of opposite poles that stretches souls. And only stretched
souls make music. (Eric Hoffer)

We now turn to the final equation studied in this monograph, namely the wave
maps equation1. This equation simultaneously generalises the free wave equation,
the geodesic flow equation, and the harmonic map equation, and also is connected
with certain special cases of Einstein’s equation of gravity. It is perhaps the sim-
plest2 of the geometric wave equations - the small handful of nonlinear wave equa-
tions which are naturally associated to the objects in differential geometry such as
Riemannian (or Lorentzian) manifolds, vector bundles on these manifolds, maps be-
tween the manifolds, and connections and sections on the bundles. Other examples
of geometric wave equations (in increasing order of difficulty for analysis) include the
Maxwell-Klein-Gordon equation, the (hyperbolic) Yang-Mills equation, the (hyper-
bolic) minimal surface equation, and the Einstein equation; we will not discuss these
important equations here. As such, these equations lie at the interface3 of analysis
and geometry. To obtain a truly satisfactory theory of these equations (especially in
critical settings), one must combine techniques and ideas from both fields together;
but here an interesting tension arises, because analytic tools (such as the Fourier
transform) tend to only work in the presence of coordinates, while geometric tools
tend to only work properly if they require no coordinates whatsoever. The best
way4 we currently have to resolve this impasse is to choose canonical coordinates
(or gauges), that are both geometrically natural and analytically tractable.

Most wave equations have elliptic and parabolic counterparts, and the geomet-
ric wave equations are no exception; see Table 1. For instance, the Einstein wave

1Wave maps are also known as Minkowski-harmonic maps or nonlinear sigma models.
2The nonlinear wave equation (NLW) is arguably also a geometric wave equation, particularly

at the conformal power p = p
Ḣ

1/2
x

= 1 + 4
d−1

, and is certainly simpler to study than the wave

maps equation. But here, the geometry is that of scalar fields on flat Minkowski space, and so
one does not encounter such fundamental geometric concepts as curvature when analyzing this
equation. See [SStru2] for further discussion; see also Exercise 6.10.

3Remarkably, these equations also play a fundamental role in modern physics, as they are
essentially the only (classical) equations of motion that are compatible with covariance principles
such as Einstein’s principle of general relativity. While the connection to physics is of undoubted
importance, especially when analyzing the Einstein equation, we will not discuss it in this text.

4It may be that an ultimately better way to proceed would be to develop analytic tools that
are more coordinate independent, so that no gauges are required in the first place. This would
probably mean discarding (or radically re-interpreting) such fundamentally useful tools as the

Fourier transform. This looks like a monumental, though worthwhile, task, which is not likely
to be achieved in the near future. A more modest and practical goal would be to find alternate
proofs of analytic results (such as Strichartz estimates) that can currently only be proven by
Fourier-analytic techniques.

271
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Table 1. Some objects in Riemannian geometry and their most
naturally associated equations of elliptic, parabolic, and hyper-
bolic type, some of which have “mass” terms. If the underlying
Riemannian geometry is also Kähler, then there are complex ana-
logues of some of these equations, including a Schrödinger type
flow, but we will not discuss those here. One can also consider cou-
pled systems such as Maxwell-Klein-Gordon, Maxwell-Dirac, etc.
The reductions of the U(1) connection equations to the Poisson or
heat equation require using the Coulomb gauge.

Object Elliptic Parabolic Hyperbolic
Scalar fields, free Laplace/Helmholtz Heat equation Wave/Klein-Gordon

nonlinear Ground state Reaction-diffusion NLW/NLKG
Sections Covariant Laplace Covariant heat Covariant wave

of spinors Elliptic Dirac Dirac heat flow Hyperbolic Dirac
Maps Harmonic map Harmonic map heat flow Wave map
Connections Elliptic Yang-Mills Yang-Mills heat flow Hyperbolic Yang-Mills

on U(1) Poisson equation Heat equation Maxwell’s equations
Surfaces Minimal surface Mean curvature flow 1 + d minimal surface

1-dimensional Geodesics Curve shortening flow 1 + 1 minimal surface
Manifolds Ricci flat/Einstein Ricci flow Einstein equation

equation (with cosmological constant) has the Einstein metric equation as the ellip-
tic counterpart, and the Ricci flow as the parabolic counterpart, both of which play
an important role in geometry (the latter, for instance, being used in the recent
resolution of the Poincaré conjecture). For wave maps, the elliptic counterpart is
the harmonic map equation and the parabolic counterpart is the harmonic map
heat flow. As usual, our understanding of the elliptic and parabolic equations is
considerably more advanced than for the more difficult hyperbolic equation5, and
catching up with the analogous elliptic and parabolic theory is a major motivating
force that drives progress in the wave equations. Indeed, the theory for wave maps
is far from complete, despite much recent progress (and despite a well-developed
theory of harmonic maps and harmonic map heat flow to serve as guideposts);
while we do have a satisfactory theory for small critical data, and a local theory
for subcritical data, we are still missing the natural analogue of the main results
of the previous chapter for this equation, namely an unconditional global existence
theory for smooth wave maps of arbitrarily large energy into negatively curved tar-
gets. Nevertheless, the techniques accumulated so far show promise to being able
to tackle this problem in the near future.

Let us now begin defining what a wave map is. Throughout this chapter, in
addition to the Minkowski space R1+d with Minkowski metric gαβ, which is our
domain manifold, we suppose that we are also given a target manifold M = (M,h),
which is a smooth Riemannian manifold M of some finite dimension m, endowed

5This is largely due to much better smoothing properties of the linear component of the

equation in the elliptic and parabolic case, as well as a much richer set of monotonicity formulae
and related positivity properties such as comparison principles and maximum principles. Wave
equations have to contend with persistent (but dispersive) oscillations, which have quite a different
behaviour than the more regular solutions encountered in elliptic and parabolic equations.
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with a Riemannian metric6 hab. We can view M in a variety of ways; either
via an intrinsic coordinate system p = pa = (p1, . . . , pm), or via an embedding
into an ambient extrinsic space such as Euclidean or Minkowski space, or in an
abstract, coordinate-free manner; we will utilise each of these viewpoints as is
convenient. We isolate three key target manifolds M of interest; the sphere Sm :=
{x ∈ Rm+1 : |x| = 1} ⊂ Rm+1 with the Riemannian metric h induced from the
ambient Euclidean metric, the Euclidean space Rm with the usual metric, and
the hyperbolic space Hm = {(t, x) ∈ R1+m : t =

√
1 + |x|2} ⊂ R1+m with the

Riemannian metric h induced from the ambient Minkowski metric. These are the
universal m-dimensional manifolds of constant curvature κ = +1, κ = 0, and
κ = −1 respectively; the curvature parameter κ corresponds, roughly speaking,
to the focusing parameter −µ from previous chapters, thus wave maps on the
sphere are analogous to focusing equations and wave maps on hyperbolic space
to defocusing equations7. It is thus unsurprising that the global theory is better
understood for hyperbolic space than it is for the sphere, although the sphere has
some obvious advantages as a target manifold, most notably its compactness.

By a map we mean a (suitably regular) function φ : R1+d → M from the
domain to the target; one can view a map as describing the trajectory of a d-
dimensional surface that is somehow immersed in M . There are two dimensions in
play here, namely d and m, but the dimension d is considerably more important
in the analysis. Just as manifolds can be viewed in many different ways, so can
wave maps; we begin with a variational formulation (ignoring for now issues of
integrability or regularity), and pass on to PDE formulations, both intrinsic and
extrinsic, differentiated and undifferentiated, later. As we shall see, all of these
perspectives on the wave map equation have their strengths and weaknesses, and
it is important to be able to work with them all.

Variationally, a wave map is a map which is a formal critical point of the
Lagrangian

(6.1)
1
2

∫
R1+d

〈∂αφ(t, x), ∂αφ(t, x)〉h(φ(t,x)) dg.

The variational perspective is especially useful for uncovering symmetries and con-
servation laws of wave maps. Indeed, in this (manifestly geometric) formulation it
is clear that the notion of a wave map is independent of the choice of coordinates
on the target M , and in fact also independent of the choice of coordinates8 on the

6We shall use Roman letters a, b, c = 1, . . . ,m to index the coordinates on the target manifold
M (raised and lowered using the metric h), reserving the Greek letters α, β, γ = 0, . . . , d for the
spacetime coordinates of the domain R1+d (raised and lowered using the metric g), and the
Roman letters i, j, k = 1, . . . , d for the spatial coordinates of the domain. Points in the base space
R1+d will be denoted (t, x) or xα, while points on the target M will be denoted p or q. To avoid
the overproliferation of coordinates, we shall often use coordinate-free notation for the target M ,
for instance using 〈v, w〉h(p) := hab(p)v

awb to denote the inner product of two tangent vectors

v, w ∈ TpM to M at p with respect to the metric h.
7The analogy is somewhat imperfect, however; for instance, the curvature does not explicitly

appear in the conserved energy, in contrast to NLS or NLW. The focusing (resp. defocusing) nature
of positive (resp. negative) curvature will become more apparent when we study the heat flow
associated to this problem in Section 6.4; see also Exercise 6.10 for another concrete connection.

8Indeed, one can easily define wave maps on more general curved domains than flat Minkowski
space; however the theory for flat Minkowski space domains is already so complicated that we will
not attempt to discuss this generalisation here!
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domain R1+d as long as one transforms the metric gαβ accordingly. In particular,
we see that the notion of a wave map is invariant under isometries of either the
domain or target; this already gives the symmetries of spacetime translation invari-
ance, rotation symmetry, time reversal symmetry, and Lorentz symmetry. We also
see that wave maps are invariant under the scaling

(6.2) φ(t, x) �→ φ(
t

λ
,
x

λ
)

for any λ > 0, since this scaling merely multiplies the Lagrangian by a constant
λd+1. Standard Lagrangian mechanics (Exercise 6.8) also shows that the stress-
energy tensor

(6.3) Tαβ := 〈∂αφ, ∂βφ〉h(φ) − 1
2
gαβ〈∂γu, ∂γu〉h(φ)

is divergence free:

(6.4) ∂αTαβ = 0.

In particular we see (formally, at least) that wave maps enjoy a conserved energy

E[φ[t]] :=
∫
Rd

T00(t, x)dx

=
∫
Rd

1
2
|∂tφ(t, x)|2h(φ) + |∇φ(t, x)|2h(φ) dx.

(6.5)

Comparing the energy (6.5) with the scaling (6.2), we conclude that the wave maps
equation is subcritical when d = 1, critical when d = 2, and supercritical when
d > 2. (The numerology is thus somewhat similar to the NLW in the limiting case
p = ∞.)

Now let us study wave maps via partial differential equations. We first consider
the flat case M = Rm. In this case the Lagrangian becomes

1
2

∫
R1+d

∂αφ(t, x) · ∂αφ(t, x) dxdt

and the associated Euler-Lagrange equations become the free wave equation:

�φ = ∂α∂αφ = 0.

Thus a wave map is a natural generalisation of a solution to the free wave equation
to maps into curved targets, and physically represents the free evolution of a surface
immersed in M (imagine for instance a string or a drum surface stretched across
M). This is especially apparent in the zero-dimensional case d = 0. In this case,
a map is just the trajectory of a particle, t �→ φ(t). The flat space wave equation
is now just Newton’s first law of motion ∂ttφ = 0. For curved targets, Newton’s
first law must be modified to take into account of the curvature (otherwise the
particle would simply fly off the manifold, if the manifold was embedded in an
ambient Euclidean space). In any event, the concept of a double derivative ∂ttφ
is not invariant under change of coordinates, and needs to be replaced by a more
geometric equation. The Lagrangian in the 0-dimensional case is essentially the
integrated kinetic energy of the particle,

−1
2

∫
R

|∂tφ(t)|2h(φ(t)) dt
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(compare with the length
∫
R
|∂tφ(t)|h(φ(t)| dt of the trajectory). In coordinates, it

is

(6.6) −1
2

∫
R

hab(φ(t))∂tφa(t)∂tφb(t) dt,

and the associated Euler-Lagrange equation becomes (after some rearranging) the
geodesic flow equation

(6.7) ∂ttφ
a(t) = −Γabc(φ)(∂tφb(t))(∂tφc(t)),

where the Christoffel symbol9 Γabc is defined on points p ∈M by the formula

Γabc(p) := had(p)(∂bhdc(p) + ∂chdb(p) − ∂dhbc(p))

and had is the inverse of the metric had.
Define a section of φ∗TM to be a vector field Ψ : R → TM such that for each

time t, Ψ(t) is a tangent vector in Tφ(t)M ; in coordinates, we can write Ψ(t) = Ψa(t).
For example, ∂tφ is a section of φ∗TM . We can rewrite (6.7) more invariantly as

(φ∗∇)t∂tφ = 0,

where the covariant time derivative (φ∗∇)t is defined on sections Ψ(t) = Ψa(t) of
φ∗TM by

(φ∗∇)tΨa(t) := ∂tΨa(t) + Γabc(∂tφ
b(t))Ψc(t).

Geometrically, one can interpret (φ∗∇)tΨ as measuring the amount that Ψ(t) devi-
ates in time from being transported by parallel transport along the direction ∂tφ(t)
(Figure 1).

More generally, the Euler-Lagrange equation for (6.1) in general dimension d
can be written in local coordinates as the nonlinear wave equation

(6.8) �φa(t) = −Γabc(φ)(∂αφb)(∂αφc),

or covariantly as

(6.9) (φ∗∇)α∂αφ = 0

where the covariant derivative (φ∗∇)α is defined on sections Ψ(t, x) = Ψa(t, x) of
φ∗TM (thus Ψ(t, x) ∈ Tφ(t,x)M for all (t, x) in the domain of φ) by

(6.10) (φ∗∇)αΨa := ∂αΨa + Γabc(∂
αφb)Ψc;

we also define the lowered derivative (φ∗∇)α in the usual manner. The equation
(6.8) provides a rigorous definition for what it means for a smooth map φ : R1+d →
M to be a wave map; very shortly we shall also give a number of definitions which
are equivalent, at least for smooth maps.

One can also view the wave map equation in extrinsic coordinates (Exercise
6.2). For instance, a smooth map φ : R1+d → Rm+1 into a Euclidean space Rm+1

is a wave map to the sphere Sm if φ · φ = 1 (so φ lies on the sphere) and φ obeys
the nonlinear wave equation

(6.11) �φ = −φ(∂αφ · ∂αφ)

9Despite appearances, Γ is not a rank three tensor, as it transforms differently from such
under change of coordinates. Instead, Γ is the difference of two connections on the tangent bundle
of TM , namely the Levi-Civita connection ∇ and the connection d associated to the trivialisation
of the tangent bundle induced by the coordinate system.
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φ φ

Ψ (t)

(t) (t+dt)

φ ∆*
t
Ψ   (t)

Ψ (t+dt)

dt

M

Figure 1. An infinitesimal viewpoint of the covariant derivative.
One uses parallel transport to bring the tangent vector Ψ(t + dt)
from Tφ(t+dt)M to Tφ(t)M , where it is then compared against Ψ(t).

or in spacetime coordinates

(6.12) −∂ttφ+ ∆φ = −φ(−|∂tφ|2 + |∇φ|2).
In the d = 0 case, this is just Newton’s first law with the appropriate centripetal
force required to keep φ on the sphere:

∂ttφ = −|∂tφ|2φ.
In higher dimensions, the time derivative of φ exerts a centripetal force on the wave
map, while the spatial gradient of φ exerts a centrifugal force. As we shall see later,
there is a cancellation effect between these two forces (cf. Exercise 2.66) which leads
to the wave map equation being better behaved than one might naively expect.

Similarly, a wave map φ : R1+d → R1+m into a Minkowski space R1+m is a
wave map to the hyperbolic space Hm if 〈φ, φ〉R1+m = 1 (where 〈, 〉R1+m is the
Minkowski inner product), the e0 component φ0 of φ is positive, and φ obeys the
nonlinear wave equation

(6.13) �φ = −φ〈∂αφ, ∂αφ〉R1+m .

Wave maps which are constant in time are known as harmonic maps ; covari-
antly, these are maps φ : Rd →M such that

(φ∗∇)j∂jφ = 0.

These are the natural analogue of harmonic functions, but with the target being
a curved manifold rather than a vector space. For wave maps, harmonic maps
(and Lorentz transforms thereof) play the role that solitons do in equations such as
NLS and KdV. Harmonic maps themselves generalise geodesics, which corresponds
to the one-dimensional case d = 1. Harmonic maps play a fundamental role in
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both differential geometry and differential topology, but we will not pursue these
connections here.

The theory of wave maps is by now rather extensive. We will not attempt
to comprehensively survey all the results here, but refer the reader to the book
[SStru2] and to the survey articles [Sha], [Tat5], [Tao10] for more discussion, in
addition to the other references given in this section. The theory of harmonic maps
is incomparably more extensive still; see for instance [EL], [EL2], [SY].

Exercise 6.1. Verify that (6.7) is indeed the formal Euler-Lagrange equation
for (6.6), and more generally that (6.8) is the formal Euler-Lagrange equation for
(6.1).

Exercise 6.2 (Extrinsic formulation of wave maps). Suppose that a smooth
m-dimensional manifold M ⊂ Rm+1 is defined by an equation M := {x ∈ Rm+1 :
f(x) = 0}, where f : Rm+1 → R is a smooth function such that the magnitude
|∇f | of the gradient never vanishes on M , with M given the Riemannian metric
induced from the ambient Euclidean one. Let φ : R1+d →M ⊂ Rm+1 be a smooth
map, thought of as a vector field taking values in Rm+1 with f(φ) = 0. Show that
the following are equivalent:

(i) φ is a wave map.
(ii) �φ(t, x) is parallel to the unit normal ∇f(φ)

|∇f(φ)| of M at φ(t, x) for every
t, x.

(iii) φ solves the equation

�φ = − ∇f(φ)
|∇f(φ)|2∇

2f(φ)(∂αφ, ∂αφ)

where we view the Hessian ∇2f(φ) as a quadratic form acting on the
vectors ∂αφ and ∂αφ. (The expression ∇f

|∇f |2∇2f is essentially the second
fundamental form of M .)

(Hint: it is more convenient to work directly with the variational formulation via
Lagrange multipliers than via intrinsic coordinates.) Observe the same is true
when M is a spacelike surface embedded in a Minkowski space R1+d with the
induced Riemannian metric, as long as the gradient ∇f and its length |∇f | are
now interpreted using the Minkowski metric, as is the Hessian ∇2f . Conclude the
formulations (6.11), (6.13).

Exercise 6.3 (Weak formulation of wave maps). Show that a smooth map
φ : R1+d → Rm+1 is a wave map into the spherical target Sm if and only if
φ · φ = 1 and ∂α(φ∧ ∂αφ) = 0, where ∧ is the usual wedge product. Use Noether’s
theorem to relate this formulation to the rotational symmetry of the sphere Sm.
This formulation has the advantage of being well-defined in the sense of distributions
as long as φ has locally finite energy. This can be used, together with a suitable
viscosity perturbation of the wave map equation, to construct global weak solutions
of wave maps in any dimension, at least for spherical targets; see [Sha2]. However,
such solutions can develop singularities in finite time, at least in higher dimensions
d > 2.

Exercise 6.4 (Persistence of the sphere constraint). Let φ : R1+d → Rm+1 be
a classical solution to the nonlinear wave equation (6.11). Show that if the initial
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data φ[0] = (φ(0), ∂t(0)) obeys the conditions

φ(0, x) · φ(0, x) = 1; φ(0, x) · ∂tφ(0, x) = 0

(i.e. the map φ stays on the sphere to first order at t = 0), then we have

φ(t, x) · φ(t, x) = 1; φ(t, x) · ∂tφ(t, x) = 0

for all times t, and φ is a wave map into the target Sm. (Hint: Apply a Gronwall
argument to the energy of |φ|2 − 1. Compare also Exercise 1.12.) Establish an
analogous result for wave maps into Hm, or the maps in Exercise 6.2.

Exercise 6.5 (Canonicity of Levi-Civita connection). If X = Xa is a smooth
vector field on M (thus Xa(p) ∈ TpM for every p ∈M) then we define the covariant
derivatives ∇bX

a of X for each b = 1, . . . ,m in coordinates by the formula

∇bX
a := ∂bX

a + ΓabcX
c;

similarly, if λ = λa is a smooth one-form on M (thus λa(p) ∈ T ∗
pM for every p ∈M)

we define
∇bλa := ∂bλa − Γcbaλc.

We raise and lower indices in the usual manner, thus ∇a := hab∇b. Verify the
following properties:

• (Connection property) The operator ∇b is linear on vector fields and on
one-forms. Also, for any smooth vector field X , smooth one-form λ, and
smooth scalar field f : M → R, we have the Leibnitz rules

∇b(fX) = (∂bf)X + f(∇bX)

∇b(fλ) = (∂bf)λ+ f(∇bλ)

∂b(Xaλa) = (∇bX
a)λa +Xa(∇bλa).

• (Respect of metric) For any smooth vector fieldsX,Y , we have the identity

∂b〈X,Y 〉h = 〈∇bX,Y 〉h + 〈X,∇bY 〉h.
(In other words, ∂bh = 0.) Related to this, show that

∂a(hbcXc) = hbc∂aX
c and ∂a(hbcλc) = hbc∂aλc

for any smooth vector field X and smooth one-form λ; thus covariant
differentiation commutes with raising and lowering of indices.

• (Zero torsion property) For any smooth function f : M → R, we have

∇a∂bf = ∇b∂af

and similarly
∇a∂bf = ∇b∂af.

Furthermore, show that the Christoffel symbol Γabc is in fact the unique symbol
with these properties. (Hint: if there are two such symbols, inspect the difference
of these two, and then establish some symmetry and antisymmetry properties of the
resulting object after lowering the a index.) This gives a coordinate-independent
way to define the Levi-Civita connection ∇.
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Exercise 6.6. If X,Y are two smooth vector fields on M and f a smooth
function, let ∇XY denote the covariant derivative ∇XY := Xa∇aY , let ∂X denote
the differential operator ∂Xf := Xa∂af , and let [X,Y ] denote the commutator of
X and Y interpreted as differential operators, thus

∂[X,Y ]f = [∂X , ∂Y ]f.

Verify the zero torsion property

[X,Y ] = ∇XY − Y∇YX

and the respect of metric property

∂Z〈X,Y 〉h = 〈∇ZX,Y 〉h + 〈X,∇ZY 〉h.
Exercise 6.7 (Pullback of Levi-Civita connection). Let φ : R1+d → M be a

smooth map, and let X be a smooth vector field on M . Verify the chain rule

(φ∗∇)α(X · φ) = (∂αφa)(∇aX) ◦ φ.
Also, for any smooth sections Ψ, Ψ̃ of φ∗TM , verify the presevation of metric prop-
erty

(6.14) ∂α〈Ψ, Ψ̃〉h(φ) = 〈(φ∗∇)αΨ, Ψ̃〉h(φ) + 〈Ψ, (φ∗∇)αΨ̃〉h(φ)

and the zero torsion property

(6.15) (φ∗∇)α∂βφ = (φ∗∇)β∂αφ.

Use this to deduce the covariant formulation (6.9) directly as the Euler-Lagrange
equation for (6.1), without recourse to coordinates. This computation should be
compared with Exercise 6.1 to contrast the coordinate and the coordinate-free ap-
proaches.

Exercise 6.8. Let φ : R1+d → M be a smooth wave map. Verify the conser-
vation law (6.4) (and hence conservation of (6.5), given suitable decay conditions)

(i) using the variational formulation (as in Exercise 2.58);
(ii) using the intrinsic coordinate formulation (6.8);
(iii) using the explicit extrinsic coordinate formulations (6.11), (6.13) for the

targets Sm, Hm;
(iv) using the general extrinsic coordinate formulation in Exercise 6.2;
(v) using the covariant formulation (6.9) (using the preceding exercise).

This exercise should highlight the various strengths and weaknesses of the different
formulations.

Exercise 6.9 (One-dimensional wave maps). [Poh] Let φ : R1+1 → M be a
wave map in one spatial dimension. Verify that the stress energy is trace-free:

gαβTαβ = 0,

or in other words T00 = T11. Conclude that each component of the stress-energy
tensor solves the wave equation,

�Tαβ = 0

and that one has the transport equations

(∂t + ∂x)(T00 − T01) = (∂t − ∂x)(T00 + T01) = 0.

In particular, the magnitude of the tangent vector ∂tφ(t, x)−∂xφ(t, x) depends only
on t−x, and the magnitude of the tangent vector ∂tφ(t, x)+∂xφ(t, x) depends only
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on t+ x. Also conclude the sharp Huygens principle: if φ(0, x) is constant outside
of the interval {|x| ≤ R}, then for all later times t > R, φ(t, x) will be constant
outside of {|x| ≤ t+ R} and also constant inside of {|x| ≤ t−R} (though the two
constants may be different; see [Tao3]). These very strong pointwise conservation
laws are a symptom of the complete integrability of the wave maps equation in one
dimension; see [Poh], [SStra], [TU] for further discussion. These facts can also
be used to show that one-dimensional wave maps are illposed in any coordinate
system at the critical regularity Ḣ1/2

x (R) × Ḣ
−1/2
x (R); see [Tao3].

Exercise 6.10 (Equivariant wave maps). Let µ be a real number, and let M
be the surface {(s, α) ∈ R+ × R/2πZ : 1 + µ

2 s
2 > 0} with the metric10. dh2 =

ds2 + (s2 + µ
2 s

4)dα. (When µ = 0 this is just the Euclidean plane R2 in polar
coordinates; when µ > 0 it is a negatively curved surface of revolution; when µ < 0
it is a positively curved surface of revolution with a singularity.) Let φ : R1+2 →M
be a smooth map which is equivariant with respect to rotation, in the sense that

φ(t, r cos θ, r sin θ) = (ru(t, r), θ)

for all t ∈ R, r ∈ R+, θ ∈ R/2πZ and some smooth function u : R × R+ → R+.
Show that the Lagrangian (6.1) can be rewritten as∫

R

∫ ∞

0

(−1
2
|∂tu(t, r)|2 +

1
2
|∂ru(t, r)|2 +

µ

4
|u(t, r)|4) r3drdt

Conclude that φ is a wave map if and only if the radial extension ũ : R1+4 → R+

of u, defined as ũ(t, x) := u(t, |x|), obeys the energy-critical four-dimensional NLW
�ũ = µ|ũ|2ũ. Thus the wave maps equation contains the (spherically symmetric)
energy-critical NLW as a special case; also we see the relationship between pos-
itive curvature and focusing (or negative curvature and defocusing). For further
developments of this theme, see [SStru], [ST], [ST2], [SStru2], [Stru3].

Exercise 6.11 (Explicit equivariant wave maps). [Sha2] Let φ : R1+d → Sd

be a smooth map which is equivariant in the sense that φ takes the form

φ(t, rω) = (sin(f(t, r))ω, cos(f(t, r))) ∈ Sd ⊂ Rd × R

for all r ∈ R+, ω ∈ Sd−1, and some smooth f : R × R+ → R. Show that φ is a
wave map if and only if

−∂ttf + ∂rrf +
(d− 1)
r

∂rf =
(d− 1) sin(f) cos(f)

r2
.

Conclude the explicit solutions f(t, r) = 2 arctan(r) when d = 2 and f(t, r) =
2 arctan( rt ) when d = 3 (and t �= 0). Conclude that the stationary stereographic
projection φ : R1+2 → S2 defined by

(6.16) φ(t, x) := (
2x

1 + |x|2 ,
|x|2 − 1
1 + |x|2 )

and the self-similar stereographic projection φ : R1+3 → S3 defined by

(6.17) φ(t, x) := (
2xt

t+ |x|2 ,
|x|2 − t2

t2 + |x|2 )

10In practice, there are some issues with using this metric at the endpoints where the weight
s2 + µ

2
s4 degenerates, and it is better to work with a weight g(s) which has better positivity and

integrability properties. In such cases one still obtains a semilinear wave equation, but with the
pure power nonlinearity |ũ|2u replaced by the more general nonlinearity; see e.g. [SStru2].
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are wave maps, with the latter developing a singularity at the spacetime origin
(t, x) = 0. The former is of course just a harmonic map, and it is no accident that
it is conformal; see Exercise 6.38.

Exercise 6.12 (Riemann curvature tensor). Let X be a smooth vector field
on a manifold M . Show that

∇a∇bX
c −∇b∇aX

c = RcabdX
d

for some smooth functionRcabd which is an explicit algebraic combination of Christof-
fel symbols, and first derivatives of Christoffel symbols (and thus also a combination
of up to two derivatives of the metric h); this tensor R is known as the Riemann
curvature tensor. If φ : R1+d →M is a smooth map, and Ψ is a smooth section of
φ∗TM , show that

(6.18) (φ∗∇α)(φ∗∇β)Ψc − (φ∗∇α)(φ∗∇β)Ψc = (∂αφa)(∂βφb)RcabdΨ
d.

Exercise 6.13 (Constant curvature). Let κ be a real number. We say that a
smooth manifold M has constant curvature κ if one has the identity

[∇X ,∇Y ]Z −∇[X,Y ]Z = κ(〈Y, Z〉hX − 〈X,Z〉hY )

for all smooth vector fields X,Y, Z, where we are using the coordinate-free notation
from Exercise 6.6. If M has constant curvature κ, show that the Riemann curvature
tensor from (6.12) takes the form

Rcabd = κ(hbdδca − hadδ
c
b)

where δ is the Kronecker delta. In particular, if φ : R1+d → M is a smooth map,
and Ψ is a smooth section of φ∗TM , show that

(φ∗∇α)(φ∗∇β)ψ − (φ∗∇α)(φ∗∇β)Ψ = κ[〈∂βφ,Ψ〉h(φ)∂αφ− 〈∂αφ,Ψ〉h(φ)∂βφ].

Exercise 6.14 (Positive curvature of the sphere). Let X,Y be a smooth vector
fields on the sphere Sm. Identifying the tangent plane of each point on the sphere
as a subspace of Euclidean space Rm+1 in the usual manner, we can thus view X,Y
as taking values in Rm+1, with the constraint p ·X(p) = p ·Y (p) = 0 for all p ∈ Sm.
Verify the identity

∇XY (p) = ∂XY (p) + (X(p) · Y (p))p
for all smooth vector fields X,Y and all p ∈ Sm, using the coordinate-free notation
from Exercise 6.6. Conclude that the sphere has constant curvature κ = +1 in the
sense of Exercise 6.13.

Exercise 6.15 (Negative curvature of the hyperboloid). Let X,Y be a smooth
vector fields on the hyperboloid Hm. In analogy to the preceding exercise, we view
X,Y as taking values in Minkowski space R1+m with the constraint 〈p,X(p)〉R1+m =
〈p, Y (p)〉R1+m = 0 for all p ∈ Hm. Conclude that

∇XY (p) = ∂XY (p) − 〈X(p), Y (p)〉R1+mp

and hence hyperbolic space has constant curvature κ = −1 in the sense of Exercise
6.13.

Exercise 6.16 (Quotients of target manifolds). Let M be a target manifold,
and let G be a discrete group of isometries of M , which is free in the sense that
no isometry in G has a fixed point. This defines a smooth quotient Riemannian
manifold M/G of the same dimension as M , with an obvious quotient map π :
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M →M/G. Show that a smooth map φ : R1+d → M/G is a wave map with target
M/G if and only if it is the composition of π and a wave map with target M . Use
this to explicitly solve the wave map equation with the unit circle S1 as target.
One can also use this observation to solve wave maps into any target of constant
curvature κ by normalizing κ = +1, 0,−1 and then lifting up to Sm, Rm, or Hm

as appropriate.

6.1. Local theory

If a man does not keep pace with his companions, perhaps it is
because he hears a different drummer. Let him step to the mu-
sic which he hears, however measured or faraway. (Henry David
Thoreau, “Walden”)

Having discussed the geometric structure of the wave map equation from several
perspectives, let us now begin the analytic theory of existence and wellposdness. As
it turns out, one can study the wave map equation analytically (via the coordinate
formulation (6.8)) as a nonlinear wave equation, and obtain a satisfactory existence
and wellposedness theory at all subcritical regularities (and at a certain Besov
critical regularity, as we shall see below); but to obtain a good critical theory, even
for small norm data, will require exploiting the geometric structure more, as we
shall see later.

We begin with the high-regularity local theory. For this we only need the
formulation (6.8), which we write schematically as

(6.19) �φ = −Γ(φ)∂αφ∂αφ

where Γ is a smooth, tensor-valued function of φ. For the high-regularity theory
we will not need to exploit any further geometric structure on φ or Γ. One can
also work with extrinsic formulations such as (6.11) and (6.13); note that they are
basically of the same schematic form11.

Of course, in a coordinate formulation there is a difficulty in that it is unlikely
that the coordinate system pa for the manifold M will extend smoothly across the
entire manifold; typically one can only match a local region of M with a local region
of the coordinate space Rm. This means that one can only make sense of Γ(φ) (and
hence (6.19)) assuming an additional smallness condition

(6.20) ‖φ‖L∞
t,x
< ε0

where ε0 is some quantity depending only on the coordinates (one can view it as
a kind of “injectivity radius”). Geometrically, this restricts the wave map to a
single coordinate patch on the target manifold. From a global perspective, this is a
highly unrealistic assumption, but in the high regularity setting (in particular, for
Hs
x ×Hs−1

x data with s > n/2) it is a reasonable thing to do if one localises both
in space and in time. For technical reasons (to avoid having to deal with localised
Sobolev spaces, localised Xs,b spaces, etc.), it will be better to localise just in time,
but impose a decay condition in space; one can later remove this hypothesis by
finite speed of propagation arguments. We say that φ ∈ Hs

x(Rd → M) for some
s ≥ 0 if each component φa lies in Hs

x(R
d → M); this depends on the coordinate

11In the extrinsic formulation one has additional constraints such as φ · φ = 1, but we shall
simply discard these; indeed, the extrinsic formulation is somewhat overdetermined and we have
a little bit of flexibility to add or remove equations and still obtain a wellposed system, as we
already saw in Exercise 6.2 and Exercise 6.4.
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origin12 0 (indeed, it implies that φ(x) converges to 0 in some averaged sense as
x → ∞) but is otherwise independent of coordinates, thanks to Lemma A.9 and
the hypothesis (6.20). We can now write the wave map equation in Duhamel form
as
(6.21)

φ(t) = cos(t
√−∆)φ(0)+

sin(t
√−∆)√−∆

∂tφ(0)−
∫ t

0

sin((t− t′)
√−∆)√−∆

(Γ(φ)∂αφ∂αφ(t′)) dt′.

In particular we can now define the notion of wellposed, strong, and weakHs
x(Rd)×

Hs−1
x (Rd) solutions as in preceding chapters. We can then try to iterate this

Duhamel equation on [0, T ] × Rd in the usual manner, provided that we ensure
that all iterates obey (6.20). This can be done for instance if we assume that the
initial data φ[0] = (φ(0), ∂tφ(0)) obeys the smallness condition

(6.22) ‖φ(0)‖L∞
x
< ε0/2

and φ[0] lies in Hs
x(Rd) × Hs−1

x (Rd) for some s > d
2 + 1, and if the time T is

sufficiently small depending on the norm of the initial data and on ε0 and Γ. To
sketch why this is true, we first obtain an a priori estimate on φ using (6.21) and
the energy estimate (2.29) (assuming T ≤ 1):
(6.23)
‖φ‖C0

tH
s
x([0,T ]×Rd)+‖∂tφ‖C1

tH
s−1
x ([0,T ]×Rd) �s ‖φ[0]‖Hs

x(Rd)×Hs−1
x (Rd)+‖Γ(φ)∂αφ∂αφ‖L1

tH
s−1
x ([0,T ]×Rd).

We use a Hölder in time to estimate the L1
tH

s−1
x norm by the C0

tH
s−1
x norm,

gaining a power of T . Several applications of Lemma A.8 and Lemma A.9, and
Sobolev embedding, yield the bound

‖Γ(φ)∂αφ∂αφ‖C0
tH

s−1
x ([0,T ]×Rd) �Γ,ε0,d (1+‖φ‖C0

tH
s
x([0,T ]×Rd))(‖φ‖C0

tH
s
x([0,T ]×Rd)+‖∂tφ‖C0

tH
s−1
x ([0,T ]×Rd))

2

and this one can hope to close13 an iteration argument if T is suitably small; we
leave the details as an exercise. One can achieve a similar existence result for
initial data which are only locally in coordinate patches, and only lie in Hs

x×Hs−1
x

locally, by truncating the data into localised components, applying the preceding
local existence theorem on each component, and then patching together using finite
speed of propagation, provided that one has some uniformity on the spatial extent
and Hs

x ×Hs−1
x norm of each local component; we omit the rather tedious details.

We have achieved an existence theory in Hs
x × Hs−1

x for s > d
2 + 1. This is

a full derivative above the scale-invariant regularity of s = d
2 , and also above the

energy regularity s = 1. To achieve better results we must either take advantage
of the geometric structure or the analytic structure of the equation. To give an
example of the former, we shall use the method of energy cancellation (as with the
KdV or Benjamin-Ono equations), exploiting a special geometric structure in the
nonlinearity that allows the worst term in the energy estimate to vanish. Let us
first establish an a priori estimate for a classical wave map that relies heavily on
the geometry of the covariant formulation (6.9). We assume that M has uniformly
bounded geometry in the sense that we can cover M by coordinate charts of radius
bounded from below, on each of which the Christoffel symbols and their derivatives

12In the extrinsic formulations for the targets Sm and Hm, we would have to shift the origin
to lie on the sphere or hyperboloid in order to use this definition, but this is easily achieved.

13Note how the smoothing effect of one derivative in the energy estimate was used to coun-
teract the loss of a derivative in the nonlinearity.
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are uniformly bounded. In particular the Riemann curvature tensor Rcabd from
Exercise 6.12 is bounded. This gives the useful near-commutativity estimate

(6.24) (φ∗∇α)(φ∗∇β)Ψa = (φ∗∇α)(φ∗∇β)Ψc +Od,m,M (|∇t,xφ|2|Ψ|)
for any section Ψ of φ∗TM .

Consider the second energy

E2(t) :=
d∑

α=0

d∑
β=0

∫
Rd

1
2
|(φ∗∇)α∂βφ(t, x)|2h(φ) dx.

We differentiate this in time, and use the fact that the covariant derivative respects
the metric (Exercise 6.7), to obtain

(6.25) ∂tE2(t) =
d∑

α=0

d∑
β=0

∫
Rd

〈(φ∗∇)0(φ∗∇)α∂βφ, (φ∗∇)α∂βφ〉h(φ) dx.

This expression is currently involving both second and third derivatives of φ, but as
we shall see the covariant structure will allow for a substantial energy cancellation,
ultimately leaving us only with terms that are linear in the second derivative and
do not involve the third derivative at all.

Let us first consider the β = 0 term. Using (6.24), (6.9), and (6.24) again we
have

(φ∗∇)0(φ∗∇)α∂0φ = (φ∗∇)α(φ∗∇)0∂0φ+Od,m,M (|∇t,xφ|3)
= (φ∗∇)α(φ∗∇)j∂jφ+Od,m,M (|∇t,xφ|3)
= (φ∗∇)j(φ∗∇)α∂jφ+Od,m,M (|∇t,xφ|3)

and hence by an integration by parts (again using that the covariant derivative
respects the metric)∫
Rd

〈(φ∗∇)0(φ∗∇)α∂0φ, (φ∗∇)α∂0φ〉h(φ) dx =
∫
Rd

〈(φ∗∇)j(φ∗∇)α∂jφ, (φ∗∇)α∂0φ〉h(φ)

+Od,m,M (|∇t,xφ|3|Hess(φ)|) dx

= −
∫
Rd

〈(φ∗∇)α∂jφ, (φ∗∇)j(φ∗∇)α∂0φ〉h(φ)

+Od,m,M (|∇t,xφ|3|Hess(φ)|) dx
where we use Hess(φ) to denote the Hessian Hess(φ)αβ := (φ∗∇)α∂βφ of φ. On the
other hand, using (6.24) and the zero torsion property (6.15) we have

(φ∗∇)j(φ∗∇)α∂0φ = (φ∗∇)α(φ∗∇)j∂0φ+Od,m,M (|∇t,xφ|3)
= (φ∗∇)α(φ∗∇)0∂jφ+Od,m,M (|∇t,xφ|3)
= (φ∗∇)0(φ∗∇)α∂jφ+Od,m,M (|∇t,xφ|3)

and hence∫
Rd

〈(φ∗∇)0(φ∗∇)α∂0φ, (φ∗∇)α∂0φ〉h(φ) dx = −
∫
Rd

〈(φ∗∇)α∂jφ, (φ∗∇)0(φ∗∇)α∂jφ〉h(φ)

+Od,m,M (|∇t,xφ|3|Hess(φ)|) dx.
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Inserting this back into (6.25), we achieve an energy cancellation (cancelling all
terms which involve third derivatives of φ), and we end up with the bound14

∂tE2(t) =
∫
Rd

Od,m,M (|∇t,xφ|3|Hess(φ)|) dx.

The L2
x norm of the Hessian Hess(φ) is essentially just E2(t)1/2, and so by Hölder’s

inequality we obtain the estimate

(6.26) |∂tE1/2
2 (t)| �d,m,M ‖∇t,xφ(t)‖3

L6
x(Rd).

In three and fewer dimensions d ≤ 3, we can use the hypothesis of uniformly
bounded geometry to obtain the covariant Sobolev inequality

‖∇t,xφ(t)‖L6
x(Rd) �d,m,M E

1/2
2 (t) + E[φ]1/2

where E[φ] is the ordinary energy (6.5); see Exercise 6.20. Thus we have

|∂tE1/2
2 (t)| �d,m,M E

3/2
2 (t) + E[φ]3/2

which suggests (via the usual continuity argument methods) that if the initial data
is bounded in H2

x(R
d) ×H1

x(R
d), then it stays bounded in H2

x(R
d) ×H1

x(R
d) for

a nonzero amount of time. This can in fact lead to a local wellposedness theorem
in H2

x(R
d) × H1

x(R
d) in the subcritical sense in three and fewer dimensions; see

[SStru2]. Also, in one dimension d = 1 one can now also combine (6.26) with the
pointwise conservation laws of the stress-energy tensor (Exercise 6.9) to establish
global wellposedness for wave maps in H2

x(R) ×H1
x(R); see [Sha2], [Gu], [LShu],

[KTao2].
Let us leave the geometric approach for now, and now instead discuss the ana-

lytic approach, in which we solve the Duhamel equation (6.21) directly by Duhamel
iteration, without trying to exploit geometric information, such as identities involv-
ing the Christoffel symbol. To get some guidance as how this is possible, let us first
study the easier task of using (6.21) to obtain a nontrivial bound for φ in terms of
itself (the plan being to eventually tweak this bound into a contraction estimate).
Our starting point is the energy estimate (6.23) (which works for all s), but hold-
ing off on the Hölder in time for now in hope of seeking a more efficient approach.
Note that while Strichartz estimates do allow one to replace the space L1

tH
s−1
x with

other spacetime norms, those other norms require strictly more than s− 1 degrees
of regularity on the nonlinearity Γ(φ)∂αφ∂αφ. But if φ is an Hs solution, we expect
the nonlinearity to have at best s− 1 degrees of regularity, thanks to the presence
of derivatives. So it seems we have no choice (at least in the realm of Strichartz
estimates) but to use the energy estimate.

Now, let us proceed heuristically. From Principle A.7, we expect that the worst
terms in the expression ‖Γ(φ)∂αφ∂αφ‖L1

tH
s−1
x ([0,T ]×Rd) to be terms such as

(6.27) ‖Γ(φ)∂αφ∇s−1∂αφ‖L1
tL

2
x([0,T ]×Rd).

Now the energy estimate allows us to place ∇s−1∂αφ in L∞
t L

2
x; note that Strichartz

estimates (assuming they held for the nonlinear solution φ just as they do for the
linear solution, as one expects from Principle 1.37) would not allow one to place
this function in any other spacetime norm as that would cost too much regularity.

14Heuristically speaking, this shows that the first derivatives ∇t,xφ behave as if they solved
a cubic NLW �∇t,xφ ≈ (∇t,xφ)3; see (6.43) and Exercise 6.30 for more precise formulations of

this heuristic.
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Since Γ(φ) is bounded (but does not otherwise enjoy any spacetime integrability),
Hölder’s inequality thus leaves with trying to estimate the expression

‖∇x,tφ‖L1
tL

∞
x ([0,T ]×Rd).

Note that in the high regularity setting s > d
2 + 1, we expect to control ∇x,tφ

in C0
tH

s−1
x , which controls L∞

t L
∞
x by Sobolev embedding, and hence L1

tL
∞
x by a

Hölder in time. Indeed, in this case we have merely obtained a rearrangement of the
existing argument used to establish existence at these high regularities. However,
it is now clear that we can use the smoothing effects of Strichartz estimates (which
can reduce the degree of regularity required for Sobolev embedding, at the cost of
averaging in time) to improve matters. For instance, in three and higher dimensions,
Strichartz estimates and Sobolev embedding will (again assuming Principle 1.37)
control the L2+ε

t L∞
x norm of ∇x,tφ for sufficiently small ε > 0 as soon as s > d

2 + 1
2 ,

and indeed one can set up an iteration argument using these spaces to establish
local wellposedness in Hs

x(R
d) ×Hs−1

x (Rd) in the subcritical sense at this level of
regularity; we leave this as an exercise.

Comparing this Strichartz estimate with that obtained by the energy cancel-
lation argument, we observe a small gap in three dimensions; the Strichartz argu-
ment establishes wellposedness for s > 2, whereas the energy cancellation argument
treats the endpoint s = 2. This is because the Strichartz estimate argument does
not exploit any structure in the nonlinearity; indeed there is an example of Lind-
blad [Lin] that shows that the Strichartz analysis is sharp if one considers general
nonlinear wave equations whose nonlinearity is quadratic in the derivatives (see
Exercise 6.22). Thus to push the analytic argument further one must use some
cancellation structure in the nonlinearity. The energy cancellation argument, when
performed in coordinates, ultimately revolves around some antisymmetry proper-
ties of structure constants related to the Christoffel symbol Γ (see [KR] for some
relevant discussion). However, there is another source of cancellation that can be
exploited analytically, arising from the null form

Q0(φ, ψ) := ∂αφ∂αψ = −∂tφ∂tψ + ∇φ · ∇ψ
which appears in (6.19). To see this, suppose for sake of argument that φ and ψ
behave like plane wave solutions to the free wave equation, e.g. φ(t, x) ≈ ceit|ξ|+ix·ξ

and ψ(t, x) ≈ deit|η|+ix·η. Then we have

Q0(φ, ψ) ≈ cd(|ξ||η|−ξ·η)eit(|ξ|+|η|)+ix·(ξ+η), ∂tφ∂tψ ≈ −cd|ξ||η|eit(|ξ|+|η|)+ix·(ξ+η).

Elementary geometry yields |ξ||η| − ξ · η ∼ |ξ||η|∠(ξ, η)2, so we thus obtain the
heuristic

(6.28) Q0(φ, ψ) ≈ ∠(ξ, η)2∇t,xφ∇t,xψ.

Thus, compared with other bilinear forms of the same order, the null form damps
parallel interactions, when the frequencies ξ and η are closely aligned, but preserves
transverse interactions, when ξ and η point in different directions. Now recall (from
the dispersion relation, or from Huygens’ principle) that waves tend to propagate
in the direction of their frequency. Thus the null form Q0(φ, ψ) damps the type
of interactions in which the two components φ, ψ would move together, which one
would expect to ordinarily be the worst term to analyze (and is the type of term in
which the Hölder inequality, as applied to estimate (6.27), in sharp). Thus one now
expects to obtain some improvement over Hölder’s inequality. A rigorous form of
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this improvement was first established by Klainerman and Machedon [KM]. They
in fact showed the estimate

∫
I×Rd

|Q0(u, v)|2 dxdt �d(‖u[0]‖
Ḣ

(d+1)/2
x (Rd)×Ḣ(d−1)/2

x (Rd)
+ ‖F‖

L1
tḢ

(d−1)/2
x (I×Rd)

)

× (‖v[0]‖Ḣ1
x(Rd)×L2

x(Rd) + ‖G‖L1
tL

2
x(I×Rd)).

(6.29)

whenever I is a time interval containing 0, and u, v are fields on I ×Rd that solves
the equations �u = F and �v = G. To compare this to what Hölder’s inequality
gives, in three dimensions d = 3 one can place ∇t,xv in L∞

t L
2
x (and in no other

Lebesgue space) by energy estimates, but one just barely fails to be able to put
∇t,xu in L2

tL
∞
x due to the lack of a Strichartz estimate at this endpoint exponent.

This estimate can be used to establish local existence for wave maps at the regularity
s = d

2 + 1
2 in all dimensions, for instance recovering the H2

x × H1
x wellposedness

result for three-dimensional wave maps (in fact, this argument predates the energy
cancellation argument, which first appears explicitly in [SStru2], by a number of
years). It also combines with energy conservation to yield global wellposedness in
the energy norm for one-dimensional wave maps. The estimate (6.29) was first
proven using the spacetime Fourier transform, decomposing u and v into plane
waves and then exploiting the same type of computations used to derive (6.28); see
[KM]. An alternate proof, based on the advancing plane wave decomposition, is
essentially due to Tataru [Tat2]; see Exercise 6.24.

One can push this null form approach further, by exploiting Xs,b spaces. The
point is that the Xs,b energy estimate (Exercise 2.71) not only recovers the de-
rivative in the nonlinearity, but also gains a full index of smoothing in the “b”
index. This additional gain is not detected for parallel interactions (because the
nonlinearity then lies near the light cone, on which the weight 〈|τ | − |ξ|〉 has no
significant size), but is important for transverse interactions. The null structure
already damps the parallel interactions15 so it becomes plausible that they can
benefit from a switch to Xs,b technology. Indeed, using the notation from Exercise
2.71, one can use spacetime Fourier analytic arguments to establish the estimate

(6.30) ‖Q0(u, v)‖s−1,b−1 �d,s,b ‖u‖X s,b‖v‖X s,b

for all s > d/2 and b > 1/2 and all test functions u, v; see [KM4], [KS], [Sel]. The
related (and slightly easier) estimates

(6.31) ‖uv‖X s,b �d,s,b ‖u‖X s,b‖v‖X s,b

and

(6.32) ‖uF‖s−1,b−1 �d,s,b ‖u‖X s,b‖∇t,xv‖s−1,b−1

15Actually, the null structure is only necessary in low dimensions. In higher dimensions, the
parallel interactions are already quite rare; this can be seen heuristically by observing that if two
directions on the unit sphere Sd−1 are chosen at random, the chance that they make an angle of
O(θ) for some small θ is only O(θd−1), which becomes smaller as d increases. The null form adds
an additional factor of θ2, but this additional gain is somewhat superfluous in higher dimensions.
For instance, in five and higher dimensions, the subcritical results below continue to hold in the

absence of null structure; see [Tat3]. At the other extreme, the one and two-dimensional theories
rely very crucially on null structure, so much so that it seems unlikely that one could ever obtain a
critical theory for these equations just from tools such as Strichartz estimates which are insensitive
to null structure, even with full exploitation of the geometric structure.
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can be established by the same method. Using these estimates, one can then easily
deduce the local wellposedness of the wave maps equation in Hs

x(Rd) ×Hs−1
x (Rd)

in the subcritical sense in any dimension d for all s > d/2; thus one almost reaches
the critical regularity s = d/2 with this theory. In one dimension, this method was
combined in [KTao2] with a prototype of the “I-method” discussed in Section 3.9
to establish global wellposedness for the one-dimensional wave map equation all the
way down to s > 3/4.

It remains to discuss the critical and supercritical cases. For three-dimensional
wave maps into the sphere S3, the example (6.17), combined with finite speed of
propagation, shows that it is possible to create smooth initial data which is constant
outside of a compact set such that the solution to the wave map equation blows
up in finite time. A simple rescaling argument then shows that this equation can
blow up from data with arbitrarily small Hs

x(R
3) ×Hs−1

x (R3) norm in arbitrarily
small time for any supercritical regularity s < 3/2. Indeed it is likely that all wave
map equations into positively curved targets are illposed at supercritical regularities
s < d/2; see [Sha2], [CSS] for several results in this direction. The situation for
negatively curved targets appears to be slightly better, but one can still create
blowup (and hence illposedness for supercritical regularities) at sufficiently high
dimension; see [CSS].

Now we turn to the most interesting case, which is that of the critical regularity
s = d/2. There are two related problems to ask here; the first is local wellposedness
in the critical sense in the scale-invariant space Ḣd/2

x (Rd) × Ḣ
d/2−1
x (Rd), and the

second that of global persistence of regularity whenever the initial data is small in
Ḣ
d/2
x (Rd)×Ḣd/2−1

x (Rd) norm. (From the above blowup examples we do not expect
any global theory for large data, except in one dimension, in which global regularity
is established, and two dimensions, which we will discuss later in this chapter.) The
latter is slightly easier, but both encounter the same type of difficulty, which is
that the solution map is no longer infinitely differentiable, so that a direct iteration
argument (as was used in the subcritical case s > d/2) can no longer work16. We
can illustrate the problem with a very simple model, namely two-dimensional wave
maps φ into the circle S1 ⊂ C in the energy regularity Ḣ1

x(R2) × L2
x(R2), with

Cauchy data φ(0, x) = 1 and ∂tφ(0, x) = iv(x) for some v ∈ L2(R2 → R). Because
S1 is isometric to the quotient R/2πZ of the real line R, we can express these wave
maps explicitly as φ = eiu, where u : R2+1 → R solves the free wave equation with
initial data u(0, x) = 0 and ∂tu(0, x) = v(x). In other words, u = sin(t

√−∆)√−∆
v, and

hence we can write φ as a Taylor expansion of its initial data as

φ(t, x) = 1 + i
sin(t

√−∆)√−∆
v − (

sin(t
√−∆)√−∆

v)2 − . . .

Now if the map from initial data to solution was locally C2 from Ḣ1
x(R2)×L2

x(R2)
to C0

t Ḣ
1
x ∩ C1

t L
2
x (which would for instance be the case if a Duhamel iteration

argument could be used to construct solutions), then the map v �→ ( sin(t
√−∆)√−∆

v)2

would have to be bounded on these spaces; in particular, one should have a bound

16In the two-dimensional spherically symmetric case, it is possible to proceed via a classical
argument instead, transforming the equation into a intrinsic system in which the above objections
do not apply, and one can iterate directly using the properties of the fundamental solution to
obtain Hölder regularity and thence regularity from smooth, small energy initial data. See [CT].
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of the form

(6.33) ‖(sin(t
√−∆)√−∆

v)2‖Ḣ1
x(R2) �t ‖v‖2

L2
x(R2),

at least when t is small. We can argue that this bound is unlikely by the following
heuristic argument. If v is an arbitrary L2

x function, then sin(t
√−∆)√−∆

v is essentially

just an arbitrary Ḣ1
x function, and this estimate is essentially asking for Ḣ1

x(R
2)

to be closed under multiplication. This is however (barely) not the case, basically
because Ḣ1

x(R
2) does not control the L∞

x (R2) norm; for instance, the function
log1/4 |x| can be verified to lie in Ḣ1

x(R
2), but its square does not. One can make

these arguments rigorous, but we leave this as an exercise. These types of model
has been further analyzed to show that the solution map is in fact not uniformly
continuous; see [DG], [Nak3].

The above arguments rule out a direct iteration approach. Another way to see
the problem is to write the wave map equation heuristically in Duhamel form as

φ = φlin − 1
∂β∂β

[Γ(φ)∂αφ∂αφ],

where φlin denotes a linear solution. If one made the improbable assertion that
one could cancel17 the partial derivatives in the numerator and denominator, we
see that the Duhamel term will contain terms that are heuristically of the strength
Γ(φ)φφ. In order to close the iteration argument, these terms need to be somehow
“dominated” by φ (Principle 1.37), which seems to require enforcing some sort of
L∞
x (Rd) control on φ. But, as mentioned earlier, Sobolev embedding does not allow

one to use Ḣd/2
x (Rd) to control L∞

x (Rd) due to logarithmic divergences. One could
hope that perhaps a local constraint such as (6.22) could serve as a substitute here,
but now that the regularity Ḣd/2

x does not control L∞
x , let alone offer any sort of

uniform continuity, it is not clear that one can reasonably demand this condition at
the initial time t = 0, let alone at subsequent times; and furthermore, when making
the above heuristics rigorous, one would be replacing expressions such as Γ(φ)φφ
by more sophisticated paraproduct-type expressions, for which Hölder’s inequality
at the endpoint regularity L∞

x can fail.
To further support this heuristic analysis, it was shown by Tataru [Tat], [Tat2]

that one has local wellposedness at the critical sense for any d ≥ 2, but with the
Ḣ
d/2
x (Rd) × Ḣ

d/2−1
x (Rd) norm replaced by the slightly stronger Besov norm

‖u[0]‖
Ḃ

d/2,1
2 (Rd)×Ḃd/2−1,1

2 (Rd)
:=

∑
N

‖PNu(0)‖
Ḣ

d/2
x (Rd)

+ ‖PN∂tu(0)‖
Ḣ

d/2−1
x (Rd)

where N ranges over dyadic numbers. This space is barely strong enough to ensure
L∞
x control and continuity of the data (and in particular one can localise such data

17Note that Principle A.7 predicts that this is not going to be the worst term; one would
typically be more concerned about such terms as Γ∂αφ∂α�−1φ, in addition to “resonant” terms
in which ∂αφ and ∂αφ lie away from the light cone in spacetime frequency space, but combine to
form a frequency very close to the light cone. Indeed, when performing the rigorous analysis of
these types of expressions using the spacetime Fourier transform, there are a large number of cases

to treat, based on the relative magnitudes of the frequencies involved, their angular separation,
and their distance to the light cone. See for instance [Tao6] for a rather extreme instance of this
decomposition into cases. Nevertheless, given that the “lower order” term Γ(φ)φφ already causes
problems, it is reasonable to expect the higher order term to also be problematic.



290 6. WAVE MAPS

to a single coordinate patch by localizing space), and by iterating in a sophisticated
endpoint version of the Xs,b spaces18 one could obtain wellposedness regardless of
the geometric structure of the equation. The case d = 1 is somewhat anomalous,
with illposedness even in the critical Besov space; see [Tao3].

To break the L∞
x barrier seems to require exploiting the geometry more ac-

tively. One strategy is to select a good coordinate system for the target manifold;
at subcritical regularities s > n/2 the choice of coordinates should not be so im-
portant (from Lemma A.8 one sees that all smooth changes of coordinate will be
infinitely differentiable in Hs

x(R
d) when s > d/2), but at the critical regularity it

can be decisive. For instance, if one parameterises the unit circle S1 by arclength
coordinates rather than by the extrinsic coordinates of the complex numbers C,
then the wave map collapses to the linear wave equation, which can (rather triv-
ially) be handled by iterative methods. A bit more generally, if one is considering
equivariant wave maps into a surface of revolution, then arclength coordinates on
the target will simplify the equation into what is essentially a semilinear wave equa-
tion, that can be handled locally by iteration methods; see Exercise 6.10 for some
examples of this.

However, there seems to be a limit as to what can be achieved by choosing a
coordinate system on the target manifold. The real breakthrough, first achieved by
Helein[Hel2] in his work on harmonic maps, was to differentiate the map and work
on the tangent bundle of the target manifold, choosing a good coordinate frame
rather than a coordinate system; these coordinates were significantly more flexible
and could be more easily adapted to the geometry of the map. These frames will
be the topic of the next section.

Exercise 6.17 (Finite speed of propagation). Develop the analogue of Propo-
sition 3.3 for classical (C2

t,x) solutions to (6.19) (or more generally to any nonlinear
wave equation whose nonlinearity is a smooth function of the field φ and its first
derivatives).

Exercise 6.18 (Immobility of spatial infinity). Let p be a fixed origin in M .
Suppose that φ : I × Rd → M is a smooth solution to the wave map equation.
Let us say that φ(t) decays to p in the Schwartz sense if lim|x|→∞ φ(t, x) = p, and
in any given local coordinate system with origin p, the coordinates φa(t, x) of φ
are Schwartz in x for all sufficiently large x. Show that if φ(t) decays to p in the
Schwartz sense for at least one time t, it does so for all times t ∈ I. (You will need
the finite speed of propagation and the classical local wellposedness theory.) Thus
we can meaningfully talk about the value φ(∞) = p of φ at spatial infinity in this
case.

Exercise 6.19. Let s > d
2 + 1. Complete the proof of local wellposedness for

(6.19) in the subcritical sense for strong Hs
x(Rd)×Hs−1

x (Rd) solutions obeying the
smallness condition (6.22) by performing the Duhamel iteration argument. (One
has to check that the iterates obey the smallness condition (6.20) at all stages of
the iteration. This is not difficult here because ∂tφ is controlled in Hs−1

x , and

18These spaces are too complicated to describe here. They are not only a “Besov” version of

the Xs,b spaces at the endpoint s = d/2, b = 1/2, but they also incorporate some (appropriately
microlocalised) Strichartz-type spaces to overcome certain logarithmic divergences. Furthermore,
in low dimensions d = 2, 3, one needs also to work in null frame coordinates, as in Exercise 6.24.
See [Tao6] for further discussion and refinements of these spaces.
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hence in L∞
t,x. Actually, even when one goes down to s > d/2 there is no difficulty

establishing (6.20), because we can control φ in a Hölder sense using Exercise A.22,
and ∂tφ in some averaged sense.)

Exercise 6.20 (Covariant Sobolev embedding). LetM have uniformly bounded
geometry. For any smooth map φ : R1+d →M , establish the Sobolev inequality

‖∇x,tφ(t)‖Lp
x(Rd) �d,M,p ‖Hess(φ(t))‖L2

x(Rd) + ‖∇t,xφ‖L2
x(Rd)

whenever 2 ≤ p ≤ ∞ is such that d
p ≥ d

2 − 1 and we avoid the endpoint (d, p) =
(2,∞). (Hint: localise to a coordinate chart and exploit the usual Sobolev embed-
ding theorem.)

Exercise 6.21. [PS] Let d ≥ 1 and s > d
2 + max(5−d

4 , 1
2 ). Use Strichartz esti-

mates to show that the equation (6.19) is locally wellposed in Hs
x(R

d)×Hs−1
x (Rd)

in the subcritical sense assuming the condition (6.22) (to ensure that Γ and its deriv-
atives exist and are bounded). One can remove the localizing condition (6.22) and
work with the global wave map equation (using for instance (6.9)) in local Sobolev
spaces by patching together various local solutions using finite speed of propagation
and uniqueness arguments, assuming some uniformity on the local Sobolev norm,
but this is a somewhat tedious task and will not be detailed here.

Exercise 6.22. [Lin] Consider the wave map-like equation

�φ = (∂tφ)2

where φ : R1+3 → R is a scalar field. Observe that for any 0 ≤ α < 1, the function
φ(t, x) := (1 − α2) log |t + αx1| is a solution to this equation which blows up on
the hyperplane t+ αx1 = 0; in particular it blows up at (0, 0) but is smooth in the
backwards light cone {(t, x) : |x| < −t}. Take α very close to 1, and localise the
initial data (φ(−1), ∂tφ(−1)) smoothly to a neighbourhood of the ball {|x| < 1}
and use finite speed of propagation to construct initial data of arbitrarily small
H2
x(R3) ×H1

x(R3) norm whose solutions blow up in unit time; by rescaling, show
that we can in fact create such solutions that blow up in arbitrarily small time.
Thus there is no hope of a reasonable local wellposedness theory for this equation
at the H2

x×H1
x regularity. On the other hand, the Strichartz analysis from Exercise

6.21 easily extends to establish local wellposedness in Hs
x ×Hs−1

x for any s > 2.

Exercise 6.23 (Glimm interaction functional). Let u : R1+1 → R be a clas-
sical scalar solution to the one-dimensional wave equation �u = �v = 0. By
analyzing the time derivative of the Glimm interaction functional

G(t) :=
∫ ∫

x<y

T00[u](t, x)T01[u](t, y) dxdy

where T00[u] := 1
2 |∂xu|2 + 1

2 |∂tu|2 is the energy density of u, T01[u] := ∂xu∂tu is
the momentum density, establish the null form estimate∫

R1+1
|Q0(u, u)|2 dxdt � ‖u[0]‖4

Ḣ1
x(R)×L2

x(R)

(compare with (3.42)). It would be of great interest to extend this argument to
higher dimensions, as it would be likely to extend to certain defocusing nonlinear
wave equatinos (in analogy with the interaction Morawetz estimates discussed in
Section 3.5), but thus far all attempts to do so have failed. See however Exercise
6.24 below.
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Exercise 6.24 (Advancing plane wave decomposition). Let u, v : R1+d →
R be scalar classical solutions to the free wave equation �u = �v = 0. Using
the Fourier transform and polar coordinates, show that u admits a plane wave
decomposition of the form

u(t, x) =
∫
Sd−1

f(ω, t− x · ω) dω

where f : Sd−1 × R → R is a function obeying the bound

‖f‖L2
ωḢ

α
t (R×Sd−1) ∼α,d ‖u[0]‖

Ḣ
(d−1)/2+α
x (Rd)×Ḣ(d−3)/2+α

x (Rd)

for all α. Also, use the stress energy tensor for v as in Section 2.5 to deduce the
null energy estimate∫

Rd

|[(∂t + ω · ∇)v](t + x · ω, x)|2 + |[∇xv](t+ x · ω, x)|2 dx � ‖v[0]‖Ḣ1
x(Rd)×L2

x(Rd)

for all ω ∈ Sd−1 and t ∈ R. Combining the two estimates using Minkowski’s
inequality, establish the null form estimate∫

R1+d

|Q0(u, v)|2 dxdt �d ‖u[0]‖
Ḣ

(d+1)/2
x (Rd)×Ḣ(d−1)/2

x (Rd)
‖v[0]‖Ḣ1

x(Rd)×L2
x(Rd).

From this and Duhamel’s formula, conclude the null form estimate (6.29).

Exercise 6.25. [KTao2] Establish (6.30), (6.31), (6.32) in the special case
d = 1. (Here it is convenient to use null coordinates y := t + r, z := t − r, at
which point the Xs,b spaces essentially become product Sobolev spaces in the y, z
variables, and one can apply tools such as Lemma A.8.)

Exercise 6.26. Show explicitly that the estimate (6.33) fails for any given
nonzero time t. (You may wish to work on the Fourier transform side; the Fourier
transform v̂(ξ) of ξ should be something like 1

|ξ| log1/2+ε |ξ| as |ξ| → ∞.)

Exercise 6.27 (Nirenberg example). [KM] Show that the scalar wave equation
�φ = Q0(φ, φ) can blow up in arbitrarily small time from smooth initial data
of arbitrarily small Ḣd/2

x (Rd) × Ḣ
d/2−1
x (Rd) norm, thus defeating any attempt

at wellposedness (or persistence of regularity) in this norm. (Hint: rewrite the
equation as �eφ = 0.)

6.2. Orthonormal frames and gauge transformations

Equations are just the boring part of mathematics. I attempt to see
things in terms of geometry. (Stephen Hawking)

In the preceding section we adopted a rather non-geometric approach (with the
exception of the covariant H2

x ×H1
x3 energy estimate argument), working in local

coordinates and not fully exploiting the geometric structure of Γ. This failure to
capitalise on geometrical structure was compensated for by sophisticated analytical
estimates, which were sufficient to obtain local wellposedness at subcritical regu-
larities s > d/2, but just barely fail to attain the critical regularity s = d/2. This
critical regularity is of particular interest when d = 2, as it is then the regularity of
the conserved energy. To date, the main theorem in this direction is as follows.
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Theorem 6.1 (Small energy implies regularity). Let d ≥ 2, and let M be
a manifold with uniformly bounded geometry. Then, if the initial data is smooth
and has sufficiently small Ḣd/2

x (Rd) × Ḣ
d/2−1
x (Rd) norm, one has a global smooth

solution to the wave map equation. In particular, in d = 2, one has global smooth
solutions from any smooth, small energy data.

The more difficult issue of global wellposedness in the energy space is some-
what delicate, in part because one needs to define a proper topology on the space
Ḣ
d/2
x (Rd → M). See [Tat4] for a resolution of this issue in the case that M can

be uniformly isometrically embedded into a Euclidean space.
Theorem 6.1 has a lengthy history, even after taking into account the precursor

local wellposedness results of the previous section. A stability result of this type but
for small smooth perturbations of a data taking values in a geodesic was established
by vector field methods in [Sid]. For two-dimensional equivariant wave maps into
surfaces of revolution, this result was obtained in [ST], using arclength coordinates
to convert the wave maps equation into a type of semilinear wave equation. For
two-dimensional spherically symmetric wave maps, the result was obtained in [CT],
using a classical method (somewhat like that in Exercise 5.6) that controlled the
L∞
t,x norm via the fundamental solution in radial coordinates and energy estimates.

For wave maps without a symmetry assumption on the initial data, the work of
Tataru [Tat], [Tat2] obtained a near miss to this theorem, in which the Sobolev
space Ḣd/2

x (Rd) × Ḣ
d/2−1
x (Rd) was replaced by a Besov refinement Ḃd/2,12 (Rd) ×

Ḃ
d/2−1,1
2 (Rd), proceeding via an iterative argument in some sophisticated, tailor-

made spaces. For the Sobolev result without a symmetry assumption, the first
result was in [Tao5], [Tao6] for spherical targets, in which a (microlocal) gauge
renormalisation method was introduced, combined with either Strichartz estimates
(in dimensions d ≥ 5) or a version of the spaces and estimates by Tataru (in lower
dimensions). This was then generalised to arbitrary manifolds of uniformly bounded
geometry in dimensions d ≥ 5 in [KR], then to d ≥ 4 in [SStru3], [NSU]. In these
latter papers, a geometric formulation was introduced, which clarified the nature
of the available gauge transformations; the microlocal gauge used in the earlier
papers was then replaced by a Coulomb gauge. This Coulomb gauge approach was
then pushed further in the specific context of hyperbolic space targets Hm in [Kri]
for d = 3 and [Kri2] for d = 2; then in [Tat4] one returned to the microlocal
gauge to establish the theorem for any target which can be uniformly isometrically
embedded into Euclidean space. Finally, in [Tao10], the microlocal and geometric
viewpoints were combined by introucing a caloric gauge associated to the heat flow
for harmonic maps; this gauge extends to the large energy case for the hyperbolic
targetsHm, thus bringing the large energy regularity problem within reach (at least
in principle).

We will not present the evolution of these ideas in historical order, instead
proceeding straight to the geometric viewpoint from [SStru3], [NSU] that makes
the gauge freedom most apparent. The aim is not to eliminate coordinates entirely
- as one could no longer perform much analysis if one did so - but instead to
write the wave map equation as a coupled system involving both the map and the
coordinates, so that one can more easily and transparently choose the coordinates
to best suit the evolution of the map.
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(I × Rd) × Rm e−−−−→ φ∗TM
φ−−−−→ TM�⏐⏐ψ �⏐⏐∂αφ

⏐⏐�
I × Rd id−−−−→ I × Rd φ−−−−→ M

Figure 2. The commutative diagram connecting the trivial bun-
dle (I × Rd) × Rm over I × Rd, the pullback bundle φ∗TM over
I × Rd, and the tangent bundle TM over M .

It turns out that this is much easier to do if one does not study the map
φ : R1+d → M directly, but instead looks at the derivatives ∂αφ : R1+d → TM
of the map for α = 0, . . . , d. There are two reasons for this. Firstly, the tangent
bundle TM has the structure of a vector bundle, rather than a manifold, and
in particular one can perform basic arithmetic operations with these derivatives
such as addition and linear combinations, in contrast with the original map φ
for which no (coordinate-free) arithmetic operations are available (except in very
special cases, such as when M is a Lie group). Secondly, while coordinates on
the base M are somewhat unpleasant to work with, requiring an understanding of
the diffeomorphism group Diff(M) and how it interacts with φ, coordinates on the
(fibers of the) tangent bundle19, being given by orthonormal frames, are a much
more tractable structure, being governed by the (incomparably simpler) orthogonal
group SO(m). Furthermore, the gauge group does not actually move the map φ
(which would cause nonlinear interactions via the metric h(φ); instead, the action
of the gauge group merely changes the coordinates of the derivatives ∂αφ of φ.

We turn to the details. Fix a smooth map φ : I × Rd → M , which may or
may not be a wave map. Define an orthonormal frame to be a collection e1, . . . , em
of smooth sections of φ∗TM on I × Rd, such that for each (t, x) the tangent vec-
tors e1(t, x), . . . , em(t, x) form an orthonormal basis of the tangent space Tφ(t,x)M ,
endowed with the Riemannian metric h(φ(t, x)); in other words20,

(6.34) 〈ei(t, x), ej(t, x)〉h(φ(t,x)) = δij .

At least one such orthonormal frame always exists, regardless of the topology of M ;
see Exercise 6.28. Later on we shall crucially exploit the gauge freedom to rotate
this frame arbitrarily, without affecting the original wave map φ.

One can view an orthonormal frame as being a bundle isometry e from the
trivial Rm-bundle (I ×Rd)×Rm over the domain I ×Rd, to the pullback bundle
φ∗TM , thus if ψ = (ψ1, . . . , ψm) is a Rm-valued vector field on (I × Rd) then
eψ =

∑m
i=1 eiψ

i is a section of φ∗TM . In particular, we can use e to pull back the

19Strictly speaking, we will be working with the pullback φ∗(TM) of the tangent bundle,
rather than the tangent bundle itself. In particular, if a wave map attains a point p ∈ M at two
different points in spacetime, thus φ(t1, x1) = φ(t2, x2) = p, then we can use different coordinate
systems for the tangent space TpM at (t1, x1) and at (t2, x2). Because of this (and because

the topology of the domain R1+d is trivial), we will not encounter topological obstructions in
creating our coordinate systems; in particular, it will not be a concern to us if the manifold M is

not globally orientable or parallelisable.
20From this point we will avoid using the coordinates pa on M as this will cause an excessive

amount of superscripting and subscripting (for instance, one would have to write ei as ea
i ), relying

instead on coordinate free notation to describe the geometry of M .
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derivatives ∂αφ of φ, which are sections of φ∗TM , to Rm-valued vector fields ψα
by the formula

ψα := e−1∂αφ

or equivalently21

ψiα = 〈∂αφ, ei〉h(φ).

See Figure 2. The covariant derivatives (φ∗∇α) act on sections of φ∗TM , but we
may now pull them back by e to act on Rm-valued vector fields. Indeed, for any
smooth Rm-valued vector field ϕ, we have

(φ∗∇α)eϕ =
m∑
i=1

(φ∗∇α)(ϕiei)

=
m∑
i=1

(∂αϕi)ei + ϕi(φ∗∇α)ei.

Thus if we define the connection coefficients (Aα)ji (t, x) by

(Aα)ji = 〈(φ∗∇α)ei, ej〉h(φ)

then we have

(φ∗∇α)ei =
m∑
j=1

(Aα)ji ej

and hence

(φ∗∇α)eϕ =
m∑
i=1

[∂αϕi +
m∑
j=1

(Aα)ijϕ
j ]ei.

In other words, if we view Aα as a linear operator from Rm to Rm, mapping ϕi to∑m
j=1(A

α)ijϕ
j , and define the covariant derivatives Dα acting on Rm-valued vector

fields as Dα := ∂α +Aα, then we have

(φ∗∇α)eϕ = eDαϕ.

The connection coefficients (Aα)ji are not completely arbitrary; since the connection
preserves the metric (see (6.14)), we see from differentiating the orthonormality
condition (6.34) that we have the antisymmetry property

(Aα)ji = −(Aα)ij .

In other words, the matrix field Aα takes values in the Lie algebra so(m) of the
structure group SO(m) of the bundle (I × Rd) × Rm; note this also implies that
the covariant derivatives Dα are skew-adjoint, and obey the Leibnitz rule

(6.35) ∂α(ϕ · ϕ̃) = (Dαϕ) · ϕ̃ϕ · (Dαϕ̃).

Furthermore, as the connection is torsion-free (6.15), we see that the covariant
derivatives are connected with the vector fields ψα defined earlier by the formula

Dαψβ −Dβψα = 0.

Thus ψ is “covariantly curl-free”, which makes sense since ψ is a “covariant gra-
dient” of φ. Finally, using the Riemann curvature formula (6.18), we obtain the
commutator estimate

[Dα, Dβ ]ϕ = R(ψα, ψβ)ϕ

21We endow each fiber Rm of the trivial bundle (I × Rd) × Rm with the usual Euclidean
metric, so in particular ei = ei.
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where R(, ) is the tensor defined by pulling back the Riemann curvature tensor by
e:

(eR(ψα, ψβ)ϕ)c := Rcabd(eψα)a(eψβ)b(eϕ)d.
This formula simplifies substantially under the assumption of constant curvature κ
(Exercise 6.13), when we now obtain the Cartan-type formula

[Dα, Dβ ]ϕ = κ((ϕ · ψβ)ψα − (ϕ · ψα)ψβ)

for any vector field ϕ; we shall write this more succinctly as

Fαβ = κψα ∧ ψβ
where

(6.36) Fαβ := [Dα, Dβ ] = ∂αAβ − ∂βA

is the curvature tensor, taking values in the Lie algebra so(m) of skew-adjoint oper-
ators on Rm for each α, β. This is significantly easier to analyze as the expressions
here do not explicitly depend22 on φ. Thus for sake of discussion we shall now
restrict attention exclusively to the constant curvature case, with κ = −1, 0, or +1.

To summarise, whenever we select a smooth map φ : I × Rd → M to a target
of constant curvature κ and then a smooth orthonormal frame e, we obtain skew-
adjoint covariant derivatives Dα = ∂α + Aα and derivative fields ψα obeying the
compatibility conditions23

∂αφ = eψα(6.37)

φ∗∇α = eDαe
−1(6.38)

Dαψβ −Dβψα = 0(6.39)

Fαβ = κψα ∧ ψβ .(6.40)

The first two equations essentially allow one to recover the undifferentiated
fields φ and e from the differentiated fields24 ψα and Aα by integration; see Exercise
6.29. The last two equations only involve the differentiated fields ψα and Aα;
the equation (6.39) essentially controls the curl of ψ, while the equation (6.40)
essentially controls the curl of A. This fits well with the intuition that ψα and Aα
behave like gradients of φ and e respectively.

The above system of equations is severely underdetermined, because we have
so far allowed complete freedom to select the map φ and the frame e. Indeed, we
can at any time choose to replace the frame e by a new frame e �→ eU−1, where
U : I × Rd → SO(m) is an arbitrary smooth rotation matrix field, while keeping

22The point is that in a constant curvature manifold, the geometry looks the same when
viewed from an arbitrary location φ(t, x) and orientation e(t, x), and so the Riemann curvature
operator R(, ) is independent of these parameters. For general manifolds, R will depend on φ and
e in a rather nonlinear way.

23Geometrically, (6.37) asserts that ψα measures the infinitesimal motion of φ in the xα

direction, measured using the frame e, while (6.38) asserts that Aα measures the infinitesimal
rotation of the frame e in the xα direction, measured with respect to e. The equation (6.39)
reflects the parallel nature of parallel transport, while (6.40) reflects the curvature of the target,
evidenced by the distortion of parallel transport along the image under φ of an infinitesimal
parallelogram in the base space R1+d. The reader is encouraged to draw his or her own pictures
to illustrate these facts, as doing so here is unfortunately beyond the graphic and artistic skills of
the author.

24Note that φ and e scale like Ḣ
d/2
x , but ψα and Aα scale like Ḣ

d/2−1
x .
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the map φ unchanged. Using (6.37), (6.38), we see that this gauge change will
transform ψα and Dα by the formulae

ψα �→ Uψα; Dα �→ UDαU
−1

and hence the connection coefficients Aα and the curvature tensor Fαβ transform
by

Aα �→ UAαU
−1 − (∂αU)U−1; Fαβ �→ UFαβU

−1.

The reader may wish to verify that these transformations preserve all of the above
equations. This gauge change can be especially easy to understand in the abelian
case m = 2 (i.e. when the target is a constant curvature surface such as S2

or H2, and in particular is a Riemann surface), in which case the gauge group
SO(2) = U(1) is abelian (and the situation becomes very much like classical elec-
tromagnetism). One can then write U = exp(χ) for some so(2)-valued (i.e. pure
imaginary) field χ, and the gauge change simplifies to

(6.41) ψα �→ exp(χ)ψα; Aα �→ Aα − ∂αχ; Fαβ → Fαβ .

Thus in the abelian case, a gauge change rotates the phase of ψα while subtracting
an arbitrary gradient from the connection coefficient Aα; note that this does not
affect the curvature F , which is basically just the curl of A. The reader should
compare this with the gauge changes used for the Benjamin-Ono equation in Section
4.4 (writing A = ia for some real scalar field a, and working in one dimension). We
shall shortly take advantage of this gauge freedom to modify A to be as “small” as
possible.

The above discussion was quite general, holding for arbitrary smooth maps φ
and frames e. We now fix the map φ to be a wave map, thus solving the equation
(6.9). Using (6.37), (6.38), this transforms into an equation for ψ:

(6.42) Dαψα = Dαψ
α = 0.

Thus the vector field ψα is both covariantly divergence free and covariantly curl
free. One can combine these equations (together with (6.39), (6.40) to obtain a
covariant wave equation for ψ:

DαD
αψβ = DαDβψ

α

= DβDαψ
α + Fαβψ

α

= κ(ψα ∧ ψβ)ψα.
More schematically, ψ obeys a cubic covariant wave equation25

(6.43) DαD
αψ = O(ψ3).

At this point one should remark that the cubic scalar wave equation is known to
be locally wellposed in the critical sense in the scale invariant space Ḣd/2−1

x (Rd)×
Ḣ
d/2−2
x (Rd) for d ≥ 3 by Strichartz estimates (Exercise 6.33). Thus, in high di-

mensions at least, the main difficulty will arise from the connection terms Aα inside

25In passing to this schematic, we have discarded the Q0 null structure arising from the
interaction of ψα with ψα in the right-hand side. It turns out that we can ignore this structure

in four and higher dimensions (see [SStru2], [NSU], as well as [Tao5], [KR] in five and higher
dimensions) but it becomes essential to the analysis in two and three dimensions. In particular,
the two-dimensional critical theory requires both the tools of geometry (in the gauge change) and
analysis (in the Xs,b type spaces needed to exploit the null structure).



298 6. WAVE MAPS

the covariant derivatives. Indeed, if one expands out these derivatives, the equation
(6.43) takes the schematic form

(6.44) �ψ = O(A∇x,tψ) +O((∇x,tA)ψ) +O(A2ψ) +O(ψ3).

Of these, it transpires that A∇x,tψ is the worst term to deal with; for instance,
if one wishes to use energy estimates to show that the nonlinear components are
dominated by the linear ones then one needs L1

tL
∞
x type control on A to control

this term. One could choose an ambient frame e = φ∗f , formed by pulling back
a fixed orthonormal frame f on M by φ; this would give a connection A which
was roughly at the regularity of ∂φ, but Strichartz estimates would not suffice to
give L1

tL
∞
x control (unless one localised in time and paid at least half a derivative).

Thus one must use the gauge freedom to ensure that A enjoys good estimates (such
as L1

tL
∞
x estimates).

Table 2. Some of the gauges one might consider for the wave map
problem, together with a caricature description of the size of the
connection coefficient A in those gauges. By “small energy”, we
refer to smallness in the scale-invariant Sobolev norm Ḣ

d/2
x ×

Ḣ
d/2−1
x .

Gauge Requirements A is like Comments
Ambient e = φ∗f Parallelisability ∇φ Bounds on A are poor
Coulomb ∂jAj = 0 Small energy or ∇−1F Good for high dimensions;
([SStru3], [NSU]) U(1) gauge group L2

x bound assuming minimality
Lorenz ∂αAα = 0 - �−1∇F Covariant, but �−1 problematic
Temporal A0 = 0 - ∂−1

t F Good for classical local theory
Radial xjAj = 0 - ∂−1

r F Good for radially or
([Stru5]) equivariantly symmetric data
Cronstrom xαAα = 0 - L−1F Good for small localised data
Microlocal-ambient Small energy & φhi∇φlo Good for low dimensions;
([Tao5], [Tao6], [Tat4]) embeddability extrinsic, many error terms
Microlocal-Coulomb Small energy ∇−1F Similar to Coulomb gauge;
([KR]) intrinsic, many error terms
Caloric As = 0 Small energy or φhi∇φlo Good for low dimensions;
([Tao10]) negative curvature intrinsic but rather nonlinear

Three gauges so far have been successfully proposed to achieve this goal. The
earliest was the microlocal gauge, first introduced in [Tao5], [Tao6] for spherical
targets and then in [KR], [Tat4] for more general targets; it is a little complicated
to state here, but see Exercise 6.30. The second gauge, proposed in [SStru3],
[NSU] and related to similar gauges introduced in [Hel2] for the study of harmonic
maps, was the Coulomb gauge. This gauge requires that the connection be spatially
divergence-free:

(6.45) divA := ∂xiAi = 0.

In the abelian casem = 2, one can ensure this divergence-free condition by applying
the gauge transform (6.41) with gauge

χ := ∆−1∂xjAj ,
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as can be easily verified. In the nonabelian case, uniqueness and existence for the
Coulomb gauge can break down for large data (this phenomenon is known as Gribov
ambiguity), nevertheless, it is possible to use perturbative theory and a continuity
argument to construct these gauges for any smooth map φ of sufficiently small
C0
tW

1,d
x norm (note that this makes ψ small in C0

t L
d
x and hence F small in C0

t L
d/2
x ,

by (6.37) and (6.40)); see [Uhl], and also Exercise 6.34 below. If φ is already
assumed to be small in C0

t Ḣ
d/2
x norm, as will be the case for Theorem 6.1, then

there will be no difficulty verifying the smallness condition needed to obtain the
Coulomb gauge.

To see why the Coulomb gauge is helpful, we compute the divergence ∂iFiβ of
the curvature using (6.40), (6.45), (6.36) to obtain

∆Aβ − ∂i[Ai, Aβ ] = κ∂i(ψi ∧ ψβ)
which we rearrange schematically as

(6.46) A = ∆−1∇[O(A2) +O(ψ2)].

In practice, the former term can be dealt with by iteration under the smallness
hypothesis (cf. Exercise 6.34), so we heuristically have

A ≈ ∇−1(ψ2)

and so the equation (6.44) essentially takes the form

(6.47) �ψ = O(∇−1(ψ2)∇ψ) +O(ψ3)

(the lower order term A2ψ turns out to be at least as easy to deal with as the
ψ3 term, because A will end up obeying all the estimates that ψ does). This
equation is in principle amenable to Strichartz iteration (basically because A now
does indeed lie in L1

tL
∞
x ); see Exercise 6.33. Indeed one can make the above analysis

completely rigorous and establish Theorem 6.1 in the high dimensional case d ≥ 4;
see [SStru3], [NSU].

For lower dimensions d = 2, 3, one must exploit the null structure, even in the
Coulomb gauge. Such structure is not immediately apparent from such schematic
formulations as (6.47), however a closer inspection of this equation does reveal some
usable structure. The most difficult term in the expansion for �ψβ in (6.47) is of
the form O(∇−1(ψ2)∇ψ). One can expand this expression out more carefully, and
obtain an expression of the form

∆−1∂i(ψi ∧ ψα)∂αψβ .

To exploit this, we look at (6.39), which asserts that ψα is curl-free modulo lower
order terms. A little Hodge theory (Exercise A.23) then allows one to write ψ as a
gradient modulo lower order terms, thus

ψα = ∂αΨ + l.o.t.

for some potential Ψ. The main term is then something of schematic form

∇−1(∂iΨ ∧ ∂αΨ)∂αψ.

We now see a “Q0” null structure emerging from the interaction between ∂αΨ and
∂αΨ, which helps deal with parallel interactions between these two factors. However
there is also another “Qiα” null structure that arises from the wedge product ∧,
which will serve to cancel parallel interactions between the ∂iΨ and ∂αΨ. This
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secondary null structure can also help deal with a certain singularity26 arising from
∇−1 at low frequencies, thanks to the identity

∂iΨ ∧ ∂αΨ = ∂i(Ψ ∧ ∂αΨ) − ∂α(∂iΨ ∧ Ψ).

Exploiting all of these null structures is somewhat difficult, especially in two di-
mensions d = 2, but achievable (at least in the abelian constant curvature setting,
for instance when the target is H2), mainly through numerous decompositions of
all factors in spacetime frequency space; see [Kri], [Kri2].

In addition to providing somewhat unpleasant singularities in low dimensions,
the Coulomb gauge also becomes problematic when one attempts to move to large
energies, because of the above-mentioned Gribov ambiguity. In principle this diffi-
culty can be resolved by using local Coulomb gauges (see [KM]), but this is likely
to complicate an already technical argument. In Section 6.4 we discuss a third
gauge, the caloric gauge, which is less singular than the Coulomb gauge but more
geometric than the microlocal gauge, and is thus both tractable analytically and
extendable geometrically to large energies. It has the drawback of being more non-
linear than the other gauges, in that one has to solve a nonlinear parabolic equation
(as opposed to a recursive microlocal scheme, or a nonlinear elliptic equation) in
order to construct the gauge, however the theory of such equations is quite well
developed (and is significantly more advanced than the corresponding theory for
nonlinear wave equatinos such as wave maps) and thus seems to hold the best
promise to tackle the large energy regularity problem.

Exercise 6.28 (Radial gauge). Let φ : I ×Rd be a smooth map, and suppose
that the time interval I contains 0. Let e(0)1 , . . . , e

(0)
d be an arbitrary orthonormal

basis of the tangent space Tφ(0,0)M . Show that there is a unique smooth orthonor-
mal frame e1, . . . , ed on I × Rd obeying the radial gauge conditions

ei(0, 0) = e
(0)
i ; xα(φ∗∇)αei(t, x) = 0

for all i = 1, . . . , d and (t, x) ∈ I × Rd. (You will need the ODE existence and
stability theory from Chapter 1, such as Exercise 1.14. The Minkowski metric is
irrelevant here; one may as well work with any star-shaped open subset of Rd+1.)

Exercise 6.29. Let M be a manifold of constant curvature κ. Let Aα : I ×
Rd → so(m) and ψα : I × Rd → Rm be smooth fields obeying the compatibility
conditions (6.39), (6.40), and suppose that the time interval I contains 0. Let
p be an arbitrary point in M , and let e(0) : Rm → TpM be an orthonormal
transformation. Show that there exists a unique smooth map φ : I × Rd → M
and an orthonormal frame e : (I × Rd) × Rm → φ∗TM with initial conditions
φ(0, 0) = p, e(0, 0) = e(0) and obeying the equations (6.37), (6.38). (Hint: contract
these equations against the radial vector field xα to obtain ODE that can be used
as in Exercise 6.28 to uniquely specify φ and e. Then use Gronwall inequality

26This is somewhat counterintuitive, since in the subcritical local theory one is always happy
to see smoothing operators such as ∇−1. However, at the critical level, any smoothing operator
is always balanced out by a derivative appearing elsewhere, and one can run into trouble if the
smoothing operator falls on a low frequency and the derivative falls on a high frequency. Thus

the Coulomb gauge is both introducing a singularity (from the ∇−1 term) while also providing
the means to cancel it (via the Qiα null structures). The other two gauges used in wave maps,
namely the microlocal gauge and the caloric gauge, do not introduce this singularity and one does
not need these Qiα null structures in order to control the evolution, even in two dimensions.
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arguments to recover the full equations (6.37), (6.38) as in Exercise 1.13. Once one
has the full set of equations, smoothness is simply a matter of differentiating the
equations repeatedly.)

Exercise 6.30 (Gauge transforms on the sphere). [Tao5], [Tao6] Let φ :
R1+d → Sm ⊂ Rm+1 be a smooth wave map to the sphere, thus solving the
equation (6.11) in extrinsic coordinates, as well as the constraint φ · φ = 1 (and
hence φ · ∂αφ = 0). Differentiate the wave map equation to conclude the covariant
wave equation

(∂α +Aα)(∂α +Aα)∇βφ = Od,m(|∇x,tφ|3)
where for each α = 0, . . . , d and (t, x) ∈ R1+d, Aα(t, x) : Rm+1 → Rm+1 is the
skew-adjoint operator

Aα(t, x)v := (∂αφ(t, x) · v)φ(t, x) − (φ(t, x) · v)∂αφ(t, x),

and indices on Aα are raised and lowered in the usual fashion. If we then make
the gauge transform wβ := U∇βφ for an arbitrary smooth rotation matrix field
U : R1+d → SO(m), conclude that

(∂α + Ãα)(∂α + Ãα)wβ = Od,m(|w|3)
(cf. (6.43)) where

Ãα := UAαU
−1 − (∂αU)U−1.

Also, if we define the curvatures

Fαβ := ∂αAβ − ∂βAα + [Aα, Aβ ]; F̃αβ := ∂αÃβ − ∂βÃα + [Ãα, Ãβ]

show that
F̃αβ = U−1FαβU = Od,m(|w|2).

Using the Coulomb gauge, one can (heuristically at least) ensure that Ã ≈ ∇−1(|w|2),
leading to a semilinear equation for w of the schematic form

�w = O(∇−1(|w|2)∇w) +O(|w|3).
In [Tao5], [Tao6], a microlocal gauge was constructed instead (by applying Littlewood-
Paley projections to the above scheme and building the (Littlewood-Paley projec-
tions of the) gauge matrix U by an explicit recursive formula) which gave a slightly
better behaved curvature, namely Ã ≈ wlo∇−1whi, where wlo, whi were compo-
nents of w of low frequency and high frequency respectively. This led to a slightly
better equation, namely

�w = O(wlo∇−1whi∇w) +O(|w|3),
which was only slightly worse than the cubic wave equation. In low dimensions,
one also needs to exploit null form structure in the nonlinearity.

Exercise 6.31. Let Aα : R1+d → so(m) be a smooth connection, with as-
sociated covariant operator Dα := ∂α + Aα, and let V : R1+d → R be a scalar
potential. Show that a smooth vector field ψ : R1+d → Rm solves the covari-
ant wave equation DαDαψ + V ψ = 0 if and only if it is a formal critical point
of the Lagrangian

∫
R1+d D

αψ ·Dαψ − V |ψ|2. Deduce the charge conservation law
∂α(ψ∧Dαψ) = 0 in two different ways; directly from the wave equation, and also by
analyzing the variation of the Lagrangian with respect to gauge changes. (Compare
this law with Exercise 6.3.) Note that the classical conservation of the Wronskian
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for one-dimensional Schrödinger operators corresponds to the special case d = 1
and A = 0.

Exercise 6.32 (Minimal Coulomb gauges). [Hel2] Let Aα : Rd → so(m) be
a smooth connection. For any linear A : Rm → Rm, let ‖A‖ := tr(AA∗)1/2 denote
the Hilbert-Schmidt (or Frobenius) norm of A. Show that A is a formal critical point
of the functional C(A) :=

∫
Rd

∑d
j=1 ‖Aj‖2

HS with respect to gauge changes if and
only if A is in the Coulomb gauge. This gives a concrete sense in which the Coulomb
gauge is trying to minimise the size of the connection A. Now suppose that A arises
from a smooth map φ : Rd →M and an orthonormal frame e : Rd×Rm → φ∗(TM)
in the usual manner. Assume also that M is boundedly parallelisable, that is to
say that there exists at least one orthonormal frame f : M × Rm → TM on M
whose connection coefficients and all derivatives are uniformly bounded. Show that
there is at least one connection Ã that is gauge equivalent to A with the bounds
‖Ã‖L2

x(Rd) � ‖∇φ‖L2
x(Rd). Thus if one can select A to be the minimiser of the

Coulomb functional C(A), then we can bound A in L2
x norm by the energy. These

minimal Coulomb gauges play a key role in Helein’s argument [Hel2] establishing
regularity of weakly harmonic maps into arbitrary boundedly parallelisable targets
(and the hypothesis of parallelisability can be removed by lifting arguments).

Exercise 6.33. Show that the cubic wave equation �u = |u|2u is locally
wellposed in the space Ḣd/2−1

x (Rd)× Ḣ
d/2−2
x (Rd) for d ≥ 3. (In three dimensions,

place u in the space L4
t,x. In higher dimensions, place the nonlinearity in L1

t Ḣ
d/2−2
x

and the solution in L2
tL

2d
x and L∞

t Ẇ
d/2−2,2d/(d−2)
x ; other choices for norms are also

available.) For d = 2, the scale-invariant regularity L2 × Ḣ−1
x is supercritical with

respect to Lorentz invariance (cf. Exercise 3.67), reflecting the bad behaviour of
parallel interactions, which need to be damped out by the null structure. When
d ≥ 4, extend the analysis to also deal with the more complicated equation (6.47),
assuming for simplicity that the endpoint Sobolev embedding theorem continues to
apply at the endpoint L∞

x . (One can remove this “cheat” by using more refined
versions of the Sobolev embedding theorem, exploiting either Lorentz or Besov
refinements to the Strichartz inequality; see [SStru3], [NSU] for these respective
approaches.)

Exercise 6.34 (A priori estimate for Coulomb gauge). Let d ≥ 4, let M have
constant curvature κ = −1, 0,+1, let φ : I × Rd → M be a smooth map, e be
an orthonormal frame, and let Aα, ψα be as defined in the text. Show that if the
Coulomb gauge condition (6.45) holds, then we have the a priori estimate

‖A‖
C0

t Ẇ
1,d/2
x (I×Rd)

�d ‖φ‖2
C0

t Ẇ
1,d
x (I×Rd)

+ ‖A‖2

C0
t Ẇ

1,d/2
x (I×Rd)

.

(Hint: use (6.46).) A refinement of this argument together with a continuity argu-
ment allows one to construct Coulomb gauges whenever φ is smooth and sufficiently
small in C0

t Ẇ
1,d
x norm; see [Uhl].

Exercise 6.35 (First and second variation formulae). Let M be a smooth
manifold. Show that if p, q are sufficiently close, then there is a 0-dimensional wave
map φ : [0, 1] →M with φ(0) = p and φ(1) = q such that

d(p, q)2 =
∫ 1

0

|∂sφ|2h(φ) ds
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where d(p, q) is the geodesic distance from p to q. Now we fix p and let q = q(t)
vary smoothly with respect to another real parameter t ∈ (−ε, ε), so that we have
a smooth map φ : (−ε, ε)× [0, 1] →M such that for every t ∈ (−ε, ε), the function
s �→ φ(t, s) is a 0-dimensional wave map with φ(t, 0) = p, φ(t, 1) = q(t), and

d(p, q(t))2 =
∫ 1

0

|∂sφ(t, s)|2h(φ) ds.

Establish the first variation formula

∂t(d(p, q(t))2) = 2〈∂tq(t), ∂sφ(t, 1)〉h(q(t))

and interpret this geometrically. Conclude in particular the Gauss lemma that
geodesics emenating from p are orthogonal to geodesic spheres centred at p, at
least on a small neighbourhood of p. Also derive the Jacobi field equation

(φ∗∇s)(φ∗∇s)∂tφc = Rcabd(φ)∂sφa∂sφd∂tφb

in the s direction for the time derivative field ∂tφ. Assuming that the map t �→
q(t) is itself a 0-dimensional wave map (i.e. a geodesic flow), establish the second
variation formula

∂t(d(p, q(t))2) = 2
∫ 1

0

Rcabd(φ)∂tφa∂sφb∂tφd∂sφc + |(φ∗∇t)∂sφ|2h(φ) ds.

Conclude in particular that if M has constant negative curvature, then the function
d(p, q(t))2 is convex in t; more generally, it can be shown in this manner that the
square of the metric function is globally geodesically convex whenever the manifold
has negative curvature.

Exercise 6.36. Verify that the stress-energy tensor (6.3) can be written in the
derivative formulation as

(6.48) Tαβ = ψα · ψβ − 1
2
gαβψ

γ · ψγ
and derive the conservation law (6.4) directly from (6.39), (6.42), (6.35). Note that
the curvature of M plays no role in this computation. Also, write the Lagrangian
(6.1) as 1

2

∫
R1+d ψ

α ·ψα, and vary it by introducing a deformation parameter s and
letting φ and e vary smoothly in this parameter, to rederive (6.42) as the formal
Euler-Lagrange equation for (6.1).

Exercise 6.37 (Orthonormal frame bundle). [Tao10] Given any manifold M ,
define the orthonormal frame bundle Frame(M) of M to be the set of all pairs
(φ, e), where φ is a point in M and e : Rm → TφM is an orthogonal map; thus
one can view a map φ : I × Rd → M and an orthonormal frame e : I × Rd ×
Rm → TM as a unified map (φ, e) : I × Rd → Frame(M). Show that the tangent
bundle TFrame(M) of Frame(M) can be canonically identified with Frame(M) ×
Rm × so(m), and that using this identification the derivative d(φ, e) of (φ, e) is
identified with (φ, e, ψα, Aα). When M = Sm, show that Frame(M) is identifiable
with the rotation group G = SO(m + 1); when M = Rm, that Frame(M) is
identifiable with the group G of rigid Euclidean motions on Rm; and when M =
Hm, that Frame(M) is identifiable with the special Lorentz group G = SO(m, 1)
of orientation-preserving linear isometries of Minkowski space R1+m. Furthermore,
in all of these cases, G acts isometrically on M , and M is identifiable with the
symmetric space SO(m)\G. It is tempting to try to exploit the group structure of
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G somehow in the analysis of wave maps into constant curvature targets, but this
has so far not proven to be fruitful. (For a related discussion comparing the wave
maps equation to zero-curvature Lorenz gauge connections on a Lie algebra, see
[KM4], [KR].)

6.3. Wave map decay estimates

Perfection is attained by slow degrees; it requires the hand of time.
(Voltaire)

Having discussed the small data theory, we now turn to the study of large
data wave maps, especially in the energy-critical two-dimensional case. Here, we
our understanding is incomplete, but there is growing support for the following
conjecture of Klainerman (see for instance [Kla4]):

Conjecture 6.2 (Large energy wave maps). If the target M is negatively
curved, then one should have global regularity for two-dimensional wave maps from
arbitrary large energy smooth initial data (and probably also some sort of global
wellposedness in the energy class, for instance when M = Hm). In the positively
curved case, say M = Sm, it should be possible to blow up from smooth large energy
data (and in any event wellposedness in the energy class is expected to fail).

Both sides of this conjecture remain open, however some partial results are
known. For equivariant maps, one has global regularity in the negatively curved case
[ST], [SStru2], [SStru2] for arbitrarily large data, based primarily on reduction to
a defocusing energy-critical NLW type equation (cf. Exercise 6.10). For equivariant
maps in the positively curved case such as Sm, blowup is not known (transferring
the known blowup examples from NLW require singularities in the target manifold
M), but it is known that if blowup did occur, the solution would converge in a fairly
strong sense after rescaling to a harmonic map [Stru3]. For spherically symmetric
maps, global regularity for large data was established in [CT] assuming a convexity
condition on the range of the wave map (a type of negative curvature condition);
this condition was later removed in [Stru4], [Stru5], thus in this case one in fact
has global regularity for all smooth target manifolds. For nonsymmetric initial data,
not much is currently known, although the small energy theory (together with finite
speed of propagation) does show that if blowup occurs, then there must also be a
concentration of energy at a point. For data that takes values in a geodesic, the
equation collapses to the free wave equation in arclength coordinates and so global
regularity is easy; there are some stability results known that establish the same
result for small energy perturbations of this situation (see [Sid], [Kri3]). In a
rather different direction, global weak solutions can be constructed using viscosity
methods and a priori energy estimates; see [Sha2], [Fri], [Zho], [MS], though it
seems difficult to extract regularity, uniqueness, or even energy conservation from
these solutions27. There is however hope that global regularity for arbitrary large
data could be established in hyperbolic space Hm. As we shall see in the next
section, a gauge transform exists in the large data setting which transforms the
wave map equation in to a somewhat complicated system where the nonlinearity
is of comparable strength to those in energy-critical NLW and NLS. In this section

27Indeed, the task of upgrading weak solutions to strong, unique, or energy-conserving solu-
tions seems very closely related to the problem of precluding energy concentration, which is the
goal needed to create globally regular solutions in the first place!
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we also present a number of decay estimates which seem to indicate a nontrivial
amount of decay for the solution in the negatively curved case. Together, these
results should be in principle combinable with the machinery of the previous section
to establish large data global regularity, though there are a number of technical
obstacles which we shall discuss briefly in the next section.

For now, we focus on a major ingredient in any critical large data theory,
namely the decay estimates that somehow “beat” the scale invariance as one ap-
proaches a putative singularity, typically by providing an additional decay of o(1).
For simplicity we only consider finite singularities (t, x), although the asymptotic
behaviour as t → ∞ is also of interest (and can to some extent be treated by the
same methods; see for instance [CT2]). In particular, there appears to be support
(for general targets N) for the following heuristic:

Principle 6.3 (Asymptotic relaxation to harmonic map). As one approaches
a given point (t, x) in spacetime, a two-dimensional finite energy wave map φ will
asymptotically resemble a harmonic map (which could be constant) after suitable
rescaling. If in addition φ has some type of spherical symmetry, then the energy of
this harmonic map will be concentrated near the time axis.

If the map is spherically symmetric (Exercise 6.38) or when the target has neg-
ative curvature (Exercise 6.42), it is known that there are no finite energy harmonic
maps other than the constant maps. Thus (depending on how strong one can make
the phrase “asymptotically resemble”), Principle 6.3 strongly indicates that one
should obtain a non-concentration of energy result in those cases, which when com-
bined with the small energy theory and finite speed of propagation, implies global
regularity even for large energy wave maps. Thus it is of interest to make Principle
6.3 as rigorous and quantitative as possible. We remark that for the harmonic map
heat flow, the analogous principle has been extensively supported in a number of
ways; see for instance [Stru].

To fix the notation we shall work exclusively with two-dimensional wave maps
φ : [0, T∗) × R2 → M which are smooth from the initial time t0 = 0 up to a
possible blowup time t = T∗, where we anticipate a possible singularity28 at the
spacetime origin (T∗, 0). For convenience, we also select an orthonormal frame
e : ([0, T∗) × R2) × Rm → φ∗TM , so that we can obtain the covariant derivatives
Dα and differentiated fields Aα, ψα. While we do have the freedom to fix the
gauge as we please, as in the previous section, most of the analysis here will be
covariant and so will not rely on any particular gauge. Also, the analysis here is
mostly insensitive to the curvature of the target (or on any hypothesis on constant
curvature), so we will not rely on the curvature identity (6.40). We assume the
energy of the wave map is bounded by O(1), thus we have the energy bounds

(6.49) ‖ψ‖L∞
t L2

x([0,T∗)×R2) � 1.

One of the primary tools in obtaining decay near a point (T∗, 0) in spacetime
will of course be the stress-energy tensor Tαβ , which in our coordinate system is
represented by (6.48). Given any smooth vector field Xα, we may contract this
vector field against the stress-energy tensor and use Stokes’ theorem as in Section

28For spherically symmetric data, it is a fairly easy matter (e.g. using (6.57) and flux esti-
mates) to keep the derivatives of φ under control away from the spatial origin x = 0, and so the
first point of blowup cannot occur away from this origin.
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2.5 to obtain the general identity

(6.50)
∫

Σ1

TαβXαnβdS =
∫

Σ0

TαβXαnβdS +
∫

Σ

1
2
παβTαβdg

whenever Σ is an open region in spacetime bounded below by a spacelike hyper-
surface Σ0 and above by a spacelike hypersurface Σ1, nβ is the positive timelike
unit normal and dS is the induced measure from the metric g (which is positive on
the spacelike surfaces Σ0, Σ1); here παβ is the deformation tensor of X , defined in
(2.52). In order for this identity to be useful, one typically requires either TαβXαnβ
or παβTαβ to have some sort of non-negativity property.

One can now experiment with (6.50) for various choices of vector field Xα. For
instance, choosing the time vector field X = ∂t (identifying vector fields with first-
order differential operators in the usual manner), we obtain the standard energy
identity

(6.51)
∫
|x|≤T∗−t1

T00(t1, x) dx+ Flux[t0, t1] =
∫
|x|≤T∗−t0

T00(t0, x) dx

for any 0 ≤ t0 < t1 < T∗, where the energy flux Flux[t0, t1] is defined as

Flux[t0, t1] =
∫
t0<t<t1,|x|=T∗−t

TαβXαnβdS

=
1
2

∫
T∗−t1≤|x|≤T∗−t0

|ψL(T∗ − |x|, x)|2 + |x|2|ψω(T∗ − |x|, x)|2 dx

where ψL := ψ0 − x1
|x1|ψ1 − x2

|x2|ψ2 is the inward null component of ψ, and ψω :=
x2ψ1 − x1ψ2 is the angular component. Thus the flux is positive, and by the usual
arguments and (6.49) we obtain the flux decay

(6.52) Flux[t0, t1] = ot0→T−
∗

(1).

This gives satisfactory decay on the fields ψα on the light cone |x| = T∗ − t. It is
more difficult to obtain good decay inside the light cone. If one fixes a radius R
and chooses the vector field X = r log R

r 1r<R∂r, where r := |x|, ∂r := x
|x| · ∂r, and

1r<R is a cutoff to the ball {r < R}, then some routine computations show that

παβTαβ = 1r<R(2|ψ0|2 log
R

r
+O(|ψ|2))

and TαβXα = O(R|ψ|2), so applying (6.50) to29 a spacetime slab [t0, t1] × R2 and
using (6.49) we obtain the estimate

(6.53)
∫ t1

t0

∫
|x|<R

|ψ0|2 log
R

r
dxdt = O(R) +O(|t1 − t0|).

This bound (first observed in [CT]) provides a slight additional decay on ψ0 near
the time axis r = 0, compared to the bounds given in (6.49), which give a bound
of O(|t1 − t0|) but only if the logarithmic weight log R

r is removed.
A related estimate was given in [Tao10], which gives a similar decay of the

normalised scaling vector field ψS̃ := ψ0 + xj

t−T∗
ψj on the interior of the light cone.

29There is of course a mild singularity of the vector field X at the time axis r = 0, but this
can be dealt with by the usual regulariziation procedure exploiting the smoothness of ψ which we
leave to the reader.
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To motivate this estimate, let us formally manipulate (6.50) with the Minkowski-
radial vector field Xα = x̃α

ρ ∂α, where x̃ = x − (T∗, 0) and ρ :=
√−x̃αx̃α =√|T∗ − t|2 − |x|2 is the Minkowski-radial variable. One easily verifies that

παβ =
gαβ

ρ
− x̃αx̃β

ρ3

and hence

παβTαβ = −(Xαψα)2/ρ = − (T∗ − t)2

(|T∗ − t|2 − |x|2)3/2 |ψS̃ |
2.

As this has a negative sign inside the light cone, one should be able to integrate
this and obtain some control on ψS̃ . This cannot quite be done directly because
X blows up on the boundary of the light cone, but a regularisation argument
eventually yields the decay estimate

(6.54)
∫ t1

t0

∫
|x|≤T∗−t

|ψS̃ |2 dx
dt

T∗ − t
= ot1→T∗

−(log
T∗ − t1
T∗ − t0

)

for any fixed t0; again, this improves upon what one would expect from (6.49),
which only provides a bound of O(log T∗−t1

T∗−t0 ). See [Tao10] for details.
These estimates seem to imply some decay of ψS̃ as one approaches the origin,

which shows that ψ is becoming in some sense “self-similar”. It should be noted
at this point that the exactly self-similar wave maps in two dimensions are the
constants; see Exercise 6.41.

In the special case when the wave map φ is spherically symmetric30 substantially
more is known. The point is that in the radial setting, a 2+1 wave map behaves to
a large extent like a 1+1 wave map, and in particular we expect some transport-like
behaviour, as in Exercise 6.9. Indeed, in this case we know that the derivative field
ψ vanishes along angular directions, thus xjψi − xiψj = 0, and so the wave map
equation (6.42) simplifies to

(6.55) −Dtψt +Drψr +
1
r
ψr = 0

away from the time axis r = 0, where Dt := D0, ψt := ψ0, Dr := xj

|x|Dj and
ψr := xj

|x|ψj . Introducing the null coordinate frame u := t + r, v := t − r with the
associated derivatives

ψu :=
1
2
(ψt + ψr); ψv :=

1
2
(ψt − ψr); Du :=

1
2
(Dt +Dr); Dv :=

1
2
(Dt −Dr)

and recalling (from (6.39)) that Dtψr = Drψt, we obtain

(6.56) Duψv = Dvψu =
1
4r
ψr =

1
4r

(ψu + ψv);

making the substitutions Ψu := r1/2ψu, Ψv := r1/2ψv, we thus obtain the transport
equations

DuΨv = Ψu/4r; DvΨu = Ψv/4r.
Using the diamagnetic inequality (Exercise B.1), we can thus control the magnitudes
of the Ψ:

(6.57) |∂u|Ψv|| ≤ |Ψu|/4r; |∂v|Ψu|| ≤ |Ψv|/4r.
30The arguments here also carry over to a large extent to equivariant wave maps; see for

instance [SStru2].
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These differential inequalities allow one to control the size of Ψv by the size of Ψu,
and vice versa. The flux decay estimate (6.52) gives some control on Ψv, and from
this and (6.57) we can also get some control on Ψu, and thence on the fields ψ.
Indeed one can obtain the following energy decay estimate away from the time axis,
first observed in [CT]:

(6.58)
∫
λ(T∗−t)≤|x|≤(T∗−t)

|ψ(t, x)|2 dx = ot→T∗
−(1) for any fixed 0 < λ < 1;

see Exercise 6.47. Note that the decay rate ot→T∗
−(1) will of course depend on λ.

One consequence of this estimate (and (6.49)) is the estimate

(6.59)
∫
|x|≤(T∗−t)

r|ψ(t, x)|2 dx = ot→T∗
−((T∗ − t));

this can be seen by splitting the region of integration into |x| ≥ λ(T∗ − t) and
|x| < λ(T∗− t), using (6.58) and (6.49), and then letting λ→ 0. (Conversely, (6.59)
easily implies (6.58)). To exploit (6.59), let us return to (6.50), but now use the
radial vector field X = r∂r . A routine computation shows that

παβTαβ = 2|ψt|2

and so from (6.50) applied to the truncated light cone, we easily establish∫ t1

t0

∫
|x|≤T∗−t

|ψt|2 dxdt � sup
t=t0,t1

∫
|x|≤T∗−t

|x||ψ(t, x)|2 dx+ (T ∗ − t0)Flux[t0, t1]

for all 0 ≤ t0 < t1 < T ∗; from (6.59) and (6.52) (and letting t1 → T ∗−) we conclude
the time derivative decay estimate from [CT]:

(6.60)
∫ T∗

t0

∫
|x|≤T∗−t

|ψt|2 dxdt = ot0→T∗
−(T ∗ − t0).

Again, a naive application of (6.49) only gives a bound of O(T ∗ − t0) on the left-
hand side. This decay of ψt is asserting, in some weak sense, that the wave map
is becoming more stationary, and thus more like a harmonic map, in accordance
with Principle 6.3; see [Stru4], [Stru5] for further developments of this theme. We
remark that (6.60) is also very consistent with (6.54), given that we already know
from (6.58) that the solution is concentrating its energy near the time axis.

To get a fully satisfactory energy non-concentration result, one would like to
complement the decay of the time derivatives ψt with spatial derivatives ψx. One
way to achieve this is by an equipartition of energy argument (as in Exercise 2.66).
In the case of flat targets (i.e. for solutions to the free wave equation �φ = 0),
one can obtain equipartition of energy by observing the identity �|φ|2 = 2(|∇φ|2 −
|∂tφ|2). Integrating this on a suitable region (or against a suitable cutoff function),
the left-hand side can be managed by integration by parts, and we can conclude
that |∇φ|2 and |∂tψ|2 are roughly equal on the average, thus allowing us to convert
estimates like (6.60) on the time derivative to that of the spatial derivative. In fact
this type of argument is quite general; one could replace |φ|2 by a more general
function F (φ) as long as F was uniformly convex; see Exercise 6.48. Thus under
the additional assumption that there existed a uniformly convex scalar function on
the range of φ (which is a type of negative curvature assumption on the target; see
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Exercise 6.35), one can deduce decay of the entire energy:

(6.61)
∫ T∗

t0

∫
|x|≤T∗−t

|ψ|2 dxdt = ot0→T∗
−(T ∗ − t0).

In fact this hypothesis of a uniformly convex function is a bit too strong; it is
sufficient to assume that the geodesic spheres in M have some reasonable lower
and upper bounds on their curvature even as the spheres become large, which for
instance will be verified if M has constant zero or negative curvature; in such a
case one can essentially take F to be the square of the distance to a given origin.
See [CT].

From (6.51) we know that
∫
|x|≤T∗−t |ψ|2 dx is monotone decreasing, and we

thus have nonconcentration of energy:∫
|x|≤T∗−t

|ψ|2 dx = ot→T∗
−(1).

Combining this with Theorem 6.1 and finite speed of propagation as in Proposition
5.3, one can thus conclude global regularity of large energy spherically symmetric
wave maps as long as there exists a uniformly convex function on the range of the
wave map; see [CT] for full details.

The hypothesis of a uniformly convex function (or of curvature bounds on
geodesic spheres) was removed in [Stru4], [Stru5] by exploiting the spherical sym-
metry more strongly. In addition to the above analysis, there are three additional
components to the proof. Firstly, the time decay (6.60) was used to show that a
suitably rescaled version of φ converged strongly (away from the time axis, and af-
ter passing to a subsequence) to a weakly harmonic map. Secondly, this harmonic
map, being radial and finite energy, can be shown to be constant (cf. Exercise
6.38, although to remove the singularity at the origin r = 0 requires a further
result of Sacks and Uhlenbeck [SacU], see Exercise 6.49); this gives some very
strong decay of the wave map away from the time axis and essentially allows one
to ignore all further boundary terms that appear in the analysis, for instance from
integration by parts. Finally, to obtain the equipartition of energy, the expression
ψα · ψα = −|ψt|2 + |ψr|2 was rewritten as a total derivative, plus some manage-
able errors, so that the desired equipartition would then follow by an integration
by parts. To achieve this, ψr was integrated covariantly31 in the radial direction,
constructing a vector potential Q such that ψr = DrQ and with an appropriate
boundary condition. If one then writes ψt = DtQ + E, one then easily computes
(using (6.39) that DrE = FrtQ = O(|ψr ||ψt||Q|), which gives an adequate bound
on the error E. One can then write

−|ψt|2 + |ψr|2 = −ψt ·DtQ+ ψr ·DrQ− ψt · E
= −∂t(ψt ·Q) − ∂∗r (ψr ·Q) − ψt ·E

where ∂∗r := −∂r + 1
r is the adjoint of ∂r, and we have used (6.35) and (6.55).

One can then integrate this identity by parts, which essentially eliminates the first
two terms (recall that the previous steps of the argument allowed one to eliminate
boundary terms), leaving only the contribution of the error E, which as it turns out
can be controlled by Cauchy-Schwarz, (6.60) and (6.53). See [Stru5] for details.

31Alternatively, one could now exploit the gauge invariance to work in the radial gauge
Ar = 0; see [Stru5].
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Exercise 6.38 (Conformality of finite energy two-dimensional harmonic maps).
Let φ : R2 → M be a smooth harmonic map. Show that the Hopf differential
Ψ : C → C defined by

Ψ(x1+ix2) := |∂x1φ(x1, x2)|2h(φ)−|∂x2φ(x1, x2)|2h(φ)−2i〈∂x1φ(x1, x2), ∂x2φ(x1, x2)〉h(φ)

is holomorphic; in particular, its real and imaginary parts are harmonic. Relate this
to the divergence-free and trace-free nature of the stress-energy tensor on R2, and
compare the situation with that on R1+1 in Exercise 6.9. (Note that the Cauchy-
Riemann equation ∂zΨ = 0 can be viewed as a complexified transport equation.)
Conclude in particular (by a suitable variant of Louiville’s theorem) that if φ has
finite energy, then it is conformal in the sense that the vectors ∂1φ and ∂2φ have
equal magnitude and are orthogonal in TφM . Check this result for the stereographic
projection in (6.16). Also conclude that the only spherically symmetric smooth
finite energy harmonic maps from R2 to M are the constants.

Exercise 6.39 (Conformality of two-dimensional harmonic maps, II). Let Ω ⊂
R2 be a domain, let φ : Ω →M be a smooth harmonic map, and let f : Ω → f(Ω)
be a conformal diffeomorphism mapping. Show that φ ◦ f−1 is also a harmonic
map. (This is easiest to see from the variational formulation.) Note that this is
quite compatible with the conformality result in Exercise 6.38.

Exercise 6.40 (Lemaire’s theorem). [Lem] Let D := {x ∈ R2 : |x| ≤ 1} be
the closed unit disk in R2, and let φ : D → M be a smooth harmonic map which
is equal to a constant p on the boundary ∂D of the disk, thus in polar coordinates
(r, θ) we have φ(1, θ) = p for all θ. Using the Hopf differential from Exercise 6.38,
conclude that φ is conformal, and in particular |∂rφ| = r|∂θφ| on the disk D. Now,
write the harmonic map equation in polar coordinates as

(φ∗∇)r∂rφ+
1
r
∂rφ+ (φ∗∇)θ∂θφ = 0

(or Drψr+ 1
rψr+Dθψθ = 0, with respect to an orthonormal frame) and differentiate

repeatedly in the r direction to conclude that φ is constant to infinite order on the
boundary ∂D of the disk. Extend φ smoothly to all of Rd, and then use unique
continuation (Exercise 2.67) to conclude that φ is in fact equal to the constant map
p. (You can apply unique continuation to a number of functions, e.g. φ − p if M
is embedded in a Euclidean space, or to the differentiated fields ψ in some ambient
gauge.)

Exercise 6.41 (Self-similar wave maps are constant). [SStru2] Let Γ be the
cone {|x| ≤ t} in R1+2, and let φ : Γ → M be a smooth finite-energy wave map
which is invariant under the scaling (6.2). Using flux decay (6.52), show that φ
is constant on the boundary of Γ. Then use the ansatz32 φ(t, x) = ϕ( x

t+
√
t2−|x|2 )

and show that ϕ : D →M is a smooth harmonic map on the unit disk D which is
constant on the boundary. Using Lemaire’s theorem (Exercise 6.40), one concludes
that the only self-similar finite energy wave maps are the constant maps.

32This ansatz can be explained geometrically, by observing that the map (t, x) �→ x

t+
√

t2−|x|2
is scale-invariant and maps the hyperboloid H2 conformally to the unit disk D; this map from
H2 to D is the hyperbolic analogue of the inverse of the stereographic projection (6.16) from R2

to S2. Indeed this, together with the variational description of harmonic maps, is probably the
easiest way to establish this exercise.
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Exercise 6.42 (Bochner identity). Let M have constant curvature κ, and let
φ : R2 → M be a smooth harmonic map. Select an arbitrary orthonormal frame
e : R2 × Rm → φ∗TM to obtain differentiated fields Aj , ψj in the usual manner,
thus for instance the harmonic map equation becomes Djψj = 0. Establish the
Bochner identity

∆(ψj · ψj) = 2(Dkψj ·Dkψj) − κ〈ψj ∧ ψk, ψj ∧ ψk〉HS
where 〈A,B〉HS := tr(AB∗) is the Hilbert-Schmidt inner prodct. Conclude in
particular that if M has negative or zero curvature, then the function |ψ1|2 + |ψ2|2
has a nonnegative Laplacian. Use this and an integration by parts to conclude that
the only smooth finite energy harmonic maps into targets of constant negative or
zero curvature are the constant maps. (A similar argument also works for other
manifolds of non-constant negative curvature provided one has some uniformly
bounds on the geometry.)

Exercise 6.43 (Monotonicity formula). Let φ : Rd → M be a smooth har-
monic map. By contracting the stress energy tensor for this map against the scaling
vector field r∂r = x · ∇x, establish the monotonicity formula

∂RR
2−d

∫
B(0,R)

|∇φ|2h(φ) dx = 2R2−d
∫
|x|=R

|∂rφ|2h(φ) dS.

Note that this monotonicity formula in particular provides an a priori scale-invariant
bound of the form

∫
B(0,R)

|∇φ|2h(φ) dx = O(Rd−2) for smooth harmonic maps of
bounded energy. This result extends to a wider class of maps known as stationary
harmonic maps ; see [SchU], [Pri].

Exercise 6.44. Show that in the null coordinates u = t+ r, v = t− r and with
respect to any orthonormal frame, the one-dimensional wave map equation can be
written in the simple form Duψv = Dvψu = 0 (compare with (6.56) and Exercise
6.9).

Exercise 6.45. [Scho] Let φ : R3 → M be a smooth three-dimensional har-
monic map. By contracting the stress energy tensor for this map against the radial
vector field ∂r = x

|x| · ∇x, establish the estimate∫
R1<|x|<R2

|∂rφ|2h(φ)

dx

|x| �
2∑
j=1

∫
|x|=Rj

|∇φ|2h(φ) dS

for any 0 < R1 < R2 <∞. This gives an additional decay of the radial derivative as
one approaches a point singularity, and is in some sense the counterpart of (6.54),
but for R3 rather than R1+2.

Exercise 6.46. Let φ : R2 → Sm be a smooth harmonic map to the sphere,
which we view in extrinsic coordinates φ = φa ∈ Rm+1. Verify the formula

∆φa = ∂j((φa∂jφb − φb∂jφ
a)(φ − p)b)

for any point p ∈ Sm. Using Sobolev embedding, conclude the a priori estimate

‖φ− p‖Lq
x(Rd) �q ‖∇φ‖L2

x(Rd)‖φ− p‖Lq
x(Rd).

for any 2 < q < ∞ and any point p ∈ Sm for which φ − p ∈ Lqx(R
d). This

suggests that one can obtain a priori control on the Lq oscillation of φ when the
energy is small. A suitable localisation of this argument in fact implies that all
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Figure 3. The region R described in Exercise 6.47.

weakly harmonic finite energy maps from R2 to a sphere are smooth (a result first
established in [Hel]); see [CWY].

Exercise 6.47. [CT] Let u− < u+ and v− < v+ be real numbers, and consider
the “rectangle” (or more precisely, the solid of revolution swept out by a rectangle)
R := {u− ≤ u ≤ u+; v− ≤ v ≤ v+} ⊂ R1+2 where we are using the null coordinates
u := t+ r, v := t− r; see Figure 3. Suppose that that u− − v+ ≥ r for some r > 0,
thus R stays at a distance at least r from the time axis. Show that if φ : R →M is
a spherically symmetric smooth wave map on R, and Ψu(u, v), Ψv(u, v) are defined
as in the text (working in null coordinates, and using the spherical symmetry to
drop the angular variable) then we have the energy inequality∫ u+

u−
Ψu(u, v+) dv � eC(u+−u−)/r((u+−u−)

∫ v+

v−
Ψv(u+, v)/r dv+

∫ u+

u−
Ψu(u, v−) du).

(Hint: use (6.57) and the fundamental theorem of calculus twice, followed by Gron-
wall’s inequality.) Thus one can control the flux on the top left side of the rectangle
by the flux on the two right sides, as long as the rectangle is not too close to the
time axis. Use this, (6.52), and energy estimates to establish (6.58). Note that
these estimates rely heavily on the spherical symmetry and it is highly unlikely
that the argument could be easily modified to apply to general finite energy data;
once the spherical symmetry assumption is dropped, the wave map problem be-
comes Lorentz invariant, and so there is no reason why the time axis should play a
privileged role any more.

Exercise 6.48 (Equipartition of energy on convex targets). [CT] Let φ : I ×
R2 → M be a smooth wave map. If F : M → R is a smooth function, establish
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the identity

(6.62) �(F (φ)) = ∇a∂bF (p)(∂αφ)a(∂αφ)b.

Now assume the uniform convexity bound

∇a∂bF (p)vavb ∼ |v|2

as well as the lower order bounds F (p),∇F (p) = O(1) for all p in the range of φ
and all tangent vectors v ∈ TpM . Integrate (6.62) by parts and use (6.60), (6.49)
and either (6.52) or (6.58) to conclude (6.61). Also show that such a uniformly
convex function F cannot exist when the range of φ contains a closed geodesic (e.g.
if φ is a surjection onto the sphere Sm). We remark that unlike many of the other
arguments in this section, the arguments here require working on the manifold M
directly and are difficult to formulate if one is working purely with the differentiated
fields ψ, A.

Exercise 6.49 (Singularity removal for harmonic maps). [SacU] Let φ : D\{0} →
Sm ⊂ Rm+1 be a smooth harmonic map from the punctured disk into the sphere
(for simplicity), thus ∆φ = −φ|∇φ|2. Assume that the energy

∫
D\{0} |∇φ|2 dx is

sufficiently small. Establish the estimate

‖∇2φ‖L2(B(x,r)) � 1
r
‖∇φ‖L2(B(x,2r))

whenever B(x, 2r) ⊂ D\{0}. (Hint: locate an intermediate radius 3/2r < r′ < 2r
on which ∇φ is controlled, and then use elliptic regularity on B(x, r′), and the
Gagliardo-Nirenberg inequality). Conclude in particular the decay estimate33

(6.63) |x||∇φ(x)| � ‖∇φ‖L2(B(x,|x|/10) = o|x|→0(1)

Conclude that the Hopf differential from Exercise 6.38 has a removable singularity
at 0, and deduce the polar coordinate equipartition of energy

(6.64)
∫ 2π

0

|∂rφ(r, θ)|2 dθ =
∫ 2π

0

r2|∂θφ(r, θ)|2 dθ

for all 0 < r < 1 (one can also deduce this from Exercise 6.43 after using (6.63)
to deal with the singularity at 0). Now we can trade angular regularity for radial
regularity as follows. Introduce the angularly averaged function φ : B(0, 1)\{0} →
Rm+1, defined in polar coordinates as

φ(r, θ) :=
1
2π

∫ 2π

0

φ(r, θ′) dθ′,

and use (6.64) to obtain the estimate∫ 2π

0

|∇(φ− φ)(r, θ)|2 dθ ∼
∫ 2π

0

|∇φ(r, θ)|2 dθ

33Note that this this “beats scaling” by a o() factor. Whereas in hyperbolic theory one can
easily establish decay of the energy flux, in elliptic theory one gets to establish decay of the energy

itself, which makes the analysis of singularities somewhat easier in the elliptic case. Similarly,
whereas in hyperbolic theory one has persistence of regularity as soon as some sort of subcritical
control is gained, in elliptic theory subcritical bounds can usually be iterated to obtain arbitrary
amounts of regularity without difficulty.
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for all 0 < r < 1. Use this, (6.63), and an integration by parts to conclude the
estimate ∫

B(0,r)

|∇φ|2 �
∫
B(0,r)

|∇(φ− φ)|2 �
∫
B(0,2r)\B(0,r/2)

|∇φ|2.

Apply a pigeonholing argument in the r variable and iterate to then establish the
subcritical bound ∫

B(0,r)

|∇φ|2 = O(rε)

for some explicit constant ε > 0; apply (6.63) to conclude that |∇φ(x)| = O(|x|ε−1).
Then iterate this using elliptic theory to conclude that all the derivatives of φ are
uniformly bounded near the origin, and thus conclude that one can remove the
singularity at 0 and extend the harmonic map smoothly across the origin.

6.4. Heat flow

For in the very torrent, tempest, and as I may say, whirlwind of
passion, you must acquire and beget a temperance that may give it
smoothness. (William Shakespeare, “Hamlet”)

We now return to the issue of gauges, and in particular to the issue of construct-
ing a suitable gauge for large energy wave maps. For large energy harmonic maps,
the work of Helein [Hel2] shows that the Coulomb gauge divA = 0 is the best gauge
to work in; however the situation is less clear for wave maps. The Coulomb gauge is
certainly well suited to higher dimensional (d ≥ 4) wave maps but becomes rather
inconvenient in low dimensions due to the presence of inverse derivatives such as
∇−1 that arise from the gauge, which become difficult for Sobolev embedding to
handle especially in two dimensions. (Even for harmonic maps, to handle these ∇−1

terms requires the somewhat delicate machinery of compensated compactness; see
e.g. [CLMS], as well as Exercise A.24.) Considerations of Lorentz invariance then
suggests that perhaps the Lorenz gauge ∂αAα = 0 would be suitable, but while this
gauge does have certain geometric advantages (it makes φ and A evolve by a pure
system of wave equations, see Exercise 6.50, and also enjoys finite speed of propa-
gation), it is even less tractable analytically than the Coulomb gauge, basically it
trades the singular operator ∆−1 for the even more singular operator �−1.

In [Tao5], [Tao6] a microlocal gauge was proposed (in the specific context of
spherical targets Sm), in which the gauge transform U (in extrinsic coordinates)
was essentially the product of explicit matrix fields arising from Littlewood-Paley
projections PNφ, P<Nφ of the wave map φ (again stated in extrinsic coordinates),
which had the effect of reducing the connection A to a reasonably managable para-
product expression in which derivatives only tended to fall on low-frequency factors.
This gauge was extended (in the small energy setting) to more general manifolds
by Klainerman-Rodnianski [KR] and Tataru [Tat4] (in slightly different ways),
but in the former case one needed to first pass to a (linear) Coulomb gauge (thus
inheriting all the difficulties of that gauge in low dimensions), and in the latter case
one needed a good extrinsic coordinate system arising from a suitable embedding
of the target into Euclidean space, in order to be able to exploit the Euclidean
Littlewood-Paley theory. See Table 2 for a brief summary of the strengths and
weaknesses of these and other gauges that have appeared in the literature. In
particular, for two-dimensional wave maps into targets such as hyperbolic spaces
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(which cannot be uniformly isometrically embedded into Euclidean space, being of
exponential growth), the microlocal gauge seemed difficult to construct (especially
for large energies), despite the fact that it seemed to renormalise the connection
into a particularly good form at low dimensions.

In [Tao10] a geometric substitute for the microlocal gauge, namely the caloric
gauge, was proposed that overcame these difficulties, at least for negatively curved
targets such as Hm. The basic idea is to replace the Euclidean Littlewood-Paley
projections (which seemed to require either an ambient Euclidean coordinate sys-
tem, or a linear Coulomb gauge) by an intrinsic, covariant substitute, namely the
nonlinear heat operators that arise from the harmonic map heat flow. Thus to
describe the gauge, we must first pause to describe the heat flow.

To simplify matters we shall work exclusively in two spatial dimensions, d = 2,
and with domain a hyperbolic spaceHm. The heat flow is an evolution equation like
the wave map equation, but to avoid confusion we will need to distinguish the heat-
temporal variable s from the wave-temporal variable t. It may help to think of s as
being a kind of inverse frequency variable, used to construct nonlinear Littlewood-
Paley operators (using the heuristics P<N ∼ es∆ and PN ∼ s∂se

s∆ when s ∼ N−2).
Eventually we will need to evolve in both s and t simultaneously, thus allowing us to
view a combined “nonlinear continuous Littlewood-Paley resolution” of the wave
map either as an s-parameterised family of wavelike maps evolving in t, or a t-
parameterised family of heatflow-like maps evolving in s. To keep things simple for
now, however, we will suppress the t variable and only study the heat evolution.

A smooth map φ : R+ ×R2 →M is said to obey the harmonic map heat flow
equation, or heat flow for short, if φ(s, x) solves the equation

∂sφ(s, x) = (φ∗∇)j∂jφ(s, x).

This is the natural downward gradient flow associated with the Dirichlet energy
functional

(6.65) E(φ(s)) :=
1
2

∫
R2

〈∂jφ(s, x), ∂jφ(s, x)〉h(φ) dx;

see Exercise 6.51. We can write it in local coordinates (using (6.10)) as

(6.66) ∂sφ
a = ∆φa + Γabc(φ)∂jφb∂jφc

(compare with (6.8)); since we are assuming the target manifold to be hyperbolic
space Hm ⊂ R1+m, we can also write it extrinsically as

(6.67) ∂sφ = ∆φ+ φ〈∂jφ, ∂jφ〉R1+m

(cf. (6.13)). One can write this nonlinear parabolic equation in more schematic
form as

∂sφ = ∆φ+O(φ|∇φ|2)
or in Duhamel form as

(6.68) φ(s) = es∆φ(0) +
∫ s

0

e(s−s
′)∆O(φ|∇φ|2(s′)) ds′

and a standard iteration argument, exploiting the smoothing effects of the heat
equation, will give a local solution from any data φ(0) which is “H10” in the sense
that φ(0) − p ∈ H10

x (R2 → R1+m) for some point p ∈ Hm, with the solution
persisting as long as the L∞

t,x norm of ∇φ stays bounded; see Exercise 6.52. We
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choose the H10
x regularity as it easily implies C3

t,x regularity (through several iter-
ations of (6.67) and Sobolev embedding), which will be enough to justify all the
computations in the sequel. (Actually one can use parabolic theory to show that
H10
x solutions will be automatically C∞ for any positive time s > 0, though we will

not need this fact here.)
At this point it is convenient to switch to the intrinsic formulation. Sup-

pose we have already solved the heat flow equation on a time interval [0, S]. If
we choose a uniformly smooth orthonormal frame e (e.g. taking any uniformly
smooth orthonormal frame f on Hm and pulling it back by φ), we obtain fields
ψs, ψj , As, Aj ; we will not use the Greek indices here as we wish to reserve that for
Minkowski spacetime {(t, x) : t ∈ R, x ∈ R2}, as opposed to the “parabolic space-
time” {(s, x) : s ∈ R+, x ∈ R2} that we are currently working with. Then, just as
with the wave map equation, the heat flow equation can be written intrinsically as

ψs = Djψj(6.69)
Dsψj = Djψs

Djψk = Dkψj

∂sAj − ∂jAs = κψj ∧ ψs
∂jAk − ∂kAj = κψj ∧ ψk.

We observe that the ψj for j = 1, 2 obey a covariant heat equation

(6.70) Dsψj = DkDkψj + κ(ψj ∧ ψk)ψk
which implies that the energy densities |ψj |2 themselves obey a parabolic equation,
given by the Bochner identity

(6.71) (∂s − ∆)|ψj |2 = κ

2∑
k=1

|ψj ∧ ψk|2 − 2
2∑
k=1

|Dkψj |2

which we leave as an exercise. Note that the first term will be negative because
of the negative curvature κ = −1 of hyperbolic space. Combining this with the
diamagnetic inequality (Exercise B.1), we obtain the useful inequality

(6.72) (∂s − ∆)|ψj | ≤ 0

in the sense of distributions. Because the linear heat kernel es∆ is nonnegative (see
exercises), we can thus control ψj by the initial data:

(6.73) |ψj(s)| ≤ es∆|ψj(0)|.
Now the heat kernel is also an approximation to the identity, and is thus a contrac-
tion on every Lpx(R

2) for 1 ≤ p ≤ ∞, and hence

(6.74) ‖ψj(t)‖Lp
x(R2) ≤ ‖ψj(0)‖Lp

x(R2).

Thus for an H10
x heat flow map, we obtain an a priori L∞

t,x bound on the derivatives
of φ, which certainly suffices to establish global existence of the heat flow (which
was first established in more generality in [ES]). In fact, we can obtain a lot more
information about the asymptotic development of the flow; the heuristic here is
that the fields ψ will obey all the decay, regularity, and integrability estimates that
one would have expected if ψ had solved the free heat equation (∂s−∆)ψ = 0. First
of all, from (6.74) we see that the L2

x norm of ψx := (ψ1, ψ2) is O(1), and inserting
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this into (6.73) and using Cauchy-Schwarz, we establish that the L∞ norm of ψx is
O(s−1/2). Next, by integrating (6.71) in space we obtain the monotonicity formula

∂s

∫
R2

|ψj |2 ≤ −2
∫
R2

2∑
k=1

|Dkψj |2 dx

which on integrating (and using our L2
x bound on ψ) gives the spacetime bound∫ ∞

0

∫
R2

|Dxψx|2 dxds = O(1)

where we use Dx to denote (D1, D2).
These bounds can be iterated, leading to the more general covariant parabolic

regularity bounds

‖Dn
xψx(s)‖L∞

x
�n s

−n/2(6.75)

‖Dn
xψx(s)‖L2

x
�n s

−(n+1)/2(6.76) ∫ ∞

0

∫
R2
sn|Dn+1

x ψx|2 dxds �n 1(6.77)

for all integers n ≥ 0; we leave this as an exercise. If we assume a Schwartz condition
on the initial data φ(0) − p, one can also show that φ(s) converges uniformly to p
as s→ ∞; again we leave this as an exercise.

To summarise, the heat flow will take any smooth compact perturbation φ
of a constant map p, and deform it smoothly into the constant map p, with good
bounds on the deformation rate. At the asymptotic limit s = ∞, we can place a flat
connection on the map φ, by taking any orthonormal frame e0 of TpM and simply
setting e(+∞, x) = e0 for all x. It turns out that the decay estimates given above
allow one to pull back this flat connection by the heat-temporal gauge As = 0;
more precisely, we have

Theorem 6.4 (Existence of canonical heat-temporal gauge). Let p ∈ M and
e0 be an orthonormal frame in M . Let φ(0) : R2 → M be such that φ(0) − p is
Schwartz, and let φ : R+×R2 →M be the solution to the heat flow with initial data
φ(0). Then there exists a unique smooth orthonormal frame e : R×R2×Rm → TM
such that e(s) converges uniformly to e0 as s → ∞, and which obeys the heat-
temporal gauge condition As = 0.

Again, we leave the proof as an exercise. This theorem gives us a canonical
gauge, which we call the caloric gauge, to place on any given Schwartz maps from
R2 to M , which is unique except for the minor issue of fixing the frame e0 at
infinity. (If one replaces e0 with e0U

−1 for some fixed rotation matrix U−1, then
the caloric gauge e changes as well to eU−1, so the variation in e0 is rather trivial.)
In fact one obtains a gauge not only for the initial map x �→ φ(0, x), but also for all
the regularised versions x �→ φ(s, x) for the heat flow; while we will only need the
gauge directly at the level of the initial data s = 0, the additional structure arising
from the gauge at other values of s turn out to be rather useful.

The advantage of working with the caloric gauge is that it places the connection
Aj on the initial data into a rather well-behaved form - even better behaved than
the Coulomb gauge, at least in principle. To see this, observe that in the caloric
gauge the connection Aj obeys a transport equation in s:

∂sAj = Fsj = κψs ∧ ψj ;
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since Aj vanishes in the asymptotic limit s = +∞ (where the connection is flat) we
thus see that

(6.78) Aj(0, x) =
∫ ∞

0

ψs ∧ ψj(s, x) ds,

which we write schematically (using (6.69)) as

A(0, x) =
∫ ∞

0

O(ψx(s, x)Dxψx(s, x)) ds.

To get some understanding of what this expression is like, let us adopt the heuristic
that the heat flow evolves like the free heat equation (note that the parabolic
estimates (6.75), (6.76), (6.77) already bear out this intuition to a large extent), so
that ψx(s, x) behaves like es∆ψx(0, x). Let us also make the reasonable assumption
that Dx behaves like ∇x (it turns out that in the caloric gauge with bounded
energy one can place enough estimates on A, based in large part on identities such
as (6.78)). Then we heuristically have

A(0, x) ≈
∫ ∞

0

es∆ψx(0, x)∇es∆ψx(0, x) dx.

This is a classical Carleson-type paraproduct, based on the heat kernels es∆. It can
be heuristically converted into a Littlewood-Paley type paraproduct by adopting
the heuristics es∆ ∼ P≤N and ∇es∆ ∼ NPN when s ∼ N−2. Dyadic decomposition
of the s variable then gives the heuristic

A(0) ≈
∑
N

(P<Nψx(0))N−1PNψx(0).

Given that N−1PNψx is heuristically like PN∇−1ψx (cf. (A.4)), we thus obtain the
paraproduct heuristic

(6.79) A(0) ≈ ψlo(0)∇−1ψhi(0)

where we use ψlo and ψhi very informally to denote low and high frequency compo-
nents of ψ. The point is that the smoothing operator ∇−1 is safely attached to the
high frequency factor, as opposed to the low frequency factor. This is in contrast
to the Coulomb gauge, which has a heuristic of the form

(6.80) A(0) ≈ ∇−1F (0) ≈ ∇−1(ψ(0)ψ(0)).

If the two factors of ψ(0) in (6.80) are of very different frequency, then standard
frequency heuristics (Principle A.5) show that this expression is comparable to
(6.79). However in the “high-high” interaction case, when the two factors of ψ(0)
in (6.80) are of high frequency but cancel to form a low frequency, then (6.80) is
significantly larger34 than (6.79). Thus the caloric gauge (like its predecessor, the
microlocal gauge) offers the opportunity to make the original wave maps equation
more “semilinear”. Indeed, from (6.44) we expect ψ to now solve an equation
roughly of the form

�ψ ≈ ψlo∇−1ψhi∇ψ + . . .

which turns out to be an equation that can be iterated in Strichartz norms in four
and higher dimensions (just as with the Coulomb gauge), and also in the norms of
Tataru in lower dimensions once one exploits some Q0 null structure in the above

34In practice, the Coulomb gauge also provides some subtle null form cancellations that can
overcome this difficulty, though at the cost of some complexity. See [Kri], [Kri2].
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equation (in the Coulomb gauge one can also eventually iterate, but it requires
exploiting additional null structures). Thus, morally, the equation should behave
like a semilinear equation, for instance enjoying perturbative estimates (showing
that the nonlinear evolution behaves like a linear evolution) when some spacetime
norm is small. (In the previous chapter, we used spacetime norms such as the
L10
t,x to measure the degree of nonlinearity; similar norms exist here but are sig-

nificantly more complicated in low dimensions.) This, in principle, opens up the
entire machinery of induction on energy from the preceding chapter, which should
eventually show35 that at every time t, a minimal energy blowup wave map (if it
exists) should be localised in space and frequency at every time. Once one has this
“compactification” of the solution (modulo symmetries), it should then be possible
to exploit nonconcentration estimates such as (6.54) to show that eventually the
energy of the wave map is close to a harmonic map in a reasonably strong sense,
and hence close to constant since Hm does not support non-constant finite energy
harmonic maps. This should eventually yield a contradiction that prevents a min-
imal blowup wave map from occuring. To summarise, the tools described in this
text should be sufficient to resolve Conjecture 6.2 for hyperbolic targets; but there
are many details that need to be worked out in doing so. We hope to report on
this in a future publication.

Exercise 6.50 (Lorenz gauge). Let φ : R1+d →M be a smooth wave map, let
e be a smooth orthonormal frame, and let ψα, Aα be the associated differentiated
fields. Show that if A obeys the Lorenz gauge condition ∂αAα = 0, then A evolves
by the wave equation

�Aα = ∂β([Aα, Aβ ] + Fαβ)
(compare with (6.46)). Conversely, if A evolves by this equation, and is in the
Lorenz gauge at time t = 0, show that it is in the Lorenz gauge for all time.
Comparing this with (6.44) we see that the combined fields Ψ = (ψ,A) in the
Lorenz gauge obey a system of nonlinear wave equations of the schematic form
�Ψ = O(Ψ∇Ψ) + O(Ψ3), at least in the constant curvature case. Unfortunately
the Ψ∇Ψ terms are very difficult analytically to deal with in this gauge at critical
regularities, even in high dimensions.

Exercise 6.51. Show that for any smooth map φ : R+ × R2 → M , that the
Dirichlet energy evolves according to the formula

∂sE(φ(s)) = −
∫
R2

〈∂sφ(s, x), (φ∗∇)j∂jφ(s, x)〉h(φ) dx.

35There are some nontrivial issues to resolve to make this precise. In particular, the locali-
sation arguments for NLS relied very much on the ability to use cutoff functions in either space
or frequency to decompose the solution into two weakly interacting components, evolve them
separately by the induction on energy hypothesis, and then reassemble them by addition. These
tasks are trivial for scalar fields but become highly nontrivial for maps into manifolds; it seems
a solution is to deform the map smoothly into a point (for instance by using the heat flow) and
using the “velocity field” of that deformation (the analogue of the vector field ψs for the heat flow)
as a proxy for the map (similar to the “dynamical variable” used for instance in [Kri], [Kri2]),
the point being that it is relatively easy to localise this vector field using cutoffs or to concatenate

two such vector fields. There are also some more technical issues, having to do with the fact that
the high-low frequency interactions are somewhat stronger for the wave maps equation than they
are for the NLS, which makes the frequency localisation argument more difficult (requiring some
ideas from [TVZ]). We will detail these issues elsewhere.



320 6. WAVE MAPS

Thus in an L2
x sense, the heat flow equation is simply the flow of steepest descent

for the Dirichlet energy.

Exercise 6.52 (Classical local existence for a nonlinear parabolic equation).
Iterate (6.68) in the space φ− p = C0

tH
10
x , utilizing the smoothing estimate

(6.81) ‖es∆f‖Hk
x(R2) �k s

−1/2‖f‖Hk−1
x (R2)

for any s = O(1) (easily verified using the Fourier transform), to demonstrate local
existence and wellposedness for the equation (6.67) in the H10

x (R2) norm, and then
show using (6.81) and Gronwall’s inequality that the Hj

x norm will stay bounded
on any compact time interval for j = 0, . . . , 10 as long as ‖∇φ‖L∞

t,x
stays bounded

on that same interval. One can of course lower the regularity H10
x substantially

but there is no need do to so here. Note this implies in particular that the heat
flow fixes the spatial infinity p. For more general targets, one either has to use
an extrinsic embedding to run this type of argument, or else work intrinsically, for
instance in an ambient gauge or the temporal gauge.

Exercise 6.53. Verify (6.70), (6.71) and (6.72) for any smooth solution to the
heat flow equation, viewed in a smooth orthonormal frame; compare with Exercise
6.42.

Exercise 6.54. Verify the heat kernel formula

es∆f(x) =
1

(4πs)d/2

∫
Rd

e−|x−y|2/4sf(y) dy

for any dimension d ≥ 1, any s > 0, and any f ∈ L2
x(R

d), and compare with (2.17).

Exercise 6.55. Prove (6.75), (6.76), (6.77) for all n ≥ 0. (Hint: induct on n;
the case n = 0 was already discussed in the text. Apply Dn

x to the equation (6.70)
to obtain a covariant heat equation for Dn

xψx, and then develop analogues of (6.71)
and (6.72) for Dn

xψx.

Exercise 6.56. Suppose φ : R+ × R2 → M is a heat flow with φ(0) − p
Schwartz. Using the triangle inequality

distM (φ(s, x), φ(s, y)) ≤
∫ 1

0

|y − x||ψx(s, x+ θ(y − x))| dθ

and (6.73), show that

sup
x,y∈R2

dist(φ(s, x), φ(s, y)) → 0 as s→ ∞;

taking limits as y → ∞, conclude that φ(s) converges uniformly to p.

Exercise 6.57. Prove Theorem 6.4. (Hint: the main task is to establish a
unique solution to the ODE (φ∗∇)se(s, x) = 0 for each x ∈ R2 with the boundary
condition lims→+∞ e(s, x) = e0 (cf. Exercise 1.14). One can rewrite the ODE in
local coordinates as ∂sea = −Γabc(φ)∂sφbec and observe that ψs (and hence ∂sφ)
obeys a pointwise bound similar to (6.73). Now use the hypothesis that φ − p is
Schwartz.)



CHAPTER A

Appendix: tools from harmonic analysis

Every action of our lives touches on some chord that will vibrate
in eternity. (Sean O’Casey)

The nonlinear evolution equations studied here can be profitably analyzed by
viewing these equations as describing the oscillation and interaction between low,
medium, and high frequencies. To make this type of analysis rigorous, we of course
need the notation and tools of harmonic analysis, and in particular the Fourier
transform and Littlewood-Paley theory; the purpose of this appendix is to review
that material. This is only an outline of the material; for a more thorough intro-
duction to these tools from a PDE-oriented perspective, see [Tay], [Tay2].

It is convenient to work in the Schwartz class Sx(Rd). One particularly im-
portant operation on Schwartz functions (and hence on their dual) is the (spatial)
Fourier transform f �→ f̂ , defined for f ∈ Sx(Rd) by the formula1

f̂(ξ) :=
∫
Rd

f(x)e−ix·ξ dx.

As is well known, the Fourier transform f �→ f̂ is a Frechet space automorphism
on the Schwartz space Sx(Rd), with the inversion formula

f(x) =
1

(2π)d

∫
Rd

f̂(ξ)eix·ξ dξ.

Thus every Schwartz function can be formally viewed as a superposition of plane
waves eix·ξ. We also have the fundamental Plancherel identity∫

Rd

|f(x)|2 dx =
1

(2π)d

∫
Rd

|f̂(ξ)|2 dξ

as well as the closely related Parseval identity2

(A.1)
∫
Rd

f(x)g(x) dx =
1

(2π)d

∫
Rd

f̂(ξ)ĝ(ξ) dξ.

The Fourier transform enjoys many symmetry properties, several of which we list
in Table 1. Of particular importance to PDE is the relation lies in the fact that it

1It is customary to omit the factor of 2π from the Fourier exponent in PDE, in order to
simplify the Fourier multipliers associated to any given PDE; of course, this factor then surfaces
in the Fourier inverion formula. In any event, the factors of 2π make only a negligible impact on
the theory, so much so that some authors choose to abuse notation slightly, and simply omit all
factors of 2π in their arguments.

2Some authors reverse the attribution of these two identities, which are easily shown to
be equivalent. Strictly speaking, Parseval’s original identity was for Fourier series, whereas
Plancherel’s theorem concerned Fourier integrals.
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diagonalises any constant coefficient operator P (∇):

P̂ (∇)f (ξ) = P (iξ)f̂(ξ).

Thus differential operators amplify high frequencies and attenuate low frequencies;
integration operators of course do the reverse. Note that if P (∇) is skew-adjoint,
then P (iξ) is automatically skew-adjoint; this can be shown directly, and also fol-
lows from (A.1). Indeed in this case we have P (∇) = ih(∇/i) for some real-valued
polynomial h : Rd → R.

Table 1. Some operations on functions f(x), and their Fourier
transform. Here x0, ξ0 ∈ R, f, g ∈ Sx(Rd), λ ∈ R\{0}, P : Rd →
C is a polynomial, and f ∗ g(x) :=

∫
Rd f(y)g(x− y) dy.

f(x) f̂(ξ)
f(x− x0) e−ix0·ξf̂(ξ)
eix·ξ0f(x) f̂(ξ − ξ0)
f(x) f̂(−ξ)
f(x/λ) |λ|df̂(λξ)
f ∗ g(x) f̂(ξ)ĝ(ξ)
f(x)g(x) 1

(2π)d f̂ ∗ ĝ(ξ)
P (∇)f P (iξ)f

The Fourier transform can be extended to Lebesgue spaces such as L2
x(R

d)
using Plancherel’s theorem (where it essentially becomes an isometry), and also to
the space of tempered distributions Sx(Rd)∗.

An important concept for us shall be that of a Fourier multiplier. If we are
given a locally integrable function m : Rd → C of at most polynomial growth, we
can define the associated multiplier m(∇/i) : Sx(Rd) → Sx(Rd)∗ via the Fourier
transform by the formula

̂m(∇/i)f(ξ) := m(ξ)f̂ (ξ)

or equivalently

m(∇/i)f(x) :=
1

(2π)d

∫
Rd

m(ξ)f̂(ξ)e2πix·ξ dξ.

This notation is consistent with that of constant-coefficient differential operators
h(∇/i). We also have (formally at least) the multiplier calculus

m(∇/i)∗ = m(∇/i);
m1(∇/i) +m2(∇/i) = (m1 +m2)(∇/i);

m1(∇/i)m2(∇/i) = (m1m2)(∇/i).
In particular, Fourier multipliers all (formally) commute with each other. The
function m(ξ) is known as the symbol of the operator m(∇/i). Important examples
of Fourier multipliers include the constant coefficient differential operators h(∇/i),
the propagators eith(∇/i) discussed in Section 2.1, and the fractional differentiation
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and integration operators |∇|α and 〈∇〉α defined3 for all α ∈ R, with symbols |ξ|α
and 〈ξ〉α respectively. This in turn leads to the Sobolev spaces W s,p

x (Rd) and the
homogeneous Sobolev spaces Ẇ s,p

x (Rd), defined for s ∈ R and 1 < p < ∞ as the
closure of the Schwartz functions under their respective norms

‖f‖W s,p
x (Rd) := ‖〈∇〉sf‖Lp

x(Rd)

and

‖f‖Ẇ s,p
x (Rd) := ‖|∇|sf‖Lp

x(Rd).

Thus these spaces generalise the Lebesgue spaces, which correspond to the cases
s = 0. In the special case p = 2, we writeHs

x and Ḣs
x forW s,2

x and Ẇ s,2
x respectively.

From Plancherel’s theorem we observe that

‖f‖Hs
x(Rd) =

1
(2π)d/2

‖〈ξ〉sf̂‖L2
ξ(Rd)

and similarly

‖f‖Hs
x(Rd) =

1
(2π)d/2

‖|ξ|sf̂‖L2
ξ(Rd).

Using Calderón-Zygmund theory (see e.g. [Stei]), one can show the identities

‖f‖W s,p
x (Rd) ∼s,p,d ‖f‖W s−1,p

x (Rd) + ‖∇f‖W s−1,p
x (Rd);

‖f‖Ẇ s,p
x (Rd) ∼s,p,d ‖∇f‖Ẇ s−1,p

x (Rd)

for any 1 < p < ∞ and s ∈ R. Iterating the above inequalities, we obtain that
these Sobolev norms are equivalent (up to constants) to their classical counterparts,
thus

‖f‖Wk,p
x (Rd) ∼k,p,d

k∑
j=0

‖∇jf‖Lp
x(Rd)

and

‖f‖Ẇk,p
x (Rd) ∼k,p,d ‖∇kf‖Lp

x(Rd).

We will not define Sobolev spaces at p = 1 or p = ∞ to avoid the technicalities
associated with endpoint Calderón-Zygmund theory.

Another important class of Fourier multipliers are the Littlewood-Paley multi-
pliers. Let us fix a real-valued radially symmetric bump function ϕ(ξ) adapted to
the ball {ξ ∈ Rd : |ξ| ≤ 2} which equals 1 on the ball {ξ ∈ Rd : |ξ| ≤ 1}; the
exact choice of bump function turns out in practice to not be important4. Define
a dyadic number to be any number N ∈ 2Z of the form N = 2j where j ∈ Z is
an integer; any sum over the dummy variable N or M is understood to be over

3For α ≤ −d, the operator |∇|α is only defined for Schwartz functions which obey enough
moment conditions that their Fourier transform vanishes to high order at the origin. As we shall
never use integration operators of such low order, we shall ignore this technicality.

4In the classical Littlewood-Paley theory (see e.g. [Stei]), one uses the harmonic extension or

heat extension, which would correspond to the (non-compactly-supported) choices ϕ(ξ) := e−|ξ|

or ϕ(ξ) := e−|ξ|2 respectively. However in the modern theory it has turned out to be more
convenient to use compactly supported bump functions (but see Section 6.4).
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dyadic numbers unless otherwise specified. For each dyadic number N , we define
the Fourier multipliers

P̂≤Nf(ξ) := ϕ(ξ/N)f̂(ξ)

P̂>Nf(ξ) := (1 − ϕ(ξ/N))f̂ (ξ)

P̂Nf(ξ) := (ϕ(ξ/N) − ϕ(2ξ/N))f̂(ξ).

We similarly define P<N and P≥N . Thus PN , P≤N , P>N are smoothed out projec-
tions to the regions |ξ| ∼ N , |ξ| ≤ 2N , |ξ| > N respectively. Note in particular the
telescoping identities

P≤Nf =
∑
M≤N

PMf ; P>Nf =
∑
M>N

PMf ; f =
∑
M

PMf

for all Schwartz f , where M ranges over dyadic numbers. We also define

PM<·≤N := P≤N − P≤M =
∑

M<N ′≤N
PN ′

whenever M ≤ N are dyadic numbers. Similarly define PM≤·≤N , etc.
Littlewood-Paley projections are extremely handy in the rigorous study of PDE,

because they separate (in a quantitative manner) the rough (high-frequency, oscil-
lating, low regularity) components of a solution from the smooth (low-frequency,
slowly varying, high regularity) components, thus clarifying the nature of various
components of the equation, such as derivatives and various nonlinear interactions
of the solution with itself. The following heuristics are quite useful (see Figure 1).

Principle A.1 (Uncertainty principle). Let N be a dyadic number, and let f
be a function on Rd.

• (Low frequencies) If f has Fourier transform supported on frequencies of
magnitude |ξ| � N (e.g. if f = P≤Ng for some g), then f should be ap-
proximately constant on spatial balls of radius c/N for small c, and ∇sf
should be “dominated” by Nsf for any s ≥ 0. (Thus localisation at fre-
quency scales N forces a spatial uncertainty of 1/N ; this is a manifestation
of the Heisenberg uncertainty principle |δx · δξ| � 1.)

• (High frequencies) If f has Fourier transform supported on frequencies
of magnitude |ξ| � N (e.g. if f = P≥Ng for some g), then f should
have approximate mean zero5 on balls of radius C/N for large C, and
∇−sf should be “dominated” by N−sf for any s ≥ 0. (Thus exclusion of
frequencies at scales N and below forces spatial oscillation at scale 1/N .)

• (Medium frequencies) If f has Fourier transform supported on frequencies
of magnitude |ξ| ∼ N (e.g. if f = PNg for some g), then both of the above
heuristics should apply, and ∇sf should be “comparable” to Nsf for both
positive and negative s.

We now present some concrete estimates that make the above intuition rigorous.
One easily verifies that P≤N is a convolution operator, in fact

P≤Nf(x) =
∫
Rd

ϕ̂(y)f(x+
y

N
) dy.

5In fact, we expect higher moments to vanish as well, so that f should be approximately
orthogonal to any bounded degree polynomials on these balls.
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N
P   g

P
<N

f

P     h>N

x

x

1/N

x

Figure 1. The uncertainty principle. The low-frequency function
P<Nf has frequencies less than N and is thus essentially constant
at spatial scales � 1/N . The high-frequency function P>Nh has
frequencies greater than N and thus oscillates (with mean essen-
tially zero) at spatial scales � 1/N . The medium-frequency func-
tion PNg behaves in both fashions simultaneously.

Since ϕ̂ is rapidly decreasing and has unit mass, one thus can think of P≤N as an
averaging operator that “blurs” f by a spatial scale of O(1/N), and localises f in
frequency to the ball of radius O(N), which is consistent with Principle A.1. From
this identity one can easily verify (using Young’s inequality, and the commutativity
of all Fourier multipliers) that the above Littlewood-Paley operators are bounded
(uniformly in N or M) on every Lebesgue space Lpx(R

d) with 1 ≤ p ≤ ∞, as well
as every Sobolev space W s,p

x (Rd), Ẇ s,p
x (Rd) for s ∈ R and 1 < p < ∞. Further-

more, they obey the following easily verified (see Exercise A.1) and extremely useful
Bernstein inequalities for Rd with s ≥ 0 and 1 ≤ p ≤ q ≤ ∞:

‖P≥Nf‖Lp
x(Rd) �p,s,d N

−s‖|∇|sP≥Nf‖Lp
x(Rd)(A.2)

‖P≤N |∇|sf‖Lp
x(Rd) �p,s,d N

s‖P≤Nf‖Lp
x(Rd)(A.3)

‖PN |∇|±sf‖Lp
x(Rd) ∼p,s,d N±s‖PNf‖Lp

x(Rd)(A.4)

‖P≤Nf‖Lq
x(Rd) �p,q,d N

3
p− 3

q ‖P≤Nf‖Lp
x(Rd)(A.5)

‖PNf‖Lq
x(Rd) �p,q,d N

3
p− 3

q ‖PNf‖Lp
x(Rd).(A.6)

Thus when the frequency is localised, one can upgrade low Lebesgue integrability to
high Lebesgue integrability, at the cost of some powers of N ; when the frequency
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N is very low, this cost is in fact a gain, and it becomes quite desirable to use
Bernstein’s inequality whenever the opportunity arises. These estimates can be
verified by computation of the distributional kernel of PN and P≤N , and their
derivatives, followed by Young’s inequality. A deeper estimate, requiring some
Calderón-Zygmund theory, is the Littlewood-Paley inequality

(A.7) ‖f‖Lp
x(Rd) ∼p,d ‖(

∑
N

|PNf |2)1/2‖Lp
x(Rd);

see for instance [Stei2]. In a similar spirit, from Plancherel’s theorem we have the
estimate

(A.8) ‖f‖Ḣs
x(Rd) ∼s,d (

∑
N

N2s‖PNf‖2
L2

x(Rd))
1/2

and

(A.9) ‖f‖Hs
x(Rd) ∼s,d ‖P≤1f‖L2

x(Rd) + (
∑
N>1

N2s‖PNf‖2
L2

x(Rd))
1/2

As a sample application of these estimates, let us present

Lemma A.2 (Hardy’s inequality). If 0 ≤ s < d/2 then

‖|x|−sf‖L2
x(Rd) �s,d ‖f‖Ḣs

x(Rd).

Proof. The case s = 0 is trivial, so suppose 0 < s < d/2. Using (A.8) it
suffices to show that∫

Rd

|f(x)|2
|x|2s dx �s,d

∑
N

N2s‖PNf‖2
L2

x(Rd).

We subdivide the left-hand side into dyadic shells and estimate∫
Rd

|f(x)|2
|x|2s dx �s,d

∑
R

R−2s

∫
|x|≤R

|f(x)|2 dx

where R ranges over dyadic numbers. Using Littlewood-Paley decomposition and
the triangle inequality, we have

(
∫
|x|≤R

|f(x)|2 dx)1/2 ≤
∑
N

(
∫
|x|≤R

|PNf(x)|2 dx)1/2.

On the one hand we have the trivial estimate

(
∫
|x|≤R

|PNf(x)|2 dx)1/2 ≤ ‖PNf‖L2
x(Rd)

while on the other hand by Bernstein (A.6) and Hölder we have

(
∫
|x|≤R

|PNf(x)|2 dx)1/2 �d R
d/2‖PNf‖L∞

x (Rd) �d (NR)d/2‖PNf‖L2
x(Rd).

Combining all these estimates together, we reduce to establishing that∑
R

R−2s(
∑
N

min(1, (NR)d/2)‖PNf‖L2
x(Rd))

2 �s,d

∑
N

N2s‖PNf‖2
L2

x(Rd).

Writing cN := Ns‖PNf‖L2
x(Rd), this becomes

‖
∑
N

min((NR)−s, (NR)d/2−s)cN‖l2R(2Z) �s,d ‖cN‖l2N (2Z)
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where 2Z is the space of dyadic numbers. But since 0 < s < d/2, the kernel
min(M−s,Md/2−s) is absolutely convergent over dyadic numbers. The claim now
follows from Young’s inequality (or Minkowski’s inequality, or Schur’s test). �

In a similar spirit we have

Proposition A.3 (Gagliardo-Nirenberg inequality). Let 1 < p < q ≤ ∞ and
s > 0 be such that

1
q

=
1
p

+
θs

d

for some 0 < θ < 1. Then for any u ∈ W s,p
x (Rd) we have

‖u‖Lq
x(Rd) �d,p,q,s ‖u‖1−θ

Lp
x(Rd)

‖u‖θ
Ẇ s,p

x (Rd)
.

In the special case q = ∞, we conclude in particular (by the usual approximation
by Schwartz function argument) that u is in fact continuous (so it lies in C0

x(R
d)).

Proof. We may of course assume that u is non-zero. The inequality is invari-
ant under homogeneity u(x) �→ λu(x) and scaling u(x) �→ u(x/λ) for any λ > 0.
Using these invariances we may normalise ‖u‖Lp

x(Rd) = ‖u‖Ẇ s,p
x (Rd) = 1.

The next step is the Littlewood-Paley decomposition u =
∑
N PNu, where N

ranges over dyadic numbers. From the triangle inequality followed by Bernstein’s
inequality we have

‖u‖Lq
x(Rd) ≤

∑
N

‖PNu‖Lq
x(Rd)

�d,p,q

∑
N

N
d
q − d

p ‖PNu‖Lp
x(Rd)

=
∑
N

Nθs‖PNu‖Lp
x(Rd)

On the other hand, from (A.4) and the boundedness of PN have

‖PNu‖Lp
x(Rd) �d,p ‖u‖Lp

x(Rd) = 1; ‖PNu‖Lp
x(Rd) �d,p,s N

−s‖|∇|su‖Lp
x(Rd) = N−s.

Inserting this into the previous estimate we obtain

‖u‖Lq
x(Rd) �d,p,s

∑
N

Nθsmin(1, N−s) �θ,s 1

and the claim follows (note that θ is determined by d, p, q, s). �
Closely related to the above two inequalities is the Hardy-Littlewood-Sobolev

theorem of fractional integration, which asserts that

(A.10) ‖f ∗ 1
|x|α ‖Lq

x(Rd) �p,q,d ‖f‖Lp
x(Rd)

whenever 1 < p < q < ∞ and 0 < α < d obey the scaling condition 1
p = 1

q + d−α
d .

This implies the homogeneous Sobolev embedding

(A.11) ‖f‖Lq
x(Rd) �p,q,d ‖f‖Ẇ s,p

x (Rd)

whenever 1 < p < q <∞ and s > 0 obey the scaling condition 1
p = 1

q + s
d , which in

turn implies the inhomogeneous Sobolev embedding

(A.12) ‖f‖Lq
x(Rd) �p,q,s,d ‖f‖W s,p

x (Rd)
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whenever 1 < p < q < ∞ and s > 0 is such that 1
p ≤ 1

q + s
d . We leave the proofs

as exercises. Note that the non-endpoint case 1
p <

1
q + s

d of (A.12) already follows
from Proposition A.3, and we also have an extension to the q = ∞ case, namely

‖f‖C0
x(Rd) = ‖f‖L∞

x (Rd) �p,s,d ‖f‖W s,p
x (Rd)

whenever 1 < p <∞ and s > 0 is such that 1
p <

s
d . In particular we have

(A.13) ‖f‖C0
x(Rd) = ‖f‖L∞

x (Rd) �s,d ‖f‖Hs
x(Rd)

when s > n/2.
The Sobolev embedding theorem (A.11) is sharp in the following sense: if f

is a rescaled bump function, say f = Nαψ(Nx) for some ψ ∈ Sx(Rd) and some
N > 0 and α ∈ R, then one can verify that ‖f‖Lq

x(Rd) ∼ψ,q,d N−d/qNα and
‖f‖Ẇ s,p

x (Rd) ∼ψ,s,p,d NsN−d/pNα, and so from the scaling condition 1
p = 1

q + s
d

we see that both sides of (A.11) are comparable. A useful fact is that these bump
functions are in some sense the only way in which both sides of Sobolev embedding
estimate can be close to comparable. Indeed, we have

Proposition A.4 (Inverse Sobolev theorem). Let 1 < p < q < ∞, s > 0, and
0 < η ≤ 1.

• If 1
p = 1

q + s
d and f is such that ‖f‖Ẇ s,p

x (Rd) � 1 and ‖f‖Lq
x(Rd) � η,

then there exists a dyadic number N and a position x0 ∈ Rd such that
|PNf(x0)| ∼p,q,d,η Nd/q, and furthermore

(
∫
|x−x0|≤C/N

|PNf(x)|r dx)1/r ∼p,q,d,η N d
q −d

r

for all 1 ≤ r ≤ ∞ and some large constant C = C(p, q, d, η) > 0.
• If 1

p <
1
q + s

d and f is such that ‖f‖W s,p
x (Rd) � 1 and ‖f‖Lq

x(Rd) � η, then
there exists a dyadic number N ∼p,q,s,d,η 1 and a position x0 ∈ Rd such
that |PNf(x0)| ∼p,q,s,d,η 1, and furthermore

(
∫
|x−x0|≤C

|PNf(x)|r dx)1/r ∼p,q,s,d,η 1

for all 1 ≤ r ≤ ∞ and some large constant C = C(p, q, s, d, η) > 0.

More informally, in order for (A.11) to be close to sharp, f must contain a
large normalised bump function at some position x0 and some frequency N (and
wavelength 1/N); in order for (A.12) to be sharp, we have a similar conclusion
but with the additional information that the frequency N is comparable to 1. To
put it another way, in order to come within a constant to saturating the Sobolev
embedding theorem, the function must concentrate a significant portion of its W s,p

x

“energy” in a ball. (See also Lemma B.4, which essentially asserts that if one comes
within an epsilon of the best constant in a Sobolev embedding type theorem, then
one must concentrate nearly all of one’s energy in a ball.) The implicit constants
here can be made more explicit, for instance the dependence on η is polynomial,
but we will not need such quantitative bounds here. See [BG] for an application
of these types of theorems to nonlinear wave equations.
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Proof. We will just prove the (easier) second half of the theorem here, and
leave the first to Exercise A.7. We have

η � ‖f‖Lq
x(Rd) �

∑
N

‖PNf‖Lq
x(Rd).

Now from (A.6), (A.4), and the hypothesis ‖f‖W s,p
x (Rd) � 1 we have

‖PNf‖Lq
x(Rd) �p,q,d,s N

d
p−d

q ‖PNf‖Lp
x(Rd) �p,q,d,s N

d
p− d

q min(1, N−s).

The hypotheses on p, q, s ensure that
∑

N N
d
p− d

q min(1, N−s) is geometrically de-
creasing as N → 0 or N → ∞ and is thus convergent. We conclude that there exists
N ∼p,q,s,d,η 1 such that ‖PNf‖Lq

x(Rd) �p,q,s,d,η 1. Since ‖PNf‖Lp
x(Rd) �p,q,s,d,η 1,

we conclude from Hölder’s inequality that ‖PNf‖L∞
x (Rd) �p,q,s,d,η 1. Thus there

exists x0 ∈ Rd such that |PNf(x0)| �p,q,s,d,η 1. Writing PNf = PN/4<·<4NPNf ,
we can express PNf(x0) as the inner product of PNf with a rapidly decreasing ap-
proximation to the identity centred at x0. Since we also have ‖PNf‖Lp

x(Rd) �d,p,s 1,
an easy application of Hölder’s inequality then gives∫

|x−x0|≤C
|PNf(x)| dx �p,q,s,d,η 1

for some large C = C(p, q, s, d, η). On the other hand, from Bernstein’s inequality
we have ‖PNf‖L∞

x (Rd) �d,p,s 1. The claim then follows from Hölder’s inequality
again. �

We have seen how Littlewood-Paley technology is useful for understanding lin-
ear operations such as fractional integration. It is also invaluable in understanding
nonlinear operations, such as multiplication (f, g) �→ fg or composition u �→ F (u)
for various explicit functions F . Both of these operations arise constantly in non-
linear PDE, and there are two very useful heuristics that can be used to understand
them:

Principle A.5 (Fractional Leibnitz rule). Let f, g be functions on Rd, and
let Dα be some sort of differential or pseudodifferential operator of positive order
α > 0.

• (High-low interactions) If f has significantly higher frequency than g (e.g.
if f = PNF and g = P<N/8G for some F,G), or is “rougher” than g (e.g.
f = ∇u and g = u for some u) then fg will have comparable frequency
to f , and we expect Dα(fg) ≈ (Dαf)g. In a similar spirit we expect
PN (fg) ≈ (PNf)g.

• (Low-high interactions) If g has significantly higher frequency or is rougher
than f , then we expect fg to have comparable frequency to g, that Dα(fg) ≈
f(Dαg), and PN (fg) ≈ f(PNg).

• (High-high interactions) If f and g have comparable frequency (e.g. f =
PNF and g = PNG for some F,G) then fg should have frequency com-
parable or lower than f , and we expect Dα(fg) � (Dαf)g ≈ f(Dαg).

• (Full Leibnitz rule) With no frequency assumptions on f and g, we expect

(A.14) Dα(fg) ≈ f(Dαg) + (Dαf)g.

Principle A.6 (Fractional chain rule). Let u be a function on Rd, and let
F : R → R be a “reasonably smooth” function (e.g. F (u) = |u|p−1u). Then we
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have the fractional chain rule

(A.15) Dα(F (u)) ≈ F ′(u)Dαu

for any differential operator Dα of positive order α > 0, as well as the Littlewood-
Paley variants

P<N (F (u)) ≈ F (P<Nu)
and

(A.16) PN (F (u)) ≈ F ′(P<Nu)PNu.

If F is complex instead of real, we have to replace F ′(u)Dαu by Fz(u)Dαu+FzDαu,
and similarly for (A.16).

Observe that when Dα is a differential operator of order k, then the heuristics
(A.14), (A.15) are accurate to top order in k (i.e. ignoring any terms which only
differentiate f, g, u k − 1 or fewer times). Indeed, the above two principles are
instances of a more general principle:

Principle A.7 (Top order terms dominate). When distributing derivatives, the
dominant terms are usually6 the terms in which all the derivatives fall on a single
factor; if the factors have unequal degrees of smoothness, the dominant term will
be the one in which all the derivatives fall on the roughest (or highest frequency)
factor.

A complete and rigorous treatment of these heuristics (sometimes called parad-
ifferential calculus) is beyond the scope of this text, and we refer the reader to
[Tay2]. We will however give some representative instances of these heuristics in
action.

Lemma A.8 (Product lemma). If s ≥ 0, then we have the estimate

(A.17) ‖fg‖Hs
x(Rd) �s,d ‖f‖Hs

x(Rd)‖g‖L∞
x (Rd) + ‖f‖L∞

x (Rd)‖g‖Hs
x(Rd)

for all f, g ∈ Hs
x(R

d) ∩L∞
x (Rd). In particular, if s > d/2, we see from the Sobolev

embedding (A.13) that we have the algebra property

(A.18) ‖fg‖Hs
x(Rd) �s,d ‖f‖Hs

x(Rd)‖g‖Hs
x(Rd).

Observe that (A.17) heuristically follows from (A.14), since that latter heuristic
suggests that

〈∇〉s(fg) ≈ (〈∇〉sf)g + f(〈∇〉sg)
and the claim then (non-rigorously) follows by taking L2

x norms of both sides and
then using the triangle and Hölder inequalities.

Proof. The basic strategy with these multilinear estimates is to decompose
using the Littlewood-Paley decomposition, eliminate any terms that are obviously
zero (because of impossible frequency interactions), estimate each remaining com-
ponent using the Bernstein and Hölder inequalities, and then sum. One should
always try to apply Bernstein on the lowest frequency possible, as this gives the
most efficient estimates. In some cases one needs to apply Cauchy-Schwarz to
conclude the summation.

6In some cases, there is a special cancellation which allows one to treat the dominant terms
directly. In such cases one often then has to look at the next term in the “Taylor expansion” in
which all but one derivative falls on one term, and the remaining derivative falls on another. This
phenomenon underlies a number of commutator estimates, such as those discussed in Section 3.9.
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The claim is trivial for s = 0, so assume s > 0. From (A.9) we have

(A.19) ‖fg‖Hs
x(Rd) �∼s,d ‖P≤1(fg)‖L2

x(Rd) + (
∑
N>1

N2s‖PN(fg)‖2
L2

x(Rd))
1/2.

We shall just bound the latter term, and leave the former term to the exercises.
We split7

‖PN (fg)‖L2
x(Rd) � ‖PN ((P<N/8f)g)‖L2

x(Rd) + +
∑

M>N/8

‖PN ((PMf)g‖L2
x(Rd).

For the first term, observe from Fourier analysis that we may freely replace g by
PN/8<·<8Ng, and so by Hölder’s inequality

‖PN((P<N/8f)g)‖L2
x(Rd) �d ‖(P<N/8f)PN/8<·<8Ng‖L2

x(Rd) �d ‖f‖L∞
x (Rd)

∑
M∼N

‖PMg‖L2
x(Rd)

and so the total contribution of this term to (A.19) is Os,d(‖f‖L∞
x (Rd)‖g‖Hs

x(Rd)).
For the second term, we simply bound∑
M>N/8

‖PN ((PMf)g)‖L2
x(Rd) �d

∑
M>N/8

‖(PMf)g‖L2
x(Rd) �d ‖g‖L∞

x (Rd)

∑
M�N

M−s‖PMf‖L2
x(Rd)

and so by Cauchy-Schwarz

(Ns
∑

M>N/8

‖PN ((PMf)g)‖L2
x(Rd))

2 �d ‖g‖2
L∞

x (Rd)

∑
M�N

NsM−s‖PMf‖2
L2

x(Rd).

Summing this in N (and using the hypothesis s > 0) we see that the total contri-
bution of this term is Os,d(‖f‖Hs

x(Rd)‖g‖L∞
x (Rd)), and we are done. �

Lemma A.9 (Schauder estimate). Let V be a finite-dimensional normed vector
space, let f ∈ Hs

x(Rd → V ) ∩ L∞
x (Rd → V ) for some s ≥ 0. Let k be the first

integer greater than s, and let F ∈ Ck(V → V ) be such that F (0) = 0. Then
F (f) ∈ Hs

x(R
d → V ) as well, with a bound of the form

‖F (f)‖Hs
x(Rd) �F,‖f‖

L∞
x (Rd),V,s,d

‖f‖Hs
x(Rd).

Note that when F is real analytic, one can deduce this from Lemma A.8; but
the argument below is rather robust and extends to rougher types of function F .
For instance, when s ≤ 1 the argument in fact only requires Lipschitz control on F .
The reader should heuristically verify that Lemma A.9 follows immediately from
Principle A.6 in much the same way that Lemma A.8 follows from Principle A.5.
The reader may also wish to verify the s = 1 case of this estimate by hand (with
F Lipschitz) in order to get some sense of why this type of estimate should hold.

Proof. The strategy to prove nonlinear is related, though not quite the same
as, that used to prove multilinear estimates. Basically, one should try to split
F (f) using Taylor expansion into a rough error, which one estimates crudely, and
a smooth main term, which one estimates using information about its derivatives.

7This is a basic example of a paraproduct decomposition, in which a genuine product such
as fg is split as the sum of paraproducts (combinations of products of Littlewood-Paley pieces).

Paraproducts are usually easier to estimate analytically, especially if derivatives are involved,
because they specifically identify which of the factors is high frequency and which is low frequency,
allowing one to use the flexible estimates (A.2)-(A.6) in a manner adapted to the paraproduct at
hand, instead of relying only on “one-size-fits-all” tools such as Sobolev embedding.
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Again, one uses tools such as Hölder, Bernstein, and Cauchy-Schwarz to estimate
the terms that appear.

Let us write A := ‖f‖L∞
x (Rd). Since F is Ck and F (0) = 0, we see that

|F (f)| �F,A,V |f |. This already establishes the claim when s = 0. Applying (A.9),
it thus suffices to show that

(
∑
N>1

N2s‖PNF (f)‖2
L2

x(Rd))
1/2 �F,A,V,s ‖f‖Hs

x(Rd).

for all s > 0.
We first throw away a “rough” portion of F (f) in PNF (f). Fix N, s, and split

f = P<Nf +P≥Nf . Note that f and P<Nf are both bounded by OV,d(A). Now F
is Ck, hence Lipschitz on the ball of radius OV,d(A), hence we have

F (f) = F (P<Nf) +OF,A,V,d(|P≥Nf |),
and thus

‖PNF (f)‖L2
x(Rd) �F,A,V,d ‖PNF (P<Nf)‖L2

x(Rd) + ‖P≥Nf‖L2
x(Rd).

To control the latter term, observe from the triangle inequality and Cauchy-Schwarz
that

N2s‖P≥Nf‖2
L2

x(Rd) �s

∑
N ′≥N

(N ′)sNs‖PN ′f‖2
L2

x(Rd)

and summing this in N and using (A.9) we see that this term is acceptable. Thus
it remains to show that

(
∑
N>1

N2s‖PNF (P<Nf)‖2
L2

x(Rd))
1/2 �F,A,V,s ‖f‖Hs

x(Rd).

We will exploit the smoothness of P<Nf and F by using (A.4) to estimate

(A.20) ‖PNF (P<Nf)‖L2
x(Rd) �d,k N

−2k‖∇kF (P<Nf)‖L2
x(Rd).

Applying the chain rule repeatedly, and noting that all derivatives of F are bounded
on the ball of radius OV,d(A), we obtain the pointwise estimate

|∇kF (P<Nf)| �F,A,V,d,k sup
k1+...+kr=k

|∇k1(P<Nf)| . . . |∇kr (P<Nf)|

where r ranges over 1, . . . , k and k1, . . . , kr range over non-negative integers that
add up to k. We split this up further using Littlewood-Paley decomposition as

|∇kF (P<Nf)| �F,A,V,d,k sup
k1+...+kr=k

∑
1≤N1,...,Nr<N

|∇k1(P̃N1f)| . . . |∇kr (P̃Nrf)|

where we adopt the convention that P̃N := PN when N > 1 and P̃1 := P≤1. By
giving up a factor of r! = Ok(1) we may take N1 ≤ N2 . . . ≤ Nr. where k1, . . . , kr
range over all positive integers that add up to k. Now from (A.4) we have

‖∇ki(P̃Nif)‖L∞
x (Rd) �d,k N

ki

i ‖f‖L∞
x (Rd) �d,k,A N

ki

for i = 1, . . . , r − 1, and similarly

‖∇kr (P̃Nrf)‖L∞
x (Rd) �d,k N

kr
r ‖P̃Nrf‖L2

x(Rd)

and hence we have

‖∇kF (P<Nf)‖L2
x(Rd) �F,A,V,d,k sup

k1+...+kr=k

∑
1≤N1≤...≤Nr<N

Nk1
1 . . .Nkr

r ‖P̃Nrf‖L2
x(Rd).
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Performing the sum in N1, then N2, then finally Nr−1, and rewriting N ′ := Nr, we
obtain

‖∇kF (P<Nf)‖L2
x(Rd) �F,A,V,d,k

∑
1≤N ′<N

(N ′)k‖P̃N ′f‖L2
x(Rd).

By Cauchy-Schwarz and (A.20) we conclude

‖PNF (P<Nf)‖L2
x(Rd) �F,A,V,d,k

∑
1≤N ′<N

(N ′)kN−k‖P̃N ′f‖2
L2

x(Rd).

Summing this in N and using (A.9) we see that this term is acceptable (note that
k depends only on s, so the dependence on k is not a concern). �

In computations involving momentum, one often encounters expressions such
as

∫
Rd u∇v dx or

∫
Rd u(x)( x

|x| · ∇v). The following lemma is useful for controlling
these quantities.

Lemma A.10 (Momentum estimate). Let u, v ∈ S(Rd) for some d ≥ 3, and let
K be a kernel on Rd which is smooth away from the origin, and obeys the estimates

|K(x)| �d 1; |∇K(x)| �d |x|−1

away from the origin. (For instance, we could have K(x) ≡ 1, or K(x) ≡ xj

|x| for
some j = 1, . . . , d.) Then we have

|
∫
Rd

u(x)K(x)∇v(x) dx| �d ‖u‖Ḣs
x(Rd)‖v‖Ḣ1−s

x (Rd)

for all 0 ≤ s ≤ 1 (in particular, the estimate is true for s = 1/2).

Intuitively speaking, the justification for this lemma is that we can integrate
by parts “1/2 times” to move half of the derivative from v onto u, ignoring the
mild symbol K in between. By standard limiting arguments we may now extend
the bilinear form (u, v) �→ ∫

Rd u(x)K(x)∇v(x) dx to all u, v ∈ Ḣ
1/2
x (Rd), dropping

the hypothesis that u, v is Schwartz.

Proof. A standard regularisation argument (replacing K by K ∗ φε for some
approximation to the identity φε, and then letting ε → 0, taking advantage of the
hypothesis that u, v are Schwartz) allows us to assume that K is smooth on all of
Rd (including the origin), provided of course that our estimates are uniform in K.
By real or complex interpolation it will suffice to establish the estimates

|
∫
Rd

u(x)K(x)∇v(x) dx| �d ‖u‖L2
x(Rd)‖v‖Ḣ1

x(Rd)

and
|
∫
Rd

u(x)K(x)∇v(x) dx| �d ‖u‖Ḣ1
x(Rd)‖v‖L2

x(Rd).

The first estimate is immediate from Hölder’s inequality (estimating u, ∇v in L2
x and

K in L∞
x ). For the second estimate, we integrate by parts (again taking advantage

of the hypothesis that u, v are Schwartz) and use the triangle inequality to estimate

|
∫
Rd

u(x)K(x)∇v(x) dx| ≤ |
∫
Rd

(∇u)(x)K(x)v(x) dx|+|
∫
Rd

u(x)(∇K)(x)v(x) dx|.
The first term can be estimated by Hölder’s inequality as before. The second term
can be estimated by Cauchy-Schwarz (placing v in L2

x) followed by Lemma A.2
(with s = 1 and d ≥ 3), and we are done. �
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Exercise A.1. Prove (A.2)-(A.6). (Hint: for each of the estimates, use Fourier
analysis to write the expression in the left-hand norm as the convolution of the
expression in the right-hand norm with some explicit kernel, and then use Young’s
inequality.) Discuss why these estimates are consistent with Principle A.1.

Exercise A.2. Deduce (A.13) directly from the Fourier inversion formula and
Cauchy-Schwarz, and show that it fails at the endpoint s = d/2.

Exercise A.3 (Lorentz characterisation of Lpx). [KTao] Let f ∈ Lpx(R
d) for

some 1 < p < ∞. Show that one can decompose f =
∑
k ckχk, where k ranges

over the integers, χk is a function bounded in magnitude by 1 and supported on a
set of measure at most 2k, and ck are a sequence of non-negative reals such that
(
∑

k 2k|ck|p)1/p ∼p ‖f‖Lp
x(Rd). (Hint: let f∗(x) := inf{α : |{|f | > α}| < x} be the

(left-continuous) nondecreasing rearrangement of |f |. Set ck to equal f∗(2k−1), and
ckχk be the portion of f where f∗(2k) < |f(x)| ≤ f∗(2k−1).)

Exercise A.4 (Dual Lorentz characterisation of Lqx). Let f ∈ Lqx(R
d) for some

1 < q <∞. Show that

‖f‖Lq
x(Rd) ∼q sup

Ek

(
∑
k

2k(1−q)|
∫
Ek

f(x) dx|q)1/q

where for each k, Ek ranges over all bounded open sets of measure 2k. (Hint: use the

nondecreasing rearrangement again. Show that supEk
| ∫
Ek
f(x) dx| ∼q

∫ 2k

0
f∗(t) dt,

and then decompose the interval [0, 2k] dyadically.)

Exercise A.5. Use Exercises A.3, A.4 to prove (A.10). (Hint: first establish
the estimate

|
∫
Ek′

χk ∗ 1
|x|α | �d,α min(2

d−α
d k2k

′
, 2

d−α
d k′2k)

for all k, k′, where Ek′ and χk are as in the preceding exercises.) Deduce (A.11)
and (A.12) as a consequence.

Exercise A.6 (Lorentz refinement of Sobolev embedding). For 1 < p, q <∞,
define the Lorentz norm

‖f‖Lq,p
x (Rd) := sup

Ek

(
∑
k

2k(
p
q −p)|

∫
Ek

f(x) dx|p)1/p

where Ek is as in Exercise A.4. By repeating the proof of Exercise A.5, refine the
estimate (A.11) to

‖f‖Lq
x(Rd) �p,q,d ‖f‖Lq,p

x (Rd) �p,q,d ‖f‖Ẇ s,p
x (Rd)

under the same hypotheses on p, q, d, s.

Exercise A.7. Prove the first half of Proposition A.4. (Hint: first use Exercise
A.6 to show that | ∫

Ek
f(x) dx| ∼p,q,d,η 2k(1−1/q) for some k ∈ Z and some set Ek

of measure 2k. Then perform a Littlewood-Paley decomposition of f to conclude
that ‖PNf‖L∞

x (Rd) �p,q,d,η 2k(1−1/q) for some N ∼p,q,d,η 2−k/d.)

Exercise A.8 (Relationship between Sobolev and isoperimetric inequalities).
Prove the endpoint Sobolev estimate

|{|f(x)| ≥ λ}| �d

‖|∇f |‖dL1
x(Rd)

λd
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for any λ > 0 and f ∈ Sx(Rd). (Hint: estimate |f(x)| pointwise by |∇f(x)| ∗ 1
|x|d−1 .

Let E := {|f(x)| ≥ λ} and obtain a pointwise bound for 1E ∗ 1
|x|d−1 .) If Ω ⊂ Rd is

a bounded domain with smooth boundary, deduce the isoperimetric inequality

|∂Ω| �d |Ω|(d−1)/d

where |∂Ω| is the surface area of Ω. (Hint: set f to be a smoothed out version
of 1Ω.) It is well known that among all domains with fixed volume, the ball has
the smallest surface area; comment on how this is compatible with the heuristics
supporting Proposition A.4.

Exercise A.9. Give a heuristic justification of Principle A.5 using the Fourier
transform and the elementary estimate 〈ξ + η〉s �s 〈ξ〉s + 〈η〉s for all ξ, η ∈ Rd.

Exercise A.10. Complete the proof of Lemma A.8.

Exercise A.11. Generalise Lemma A.8 by replacing Hs
x with W s,p

x for some
1 < p <∞, and replacing the condition s > d/2 with s > d/p. (Hint: you will need
the Littlewood-Paley estimate (A.7).)

Exercise A.12. Let the assumptions and notation be as in Lemma A.9, but
suppose that F lies in Ck+1 rather than just in Ck. Establish the Lipschitz estimate

‖F (f) − F (g)‖Hs
x(Rd) �F,‖f‖

L∞
x (Rd),‖g‖L∞

x (Rd),V,s,d
‖f − g‖Hs

x(Rd).

(Hint: One could repeat the proof of Lemma A.9, but a slicker proof is to use the
fundamental theorem of calculus to write F (f)−F (g) =

∫ 1

0 DF ((1−θ)f+θg) ·(f−
g) dθ, where DF is the differential of F , and then apply Lemma A.9 and Lemma
A.8.)

Exercise A.13 (Fractional chain rule). [CWein] Let p > 1, and let F ∈
C1(C → C) be a function of pth power type, in the sense that F (z) = O(|z|p) and
∇F (z) = Op(|z|p−1). Let 0 ≤ s < 1 and 1 < q < r <∞ obey the scaling condition
d
q = dp

r − (p− 1)s. Show that

‖F (f)‖W s,q
x (Rd) �d,p,q,r,s ‖f‖pW s,r

x (Rd)

for all f ∈ W s,r
x (Rd). (Note that this is rather easy to justify heuristically from

Principle A.6.) If furthermore p > 2, and F is C2 with ∇2F (z) = Op(|z|p−2),
establish the stronger estimate

‖F (f) − F (g)‖W s,q
x (Rd) �d,p,q,r,s (‖f‖W s,r

x (Rd) + ‖g‖W s,r
x (Rd))

p−1‖f − g‖W s,r
x (Rd)

for all f, g ∈ W s,r
x (Rd).

Exercise A.14. If I is an interval in R and 2 ≤ q, r < ∞, establish the
inequality

‖u‖Lq
tL

r
x(I×Rd) �d,q,r (

∑
N

‖PNu‖2
Lq

tL
r
x(I×Rd))

1/2.

(Hint: use (A.7). To interchange the norm and square function, first consider the
extreme cases q, r = 2,∞ and then interpolate, for instance using the complex
method.)
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Exercise A.15. If I is a bounded interval in R, and u, ∂tu ∈ L2
t (I), use

elementary arguments to obtain a localised Gagliardo-Nirenberg inequality

‖u‖L∞
t (I) � ‖u‖1/2

L2
t(I)

‖∂tu‖1/2

L2
t(I)

and the Poincaré inequality

‖u− 1
I

∫
I

u‖L2
t(I)

� |I|‖∂tu‖L2
t(I)

.

Exercise A.16. Let u ∈ Sx(Rd). Use integration by parts to establish the
identity∫
Rd

|x|α|x·∇u(x)|2 dx =
(d+ α)2

4

∫
Rd

|x|α|u(x)|2 dx+
∫
Rd

|x|α|x·∇u(x)−d + α

2
u(x)|2 dx

for any α > −d, and use this to establish another proof of Hardy’s inequality in the
case s = 1.

Exercise A.17. Give another proof of Lemma A.10 which does not use inter-
polation, but relies instead on Littlewood-Paley decomposition. (Hint: you may
need to decompose K smoothly into dyadic pieces also and use arguments similar
to those used to prove Lemma A.2.) The techniques of interpolation and of dyadic
decomposition are closely related; the latter tends to be messier but more flexible.

Exercise A.18 (Localisation ofHs
x functions). Let u ∈ Hs

x(Rd) for some s ≥ 0,
and let ψ ∈ Sx(Rd). Show that for any R ≥ 1 we have

‖u(x)ψ(
x

R
)‖Hs

x(Rd) �s,d,ψ ‖u‖Hs
x(Rd).

This very useful fact allows one to smoothly localise functions in Hs
x to large balls,

uniformly in the size of the ball. (Hint: prove this for s a positive integer by
induction first, and then use interpolation. You may find the Hardy or Sobolev
inequalities to be useful. An alternate approach is to perform a Fourier decompo-
sition of ψ and work entirely in frequency space.) Similarly, if u ∈ Ḣ1

x(Rd) and
d ≥ 3, establish the bound

‖u(x)ψ(
x

R
)‖Ḣ1

x(Rd) �ψ,d ‖u‖Ḣ1
x(Rd).

Exercise A.19 (Radial Sobolev inequality). Let d ≥ 3, and let u be a Schwartz
function on Rd. Establish the inequality

‖|x| d
2−1|u|‖L∞

x (Rd) �d ‖u‖Ḣ1
x(Rd)

for all x ∈ Rd, as well as the variant

‖|x|s|u|‖L∞
x (Rd) �d,s ‖u‖H1

x(Rd)

for all d
2 − 1 ≤ s ≤ d−1

2 . (Hint: if |x| = R, truncate u smoothly to the region
|x| ∼ R using Exercise A.18, use polar coordinates, and use the Gagliardo-Nirenberg
inequality.)

Exercise A.20. If f is spherically symmetric, show that one can take x0 =
Os,p,q,d,η(1/N) in Proposition A.4; thus Sobolev embedding is only sharp near the
origin (using the natural length scale associated to the frequency). (Hint: if x0 is
too far away from the origin, use the symmetry to find a large number of disjoint
balls, each of which absorb a significant portion of energy.)
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Exercise A.21 (Littlewood-Paley characterisation of Hölder regularity). Let
0 < α < 1 and 1 ≤ p ≤ ∞. If f ∈ Sx(Rd), we define the Hölder norm ‖f‖Λp

α(Rd)

by the formula

‖f‖Λp
α(Rd) := ‖f‖Lp

x(Rd) + sup
h∈Rd:0<|h|≤1

‖fh − f‖Lp
x(Rd)

|h|α
where fh(x) = f(x+ h) is the translate of f by h. Show that

‖f‖Λp
α(Rd) ∼p,α,d ‖f‖Lp

x(Rd) + sup
N≥1

Nα‖PNf‖Lp
x(Rd).

(Hint: to control the latter by the former, express PNf as an average of functions
of the form fh − f . To control the former by the latter, obtain two bounds for
the Lpx norm of PNfh − PNf , using the triangle inequality in the high frequency
case N � |h|−1 and the fundamental theorem of calculus in the low frequency case
N � |h|−1.) The latter expression is essentially an example of a Besov norm, which
often functions as a substitute for the Sobolev norm which is a little more tech-
nically convenient in several PDE applications, particularly those in which one is
concerned about controlling interactions between high and low frequencies. Con-
clude in particular that

‖f‖Wα−ε,p
x (Rd) �p,α,d,ε ‖f‖Λp

α(Rd) �p,α,d ‖f‖Wα,p
x (Rd)

for any ε > 0; thus Hölder norms are “within an epsilon” of their Sobolev counter-
parts.

Exercise A.22 (Morrey-Sobolev inequality). If 0 < α < 1 and d < p ≤ d
1−α ,

show that
‖f‖Λ∞

α (Rd) �p,α,d ‖f‖W 1,p
x (Rd)

for all f ∈ Sx(Rd), where Λ∞
α was defined in the previous exercise. This reflects a

general principle, that if there is some “surplus” regularity in the Sobolev embed-
ding theorem that causes one to go past L∞

x , this additional regularity will then
manifest itself as Hölder continuity, and one can again recover endpoint estimates.

Exercise A.23 (Hodge decomposition). Let φ : Hs
x(Rd → Rd) be a vector

field. Show that one has a unique decomposition φ = φcf +φdf into a curl-free vector
field φcf ∈ Hs

x(R
d → Rd) and a divergence-free vector field φdf ∈ Hs

x(R
d → Rd),

thus curlφcf = ∇ ∧ φcf = 0 and divφdf = ∇ · φdf = 0 in the sense of distributions.
Verify the identities φcf = ∆−1∇(∇ · φ) and φdf = ∆−1∇¬(∇ ∧ φ). If s = 0, show
that φcf and φdf are orthogonal. (You may either use the Fourier transform, or
take divergences and curls of the decomposition φ = φcf + φdf to solve for φcf and
φdf .)

Exercise A.24 (Div-curl lemma). Let φ, ψ : L2
x(R

d → Rd) be vector fields
such that divφ = 0 and curlψ = 0. Show that

∫
Rd φ · ψ = 0, and also that

φ · ψ ∈ Ḣ
−d/2
x (Rd); this is a simple example of a div-curl lemma, that exploits

a certain “high-high” frequency cancellation between divergence-free and curl-free
vector fields, and forms a key component of the theory of compensated compactness ;
see for instance [CLMS]. (Note that Hölder’s inequality would place φ · ψ in L1

x,
which is not enough for Sobolev embedding to place into Ḣ

−d/2
x 3. To prove the

lemma, use Hodge theory to write φ and ψ as the curl and gradient of a Ḣ1
x 2-form

and scalar field respectively, then use Littlewood-Paley decomposition.)
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Exercise A.25 (Sobolev trace lemma). Let f ∈ Sx(Rd) for d ≥ 2, and view
Rd−1 ≡ Rd−1 × {0} as a subset of Rd in the usual manner. Show that

‖f‖Ḣs
x(Rd−1) �d,s ‖f‖Ḣs+1/2

x (Rd)

and
‖f‖Hs

x(Rd−1) �d,s ‖f‖Hs+1/2
x (Rd)

for all s > 0. (This can be done from the Fourier transform; it is also worthwhile to
try to prove this from Littlewood-Paley theory, following the heuristics in Principle
A.1.) Show that these estimates fail when s = 0, and also that the loss of 1/2 a
derivative cannot be reduced. One can of course generalise this lemma to other
subsets of Rd of various codimension, and other Sobolev spaces, but we shall not
do so here.



CHAPTER B

Appendix: construction of ground states

La perfection est atteinte non quand il ne rest rien á ajouter, mais
quant il ne rest rien á enlever. (Antoine de Saint-Exupery)

In this appendix we establish existence and regularity of solutions Q : Rd → C
to the ground state equation

(B.1) ∆Q+ α|Q|p−1Q = βQ

where α, β > 0 are fixed, and 1 < p <∞ is Ḣ1
x-subcritical in the sense that

(B.2)
d

2
− 2
p− 1

< 1.

This condition is vacuous for d = 1, 2, and is equivalent to p < 1 + 4
d−2 for d ≥ 3

(see Table 1). Throughout this appendix, d and p will be fixed, and all constants
will be allowed to depend on these quantities.

The equation (B.1) is a model example of a nonlinear elliptic equation; the
theory of such equations is very well understood (and is far more mature than
the corresponding theory of nonlinear dispersive and wave equations), but we will
not attempt to systematically cover that field here. We will only be interested
in solutions Q which lie in the energy class H1

x(R
d), which in particular implies

that Q ∈ Lp+1
x (Rd), thanks to either Sobolev embedding (A.12) or the Gagliardo-

Nirenberg inequality (Proposition A.3); of course, in such a class we only require
that (B.1) hold in the sense of distributions, though we shall later see that solutions
to (B.1) are smooth, at least when Q is positive. In particular we require that Q has
some decay at infinity (later on we shall see that Q in fact decays exponentially),
thus ruling out solutions such as the constant solution Q = (β/α)1/(p−1). We will
later specialise attention to solutions Q which are strictly positive (in particular,
ruling out the trivial solution Q = 0).

As a model example of positive solution to (B.1) that decays at infinity, the
hyperbolic secant function

Q(x) = sech(x) =
1

cosh(x)
=

2
ex + e−x

solves (B.1) in dimension d = 1 with p = 3 and α = 2, β = 1. In general this
equation does not have such an algebraically explicit solution (other than the triv-
ial solution Q = 0); however all ground states tend to have a similar shape to the
hyperbolic secant function (nonnegative, smooth, spherically symmetric, exponen-
tially decreasing at infinity) as we shall see in this Appendix.

Let us now make some preliminary remarks on the problem. The subcriticality
assumption (B.2) is needed to rule out singular solutions. For instance the function
Q(x) := |x|−2/(p−1) solves a degenerate case of (B.1) with α = 2

p−1 ( 2
p−1 + d) and

339
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β = 0, but will not lie locally in H1
x(R

d) because of (B.2). The full theory of
singularities at supercritical and critical exponents is rather involved and will not
be given here.

The next observation is that the condition α > 0 is necessary to obtain non-
trivial H1

x(R
d) solutions, at least when β is non-negative. Indeed, if one multiplies

(B.1) by Q and integrates in space, then after an integration by parts (which can
be justified using the hypothesis Q ∈ H1

x(Rd) we conclude that∫
Rd

−|∇Q|2 + α|Q|p+1 =
∫
Rd

β|Q|2

which if α ≤ 0 ≤ β, implies that ∇Q (and hence Q) vanish identically.
A third easy observation is that the parameters α, β can be easily scaled out

by using the homogeneity transformation Q(x) �→ cQ(x) and the scaling trans-
formation Q(x) �→ λ−2/(p−1)Q(x/λ) for any c, λ > 0. Indeed if Q(x) solves
(B.1) then cQ(x/λ) also solves (B.1), but with α and β replaced by c1−pα and
λ−2β respectively. We additionally have the symmetries of spatial translation
Q(x) �→ Q(x−x0), phase rotation Q(x) �→ eiθQ(x), and conjugation Q(x) �→ Q(x).

Following Weinstein [Wei], our approach to solving (B.1) shall be based on un-
derstanding the sharp constant in the Gagliardo-Nirenberg inequality (Proposition
A.3). Let us define the Weinstein functional W (u) = Wd,p(u) for any non-zero
u ∈ H1

x(R
d) by

W (u) :=

∫
Rd |u|p+1

(
∫
Rd |u|2)1− (d−2)(p−1)

4 (
∫
Rd |∇u|2)d(p−1)/4

.

As a special case of Proposition A.3, we see (using (B.2)) that W (u) = Od,p(1) for
all u ∈ H1

x. Thus the quantity

Wmax := sup{W (u) : u ∈ H1
x(R

d) : u �= 0}
is a positive and finite. One can view Wmax as the best constant in the Gagliardo-
Nirenberg inequality; more precisely, we have

(B.3)
∫
Rd

|u|p+1 ≤Wmax(
∫
Rd

|u|2)1− (d−2)(p−1)
4 (

∫
Rd

|∇u|2)d(p−1)/4

for all u ∈ H1
x(R

d).
We observe that the Weinstein functional W (u) is invariant under all the sym-

metries mentioned earlier (homogeneity, scaling, translation, phase rotation, con-
jugation). A more direct relationship between this functional and (B.1) is given
by

Lemma B.1. [Wei] Let Q ∈ H1
x(R

d) be such that Q �≡ 0 and W (Q) = Wmax.
Then Q solves (B.1) (in the sense of distributions) with

α :=
2(p+ 1)
d(p− 1)

‖∇Q‖2−d(p−1)/2

L2
x(Rd)

‖Q‖(d−2)(p−1)/2−2
L2

x
; β := (

4
d(p− 1)

−d− 2
d

)
‖∇Q‖2

L2
x

‖Q‖2
L2

x

.

Proof. By using the homogeneity and scale invariances, we may normalise∫
Rd

|Q|2 =
∫
Rd

|∇Q|2 = 1.
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For any u ∈ H1
x(R

d) ⊂ Lp+1
x (Rd), one can verify that the quantity W (Q + εu) is

differentiable at ε = 0 with
d

dε
W (Q+εu)|ε=0 = Re

∫
Rd

(p+1)|Q|p−1Qu−(1− (d− 2)(p− 1)
4

)2Qu−d(p− 1)
4

2∇Q·∇u.

Since Q is maximiser of W , the right-hand side must vanish for every u. Integrating
by parts, we conclude

(p+ 1)|Q|p−1Q− (1 − (d− 2)(p− 1)
4

)2Q+
d(p− 1)

4
2∆Q = 0

in the sense of distributions, and the claim follows. �

Thus we can solve (B.1) by establishing an extremiser for the Weinstein func-
tional W . This shall be accomplished using three observations1. First, we observe
that we can restrict attention to non-negative functions:

Lemma B.2 (Diamagnetic inequality, special case). Let Q ∈ H1
x(R

d). Then we
have

−|∇Q| ≤ ∇|Q| ≤ |∇Q|
in the sense of distributions. In particular, |Q| ∈ H1

x and (if Q is not identically
zero) W (|Q|) ≥W (Q).

Proof. If Q is Schwartz, then one easily verifies that

−|∇Q| ≤ ∇(ε2 + |Q|2)1/2 ≤ |∇Q|
for all ε > 0; taking limits in H1

x, we see that the same inequality also holds
in a distributional sense for all Q ∈ H1

x(Rd). The claim then follows by taking
distributional limits as ε→ 0. �

Next, we observe a useful compactness phenomenon (related to Proposition
A.4) that allows one to upgrade weak convergence to (local) strong convergence:

Lemma B.3 (Rellich compactness theorem). Let un be a sequence of functions
which are uniformly bounded in H1

x(R
d), and which is weakly convergent (in the

sense of distributions) to a limit u (which is thus also in H1
x(R

d)). Then un also
converges to u locally in Lp+1

x , thus ‖un−u‖Lp+1
x (B) → 0 as n→ ∞ for any ball B.

Proof. By subtracting u from un, we may take u = 0. From the weak con-
vergence, we know that PNun → 0 pointwise for each N . On the other hand, from
Bernstein’s inequality ((A.6)) we see that for each fixed N , the sequence PNun is
uniformly bounded in L∞

x . By Lebesgue’s dominated convergence theorem, we thus
have ‖PNun‖Lp+1

x (B) → 0 for any ball B. On the other hand, from the proof of the
Gagliardo-Nirenberg inequality (Proposition A.3) we see that supn ‖PNun‖Lp+1

x
is

absolutely convergent in N . Applying dominated convergence again, we conclude
that

∑
N ‖PNun‖Lp+1

x (B) → 0. The claim now follows from the triangle inequal-
ity. �

Finally, we obtain a spatial concentration result for near-maximisers of the
Weinstein functional.

1Another approach is via the mountain pass lemma, verifying that W obeys the Palais-Smale
condition; see for instance [Eva].
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Lemma B.4 (Spatial localisation of maximisers). For any R0 ≥ 1 and η > 0
there exists an ε > 0 and R1 > R0 with the following property: whenever Q ∈
H1
x(R

d) obeys the normalisation∫
Rd

|Q|2 =
∫
Rd

|∇Q|2 = 1

and concentrates near the origin in the sense that∫
|x|≤R0

|Q|p+1 ≥ η

and is a near-maximiser in the sense that

W (Q) ≥Wmax − ε

then we have some decay away from the origin in the sense that∫
|x|>R1

|Q|p+1 ≤ η.

This result should be compared with Proposition A.4 as well as Principle 5.14.
It is also related to the theory of concentration compactness, which we do not
discuss here. The actual minimizer in fact obeys much stronger decay properties;
see Proposition B.7 below.

Proof. Intuitively, the point is that if Q was large near the origin and away
from the origin, then we could decouple Q into two non-interacting and non-trivial
components, one of which would be a significantly better maximiser for W than Q.

We argue as follows. Fix R0, η > 0, and let ε > 0 be a small number to be
chosen later, and let R1 > R0 be a large number depending on ε,R0 to be chosen
later. Suppose for contradiction that we can find Q ∈ H1

x(R
d) obeying all the

stated properties, but such that∫
|x|≥R1

|Q|p+1 > η.

Now from the Gagliardo-Nirenberg inequality and the normalisation we have∫
R0≤|x|≤R1

|Q|p+1 + |Q|2 + |∇Q|2 � 1.

Thus by the pigeonhole principle, if we chooseR1 sufficiently large depending onR0,
ε, there exists a radius 10R0 < R < R1/10 such where Q has very little presence,
or more precisely

(B.4)
∫
R/10≤|x|≤10R

|Q|p+1 + |Q|2 + |∇Q|2 ≤ ε.

Fix this R, and split Q = Q1 + Q2, where Q1(x) := ϕ(x/R)Q(x), Q2(x) := (1 −
ϕ(x/R))Q(x), and ϕ : Rd → [0, 1] is a bump function supported on {|x| ≤ 2} which
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equals one on {|x| ≤ 1}. Then one easily verifies using (B.3) that

W (Q) =
∫
Rd

Qp+1

≤
∫
Rd

Qp+1
1 +

∫
Rd

Qp+1
2 +O(ε)

≤Wmax

2∑
j=1

(
∫
Rd

|Qj |2)1−
(d−2)(p−1)

4 (
∫
Rd

|∇Qj|2)d(p−1)/4 +O(ε).

(B.5)

On the other hand, from (B.4) and the normalisation of Q one easily verifies that

(B.6)
2∑
j=1

∫
Rd

|Qj|2 ≤
∫
Rd

|Q|2 +O(ε) = 1 +O(ε)

and

(B.7)
2∑
j=1

∫
Rd

|∇Qj |2 ≤
∫
Rd

|∇Q|2 +O(ε) = 1 +O(ε).

On the other hand, from the hypotheses we have∫
Rd

|Qj |p+1 ≥ η

for j = 1, 2, which by the Gagliardo-Nirenberg inequality implies that∫
Rd

|Qj |2,
∫
Rd

|∇Qj |2 ≥ c(η)

for some c(η) > 0. Choosing ε suitably small depending on η, we conclude that

(B.8)
∫
Rd

|Qj |2,
∫
Rd

|∇Qj |2 ≤ 1 − c′(η)

for some c′(η) > 0.
Now observe that the exponents 1− (d−2)(p−1)

4 and d(p− 1)/4 are positive and
sum to be strictly greater than 1. If we then apply (B.6), (B.7), (B.8) and Hölder’s
inequality, we conclude

2∑
j=1

(
∫
Rd

|Qj|2)1−
(d−2)(p−1)

4 (
∫
Rd

|∇Qj |2)d(p−1)/4 ≤ 1 − c′′(η)

for some c′′(η) > 0, again taking ε small. Inserting this back into (B.5) we contradict
our hypothesis W (u) ≥Wmax − ε, if ε is sufficiently small. �

We can now conclude

Theorem B.5 (Existence of extremiser). [Wei] There exists a non-negative
function Q ∈ H1

x(Rd), not identically zero, which solves (B.1), and such that
W (Q) = Wmax. In particular we have W (u) ≤W (Q) for all non-zero u ∈ H1

x(R
d).

Proof. By definition of Wmax, we can find a sequence Qn ∈ H1
x(R

d) of non-
zero functions for n = 1, 2, . . . such that

lim
n→∞W (Qn) = Wmax.
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By Lemma B.2 we may take Qn to be non-negative. Using the homogeneity and
scaling symmetry, we may normalise

(B.9)
∫
Rd

|Qn|2 =
∫
Rd

|∇Qn|2 = 1; lim
n→∞

∫
Rd

|Qn|p+1 = Wmax.

Our aim is to somehow pass from the sequence Qn to a limit Q such that W (Q) =
Wmax, but one cannot do so immediately because of various failures of compactness
(or to put it another way, because strict inequality can occur in Fatou’s lemma).
We first must exploit the finer structure of the Qn. Let us return to the proof of
Proposition A.3 and analyze it more carefully. We have

0 < W 1/p+1
max = lim sup

n→∞
‖Qn‖Lp+1

x (Rd) ≤ lim sup
n→∞

∑
N

‖PNQn‖Lp+1
x (Rd).

From the absolute convergence of the sum
∑

N N
d

p+1− d
2 min(1, N−1) and dominated

convergence, we thus conclude that there exists N0 such that

lim sup
n→∞

‖PN0Qn‖Lp+1
x (Rd) > 0.

Fix this N0. From the L2
x normalisation of Qn and Hölder’s inequality we thus have

lim sup
n→∞

‖PN0Qn‖L∞
x (Rd) > 0.

Translating each of the smooth functions PN0Qn separately (taking advantage of
translation invariance), we can thus assume

lim sup
n→∞

|PN0Qn(0)| > 0.

Passing to a subsequence we may thus assume that

|PN0Qn(0)| > c

for all n and some c > 0. Expanding out the kernel of PN0 and (B.9), we conclude
that ∫

|x|≤R0

|Qn|p+1 ≥ η

for all n and some R0, η > 0. Applying Lemma B.4, we conclude that for any
0 < η′ < η there exists Rη′ such that

(B.10) lim sup
n→∞

∫
|x|≥Rη′

|Qn|p+1 ≤ η′.

By the weak compactness of the unit ball in H1
x(R

d), we can pass to a subsequence
and assume that Qn converges to a function Q ∈ H1

x(Rd) in the sense of distribu-
tions. By Lemma B.3 we see that Qn converges locally to Q in Lp+1

x . Combining
this with (B.10) we see that Qn in fact converges to Q globally in Lp+1

x (Rd). Using
(B.9) and Fatou’s lemma we conclude∫

Rd

|Q|2,
∫
Rd

|∇Q|2 ≤ 1;
∫
Rd

|Q|p+1 = Wmax,

In particular Q is non-zero. Since all the Qn were non-negative, so is Q. From
(B.3) we conclude that W (Q) = Wmax, as desired. �

Combining this with Lemma B.1 and using the scaling and homogeneity sym-
metries, we conclude the existence of a solution to (B.1):
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Corollary B.6. [Wei] There exists a non-negative solution Q ∈ H1
x(R

d) to
the equation

(B.11) ∆Q+Qp = Q

(in the sense of distributions) which is not identically zero, and such that W (Q) =
Wmax.

We can now analyze the structure of Q further. From the equation (B.11) we
can conclude plenty of regularity and decay:

Proposition B.7 (Elliptic regularity). Let Q be non-negative solution to (B.1)
which is not identically zero. Then Q is strictly positive, smooth, and exponentially
decreasing. The gradient of Q is also exponentially decreasing.

Proof. By scaling and homogeneity we may assume that Q solves (B.11). We
can rewrite this equation as

(B.12) Q = (1 − ∆)−1Qp = 〈∇〉−2Qp.

From the strict positivity of the kernel of 〈∇〉−2 (see Exercise B.2) we thus see that
Q is strictly positive. Now from Sobolev embedding we know that Q ∈ Lqx(R

d)
whenever 2 ≤ q < ∞ (when d = 1, 2) or 2 ≤ q ≤ 2d

d−2 (for d > 2). Inserting this
fact into the above equation and iterating (again using Sobolev embedding) we can
successively enlarge the range of q, until we conclude Q ∈ Lqx(R

d) for all 2 ≤ q <∞.
Applying the equation again we can then conclude that Q lies in W 2,q(Rd) for any
2 ≤ q < ∞. In particular Q is bounded and Lipschitz continuous, which can be
iterated further to eventually conclude that Q is smooth.

Now we show the exponential decay. Let ε > 0 be chosen later. Since Q is
Lipschitz and lies in L2

x(R
d) (say), we see that the set {x ∈ Rd : Q(x) > ε} is

bounded. Thus there exists R > 0 such that Q(x) ≤ ε for all |x| ≥ R; for |x| ≤ R
we already know that Q is bounded. From (B.12) and the exponential decay of the
kernel of 〈∇〉−2 (see Exercise B.2) we thus conclude that

Q(x) ≤ Ce−α|x| + 〈∇〉−2(εp−1Q)

for some C,α > 0. Applying Exercise 1.16 and Exercise B.2, and choosing ε
sufficiently small, we obtain the desired exponential decay of Q. The decay of the
gradient follows by another application of (B.12). �

Since Q decays exponentially, a simple computation involving (B.12) shows Q
is a Schwartz function.

The powerful method of moving planes, introduced by Alexandrov [Ale] and
developed by Gidas, Ni, and Nirenberg [GNN], exploits the nonnegativity to give
first hyperplane symmetry, and then radial symmetry:

Proposition B.8. [GNN] Let Q be non-negative solution to (B.1) which is not
identically zero, and let ξ ∈ Sd−1 be a unit vector. Then there exists a hyperplane
{x ∈ Rd : x · ξ = t} with respect to which Q is symmetric.

Proof. Fix ξ, and suppose for contradiction that Q is not symmetric with
respect to any of the hyperplanes orthogonal to ξ. Let H be the half-space H :=
{x ∈ Rd : x · ξ ≥ 0}. For each “time” t ∈ R, let ut : H → R denote the function

ut(x) := Q(tξ − x) −Q(tξ + x).
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From our hypothesis, we know that ut is not identically zero for any t. Also, by
construction ut is smooth, exponentially decreasing, and vanishes at the boundary
∂H of H . From (B.11) and the mean value theorem we observe the differential
inequality

(B.13) ∆ut(x) = ut(x)(1 +Op(Q(tξ − x)p−1 +Q(tξ + x)p−1)).

In particular, from the boundedness of Q we have ∆ut = O(|ut|).
Suppose that ut is non-negative somewhere in H . Since ut vanishes on ∂H , is

continuous, and goes to zero at infinity, there must exist a point xt in the interior of
H where ut attains its global minimum, so ut(xt) < 0 and ∆ut(xt) ≥ 0. Applying
(B.13) we conclude that

Q(tξ − xt)p−1 +Q(tξ + xt)p−1 �p 1.

Since ut(xt) < 0, we have Q(tξ − xt) < Q(tξ + xt). Thus we have Q(tξ + xt) �p 1,
which from the decay of Q implies that tξ + xt = OQ,p(1).

We now combine this fact with the continuity method (Proposition 1.21) as
follows. For any time t0, let H(t0) = C(t0) be the property that ut is non-negative
for all t ≥ t0. Clearly properties (a) and (c) of Proposition 1.21 hold. To verify
property (d), observe that if t is sufficiently large depending on Q and p then it is
not possible to have tξ + xt = OQ,p(1) for any xt ∈ H . Thus H(t) holds for all
sufficiently large t. Finally, we verify (b). If H(t) holds, then ut is non-negative
by continuity, and there exists a sequence tn approaching t from below such that
utn is non-negative. By the preceding discussion, there exists xtn ∈ H such that
utn(xtn) ≤ 0 and tnξ+ xtn = OQ,p(1). In particular, xtn stays bounded as n→ ∞,
and hence by passing to a subsequence we may assume that xtn converges to some
x0 ∈ H . Since utn converges pointwise to the non-negative function ut, we have
ut(x0) = 0. If x0 lies in the interior of H , then the strong maximum principle
(Exercise B.7) implies that ut vanishes on all of H , contradicting our hypothesis.
If instead x0 lies on the boundary of H , then from Hopf’s lemma (Exercise B.6)
we have ξ · ∇ut(x0) > 0. Since tn approaches t from below and xtn ∈ H converges
to x0 ∈ ∂H , we then conclude that utn(xtn) ≥ ut(x0) = 0 for all sufficiently large
n, contradicting the negativity of utn(xtn). This establishes (b). By Proposition
1.21 we thus have H(t) for all t, thus Q(tξ − x) ≥ Q(tξ + x) for all t ∈ R and
x ∈ H . This implies that Q is decreasing in the ξ direction, which is inconsistent
with the rapid decrease of Q in all directions, since Q is not identically zero. This
contradiction establishes the claim. �

By iterating the above proposition, we obtain

Corollary B.9. [GNN] Let Q be a non-negative solution to (B.1) which is
not identically zero. Then Q is the translate of a radially symmetric function.

Proof. By applying Proposition B.8 with ξ equal to each of the basis vectors
e1, . . . , ed, and then translating Q if necessary, we may assume that Q is symmetric
around each of the coordinate hyperplanes {x ∈ Rd : xj = 0}. In particular Q is
even. Since Q also decays at infinity, this means that the only planes of symmetry
available to Q pass through the origin. Applying Proposition B.8 again we conclude
that Q is symmetric through every plane through the origin, and is thus radially
symmetric. �



B. APPENDIX: CONSTRUCTION OF GROUND STATES 347

To summarise so far, we now know that there exists a smooth, rapidly decreas-
ing, positive, radial solution Q : Rd → R+ to the equation (B.1). We will now
continue the analysis of this ground state, showing in particular that it is unique;
this was first established for general dimension by Kwong [Kwo], with earlier results
in d = 1, 3 by Coffman [Cof]. We shall use an argument of McLeod [Mcl].

It is convenient to introduce the function uy ∈ C2(R+ → R), defined for each
position y ∈ R+ by solving the ODE

(B.14) ∂2
t uy(t) +

d− 1
t

∂tu(t) + |uy(t)|p−1uy(t) − uy(t) = 0.

for t > 0, with the initial condition

uy(0) = y; ∂tuy(0) = 0.

One can show that a unique function uy ∈ C2(R+ → R) exists for all y, and
depends smoothly on y (Exercise B.8) despite the apparent singularity at t = 0.
Note from polar coordinates that the radial ground states Q are precisely of the
form Q(x) := uy(|x|) for some y > 0 with the property that uy is non-negative and
rapidly decreasing. Let us now call a position y > 0 subcritical if inft>0 uy(t) > 0,
critical if inft>0 uy(t) = 0, and supercritical if inft>0 uy(t) < 0. Thus to ensure
uniqueness of the ground state, it suffices to show that at most one position y is
critical.

Let us now analyze the functions uy. The first simple observation is that none
of the uy can have a double zero. This is because the zero function also solves
the ODE (B.14), and then by the Picard uniqueness theorem (Theorem 1.14) we
would have uy ≡ 0, contradicting the initial condition. Thus every time uy is zero,
it changes sign. In particular this implies that a position y is supercritical if and
only if it has a zero, and that the set of supercritical positions is open.

Now we analyze the subcritical positions, using energy estimates. One can
think of uy(t) as the position at time t of a particle in the potential well

V (u) :=
1

p+ 1
|u|p − 1

2
|u|2

subject to the friction force − d−1
t ∂tu, and placed at rest at position y at time t = 0;

see Figure 1. If we introduce the pointwise energy

Ey(t) :=
1
2
|∂tuy(t)|2 + V (uy(t))

then a simple computation reveals the monotonicity formula

∂tEy(t) = −d− 1
t

|∂tuy(t)|2 ≤ 0

and hence

(B.15) Ey(t′) ≤ Ey(t) whenever 0 < t < t′ <∞.

This has the following consequence.

Lemma B.10. Suppose that y > 0 and t0 ≥ 0 is such that uy(t) is non-negative
for 0 ≤ t ≤ t0 and Ey(t0) < 0. Then y is subcritical. Conversely, if y is subcritical,
then Ey(t0) < 0 for some time t0.
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u

V

1

((p+1)/2)
1/(p−1)

y

Figure 1. A graph of the potential well V (u); note the minimum
of V at u = 1, and that the x-intercept ((p + 1)/2)1/(p−1) lies to
the right of u = 1. A ground state can be viewed as a particle in
this well which starts at rest a point y to the right of the origin at
t = 0, rolls to the left, eventually coming to a halt exactly at the
origin. Initially there is an extremely strong friction force applied
to the particle, but this disappears as t → +∞. If y is too small,
the particle will instead fall towards the minimum (subcritical be-
haviour), while if y is too large the particle will overshoot the origin
(supercritical behaviour); we shall show that there is exactly one
critical value of y for which a ground state is possible.

Proof. We begin with the first claim. From (B.15) we have Ey(t) ≤ Ey(t0) <
0 for all t ≥ t0, which by the geometry of the potential V and the fact that
uy(t0) ≥ 0, forces inft≥t0 uy(t) > 0. On the open interval 0 < t < t0, uy does
not change sign and thus does not have any zeroes. Since uy(0), uy(t0) > 0, we see
by continuity that inf0≤t≤t0 uy(t) > 0, and we are done.

Now we prove the second claim. Suppose for contradiction that y is subcritical
but Ey(t) ≥ 0 for all t. From the geometry of V , this shows that the only stationary
points of uy can occur when uy(t) ≥ (p+1

2 )1/(p−1) > 1. In particular from (B.14)
we see that the only stationary points of uy are local maxima. Since uy is already
stationary at t = 0, we see that this is a local maximum and there are no other
stationary points, hence uy is strictly decreasing, and thus has a limit uy(∞) at
infinity, and ∂tuy decays to zero at infinity. From subcriticality we have uy(∞) > 0;
since the energy is always non-negative and ∂tuy(∞) = 0, we in fact have uy(∞) ≥
(p+1

2 )1/(p−1) > 1, and hence uy is strictly bounded away from 1. But then from
(B.14) we see that ∂2

t uy(t) + d−1
t ∂tuy(t) < c < 0 for some c < 0, which can be used

(e.g. using the comparison principle, Exercise 1.7) to contradict positivity of u. �
Corollary B.11. The set of subcritical positions is open and contains the

interval 0 < y ≤ 1.

Proof. If 0 < y ≤ 1, then Ey(0) < 0 and so by Lemma B.10, y is subcritical.
Now let y be subcritical, so uy is bounded away from zero. Then Ey(t0) < 0
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for at least one time t0, thus by continuity we also have Ey′(t0) for all y′ in a
neighbourhood of y, and so by Lemma B.10 the y′ are subcritical and we are
done. �

From the existence of a ground state we know that there is at least one criti-
cal position. From the openness of the subcritical and supercritical positions, we
conclude the existence of a minimal critical position y∗ > 1, such that the entire
interval 0 < y < y∗ is subcritical. (This can be used to give an alternate proof of
existence for the ground state.)

Let us now analyze the function u(t) := uy∗(t) and the associated energy
E(t) := Ey∗(t). From Lemma B.10 in the contrapositive we have E(t) ≥ 0 for
all t. By the analysis in the proof of that lemma, we conclude that all stationary
points of u has no local maxima, and thus that u is strictly decreasing. Since y∗ is
critical, we conclude that u is strictly positive and goes to zero at infinity. In fact,
the positivity of energy will imply that ∂tu(t) ≤ −0.9u(t) (say) for all sufficiently
large t, and hence (by Gronwall’s inequality) u is exponentially decreasing; one
can then argue (for instance using Proposition B.7) that ∂tu is also exponentially
decerasing. Indeed from (B.14) we see that all derivatives of u are exponentially
decreasing.

In addition to u, we now introduce the functions v := ∂yuy|y=y∗ and w := t∂tu,
as well as the second-order operator

L := ∂2
t f +

d− 1
t

∂tf + (pup−1 − 1)f

which is the linearised operator associated to the ODE (B.14). Some routine cal-
culation shows that

Lu = (p− 1)up

Lv = 0
Lw = 2u− 2up.

One can think of u, v, w as three different ways to infinitesimally perturb the critical
function u, one by homogeneity, one by change of initial condition, and one by
scaling. Observe that u, v, w are all stationary at t = 0, with u(0) = y∗, v(0) = 1
and w(0) = 0, and u,w and their derivatives are exponentially decreasing. Since u
is strictly decreasing, w is negative for all times t > 0.

We now analyze the oscillation of u, v, w. A key tool for doing this will be the
Wronskian identity

(B.16) ∂t(td−1(f∂tg − g∂tf)) = td−1(fLg − gLf).

A typical application of this is

Lemma B.12. v changes sign at least once.

Proof. Suppose for contradiction that v does not change sign. Since v(0) = 1,
and v cannot have any double zeroes (because it solves the second-order ODE
Lv = 0), we conclude that v is strictly positive. From (B.16) we conclude

(B.17) ∂t(td−1(u∂tv − v∂tu)) = −(p− 1)td−1upv < 0.

Since td−1(u∂tv − v∂tu) vanishes at time 0, we conclude

td−1(u∂tv − v∂tu) < 0
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for all t > 0, which by the quotient rule and the positivity of t, u, v becomes

∂t(v/u) < 0.

This implies that v = O(u), and so u and v are both exponentially decreasing.
Inserting this back into (B.17) we see that td−1(u∂tv− v∂tu) is bounded away from
zero, which implies that −∂tv is exponentially increasing. This clearly contradicts
the non-negativity and exponential decrease of v, and we are done. �

We can limit the sign changes of v by a topological argument:

Lemma B.13. For each 1 ≤ y < y∗, the function u − uy changes sign excatly
once.

Proof. When y = 1 we have u1(t) = 1, and the claim follows from the strict
decrease of u(·) and the boundary condition u(0) = y∗ > 1. Now let us increase y
continuously from 1 to y∗. The function u − uy equals y∗ − y at time t = 0 and
so cannot vanish there. Since y is always subcritical, u − uy is strictly negative
at infinity; indeed one can use energy monotonicity and continuity to establish a
zero-free region for (t, y) in an open neighbourhood of {(∞, y) : 1 ≤ y < y∗}. Thus
the only way that u−uy can cease to have change sign exactly once is if it develops
a double zero at some point. But this contradicts the Picard uniqueness theorem
since u and uy solve the same second order ODE. �

From this lemma and the intermediate value theorem we conclude that v
changes sign exactly once at some time t∗ > 0, after which it is negative for all
time. To understand the subsequent behaviour of v, we introduce the function
ũ := u + cw, where c := − u(t∗)

w(t∗) > 0. Thus ũ is positive near t = 0, vanishes at
t = t∗, and obeys the equation

Lũ = 2cu+ (p− 1 − 2c)up.

Applying (B.16) we conclude

∂t(td−1(v∂tũ− ũ∂tv)) = td−1(2cu+ (p− 1 − 2c)up)v.

Observe that the quantity td−1(v∂tũ − ũ∂tv) vanishes when t = 0 or t = t∗. Thus
the quantity td−1(2cu+(p−1−2c)up)v cannot always be negative for all 0 < t < t∗,
which implies that 2cu+ (p− 1− 2c)up is non-negative for some 0 < t < t∗ Since u
is decreasing, this implies that 2cu+ (p− 1 − 2c)up is positive for all t ≥ t∗. Thus
the quantity td−1(2cu+(p−1−2c)up)v is negative for for t > t∗. This implies that

td−1(v∂tũ− ũ∂tv)

to be bounded away from zero for all large times. Since ũ and its derivatives are
exponentially decreasing, this forces v or ∂tv to be exponentially growing, and it is
easy to see (from the negativity of v and the equation Lv = 0, which asymptotically
becomes ∂2

t (t
(n−1)/2v) < 1

2 t
(n−1)/2v (say)) that in fact both of v and ∂tv have to

be exponentially growing at large times. In particular, we can find a large time T
such that

u(T ) < 1; v(T ) < 0; ∂tv(T ) < 0

which implies that

uy(T ) < u(T ) < 1; ∂tuy(T ) < ∂tu(T ).
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We claim that this means that y is super-critical. For if this were not the case, then
uy(t) ≥ 0 for all t > T . Writing f := u− uy, we then see that

f(T ) > 0; ∂tf(T ) > 0; ∂2
t f +

n− 1
t

∂tf = f − (up − (u− f)p).

One can then verify by a continuity argument that f > 0 and ∂tf > 0 for all times
t ≥ T . In particular f is bounded away from zero, which contradicts the assumption
that uy ≥ 0 and u is exponentially decreasing.

To conclude, we have started with a critical position y∗, and shown that all
slightly larger positions are supercritical. One can repeat the same argument for
supercritical positions: if y is supercritical, with uy attaining zero at some first time
T0 < ∞, and vy := ∂yuy changing sign exactly once for times 0 < t < T0, then by
repeating the above arguments (but using T0 instead of ∞ as the limiting time) we
can show that vy(T0) < 0, which forces uy′ attains to zero at some time before T0

for all y′ slightly larger than y, and so these positions are also supercritical (and
become so at an earlier time than T0). Note from the Picard uniqueness theorem
that vy cannot have any double zeroes and so vy′ will continue to change sign
exactly once for y′ in a neighbourhood of y. A continuity argument then shows
that all positions larger than y∗ are supercritical. Hence there is only one critical
time, as desired.

Exercise B.1 (Diamagnetic inequality). Let α be an integer from 1 to d, let
Q ∈ H1

x(R
d → Rm) and let Aα ∈ Ldx(R

d → so(m)), where so(m) denotes the
skew-symmetric real m×m matrices. Establish the inequality

|∂xα |Q|| ≤ |(∂xα +Aα)Q|
in the sense of distributions. (Hint: do this for Schwartz functions first, and then
take limits.) In particular, if Q ∈ H1

x(R
d → C) and a ∈ Ldx(R

d → R), conclude
that

|∂xα |Q|| ≤ |(∂xα + iaα)Q|.
Interpret this inequality geometrically.

Exercise B.2 (Bessel kernel). Let K be the distributional kernel of 〈∇〉−2.
Show that K is strictly positive, and one has exponential bounds of the form
∇kK(x) = Ok(e−α|x|) for all k ≥ 0, x ∈ Rd and some α > 0. (Hint: there
are many ways to proceed here. One is by contour integration; another is by polar
coordinates and ODE arguments; a third is by taking the Fourier transform of the
identity 1

1+|ξ|2 =
∫ ∞
0 e−se−s|ξ|

2
ds using Exercise 2.24.)

Exercise B.3. Let Q ∈ H1
x(R

d) be a solution to (B.1). Establish the energy
identity

α

∫
Rd

|Q|p+1 = β

∫
Rd

|Q|2 + |∇Q|2

and the Pohozaev identity

α

∫
Rd

d

p+ 1
|Q|p+1 = β

∫
Rd

d

2
|Q|2 +

d− 2
2

|∇Q|2.

(Hint: multiply (B.1) by Q and x · ∇xQ respectively, and then integrate by parts.)
Use these identities to explain why no solution in H1

x exists to (B.1) when α is
negative or β is negative, or when d ≥ 3 and p ≥ 1 + 4

d−2 .
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Exercise B.4 (Weak maximum principle). Let Ω be a bounded open subset
of Rd, and let u : Ω → R be a smooth function on the closure of Ω which obeys a
pointwise estimate of the form ∆u < O(|∇u|) on Ω. Show that if u is non-negative
on the boundary ∂Ω, then it is also nonnegative in the interior Ω. (Hint: argue by
contradiction and consider a minimal point of u.) Note that the implied constant
in the O() notation is allowed to be large (but it must be finite).

Exercise B.5 (Hopf’s lemma, I). Let u : B(0, 1) → R+ be a smooth function
which is strictly positive on the interior of the ball B(0, 1), and vanishes at a point
x0 on the boundary ∂B(0, 1). Suppose also that one has a pointwise estimate
of the form ∆u ≤ O(|∇u|) on B(0, 1). Show that x0 · ∇u(x0) < 0. (Hint: Let
λ� 1 be a large parameter, and then let ε > 0 be a small parameter. Set v(x) :=
u(x)−ε(e−λ−e−λ|x|2), and observe that under suitable selection of parameters, ∆v
is nonpositive on B(0, 1)\B(0, 1/2) and v is nonnegative on ∂(B(0, 1)\B(0, 1/2)).
If λ is large enough, show that the weak maximum principle (Exercise B.4) is
applicable to v. Again, the implied constant in the O() notation can be large as
long as it is finite.

Exercise B.6 (Hopf’s lemma, II). Let u : B(0, 1) → R+ be a smooth function
which is strictly positive on the interior of the ball B(0, 1), and vanishes at a
point x0 ∂B(0, 1). Suppose also that one has a pointwise estimate of the form
∆u ≤ O(|∇u| + |u|) on B(0, 1). Show that x0 · ∇u(x0) < 0. (Hint: Apply Exercise
B.5 with u(x) replaced by u(x)eαx1 for some suitably large α > 0.) Once again,
the implied constant is allowed to be large. Use this to give another proof of the
unique continuation property in Exercise 2.67.

Exercise B.7 (Strong maximum principle). Let H be a half-space H := {x ∈
Rd : x · ξ ≥ 0}. Let u : H → R+ be a smooth function which is non-negative on
H , vanishes on ∂H , and has a pointwise estimate of the form ∆u ≤ O(|u|) on H .
Show that if u does not vanish identically on H , then u is strictly positive on H ,
and ξ · ∇u(x) < 0 for all x ∈ ∂H . (Hint: If u vanishes at some points in H and not
others, locate a ball in H such that u is positive on the interior and vanishes at one
point on the boundary, and use Exercise B.6.) See [Eva] for further discussion of
maximum principles.

Exercise B.8. Show that uy ∈ C2
t (R+ → R) defined in (B.14) exists and is

unique. (Hint: to construct uy for short times, modify the proof of the Cauchy-
Kowalevski theorem. Then use energy monotonicity and the Picard existence the-
orem to continue the solution globally.) Show also that uy is continuously differen-
tiable in y.

Exercise B.9. [Wei2] Let Q be the ground state solution to (B.1) with α =
β = 1 and 1 < p < 1 + 4

d . For any u, v ∈ Sx(Rd → R), define the formally
self-adjoint operators L+, L− by

L+u := −∆u+ u− pQp−1u; L−v := −∆v + v −Qp−1v.

These extend to quadratic forms on H1
x(R

d → R) in the usual manner:

〈L+u, u〉L2
x

=
∫
Rd

|∇u|2+|u|2−pQp−1|u|2 dx; 〈L−v, v〉L2
x

=
∫
Rd

|∇v|2+|v|2−Qp−1|v|2 dx.
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Show that we have the non-negativity properties 〈L−v, v〉L2
x
≥ 0 and 〈L+u, u〉L2

x
≥

−O(〈u,Q〉2L2
x
) for any u, v ∈ H1

x(R
d → R). (Hint: expandW [Q+εu] andW [Q+iεv]

to second order in ε.)

Exercise B.10. Let the notation and assumptions be as in Exercise B.9. Let
S be the scaling operator S := x · ∇ + 2

p−1 . Verify the identities L+∇Q = 0,
L+SQ = −2Q, L−Q = 0, L−xQ = −2∇Q. Discuss briefly how this is related to
the translation, scaling, phase rotation, and Galilean transformations. Also verify
the relations 〈Q,∇Q〉L2

x
= 0, 〈Q,SQ〉L2

x
�= 0, and 〈∂jQ,Qp−1∂kQ〉 = cδjk for some

c �= 0.

Exercise B.11. [Wei2] Let the notation and assumptions be as in Exercise
B.9. Show that we have a bound of the form

〈L−v, v〉L2
x
≥ c‖πQv‖2

L2
x

for some c = c(p, d) > 0 and all v ∈ H1
x(R

d → R), where πQ is the orthogonal
projection onto the orthogonal complement of Q; this refines the non-negativity
of L− established in Exercise B.9. (Hint: It suffices to verify the case when v is
orthogonal to Q. Assume for contradiction that one can find a sequence v(n) with
unit L2

x norm for which 〈L−v(n), v(n)〉L2
x

approaches the minimal value of zero.
Show that v(n) is bounded in H1

x and has a subsequence that converges weakly
in H1

x and strongly in L2
x to a function v with L−v = 0 and 〈v,Q〉L2

x
= 0. Now

use the diamagnetic inequality to argue that a minimiser of the quadratic form
〈L−v, v〉 cannot change sign, and then conclude that v must be a scalar multiple
of Q, a contradiction.) Conclude in particular that the null space of L− is just the
one-dimensional space spanned by Q.

Exercise B.12. [Wei2] Let the notation and assumptions be as in Exercise
B.9. Show that if v ∈ H1

x(R
d) has the form v(x) = f(|x|)Yk( x

|x|), where Yk is
a spherical harmonic of order k, and L+v = 0, then v is a linear combination of
∂x1Q, . . . , ∂xd

Q. (Hint: the case k = 1 can be done directly, observing that f obeys
the same second-order differential equation as x

|x| · ∂xQ. For k > 1, observe that if
one replaces Yk by a first-order harmonic Y1 of the same L2

x norm on the sphere,
then the quantity 〈L+v, v〉 decreases; now use Exercise B.9. For k = 0 - the most
difficult case - relate f to the y-variation ∂yuy of the critical solution to (B.14), and
use the theory in the text.)

Exercise B.13. [Wei3] Let the notation and assumptions be as in Exercise
B.9. Show that we have a bound of the form

〈L+u, u〉L2
x
≥ c‖πQ,∇Qu‖2

L2
x
−O(〈u,Q〉2L2

x
)

for some c = c(p, d) > 0 and all u ∈ H1
x(Rd → R), where πQ,∇Q is the orthogonal

projection onto the functions that are orthogonal to Q, ∂x1Q, . . . , ∂xd
Q; this refines

the non-negativity estimate on L+ in Exercise B.9. (Hint: one can reduce to the
case when u is orthogonal to Q and ∇Q. Use the limiting argument from Exercise
B.11 to end up with a function u ∈ H1

x(R
d) with L+u = 0 and u orthogonal to

Q and ∇Q. Break up u into spherical harmonics and apply Exercise B.12 to each
component.

Exercise B.14. [Wei3] Let the notation and assumptions be as in Exercise
B.9. Define the ground state cylinder Σ ⊂ H1

x(R
d) to be the space of all functions
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of the form eiθQ(x − x0), where θ ∈ R/2πZ and x0 ∈ Rd. For any f ∈ Sx(Rd),
define the Lyapunov functional L[f ] by

L[f ] :=
∫
Rd

|∇f |2 + |f |2 − 2
p+ 1

|f |p+1 dx.

Show that if ‖f‖L2
x

= ‖Q‖L2
x
, then L[f ] ≥ L[Q], with equality if f ∈ Σ, and

also show that L[f ] − L[Q] ∼ distH1
x(Rd)(f,Σ)2 whenever ‖f‖L2

x
= ‖Q‖L2

x
and

distH1
x(Rd)(f,Σ) is sufficiently small. (Hint: without loss of generality one may as-

sume that Q is the closest element in Σ to f using the H1
x norm ‖f‖2

H1
x

:= ‖∇f‖2
L2

x
+

‖f‖2
L2

x
. Write f = Q+ u+ iv where u, v are real, 〈v,Qp〉L2

x
= 〈u,Qp−1∇Q〉L2

x
= 0,

and 〈u,Q〉 = O(‖u‖2
L2

x
+ ‖v‖2

L2
x
). Express L[f ] − L[Q] in terms of 〈L+u, u〉L2

x
,

〈L−v, v〉L2
x
, and higher order terms, and then use Exercises B.11, (B.13).)
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[Caz2] T. Cazenave, Semilinear Schrödinger equations, Courant Lecture Notes in Mathematics,
10. New York University, Courant Institute of Mathematical Sciences, AMS, 2003.

[CL] T. Cazenave, Orbital stability of standing waves for some nonlinear Schrodinger equations,
Comm. Math. Phys. 68 (1979), 209–243.

[CSS] T. Cazenave, J. Shatah, A.S. Tahvildar-Zadeh, Harmonic maps of the hyperbolic space and
development of singularities in wave maps and Yang-Mills fields, Ann. Inst. H. Poincaré Phys.
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d’énergie , Journées “Équations aux Dérivées Partielles” (Forges-les-Eaux, 2002), Exp. No.
X, 14, 2002.

[CKSTT8] J. Colliander, M. Keel, G. Staffilani, H. Takaoka, T. Tao, Polynomial upper bounds
for the orbital instability of the 1D cubic NLS below the energy norm, Discrete Contin. Dyn.
Syst. 9 (2003), 31–54.

[CKSTT9] J. Colliander, M. Keel, G. Staffilani, H. Takaoka, T. Tao, Polynomial growth and
orbital instability bounds for L2-subcritical NLS below the energy norm, Commun. Pure Appl.
2 (2003), 33–50.

[CKSTT10] J. Colliander, M. Keel, G. Staffilani, H. Takaoka, T. Tao, Scattering for the 3D cubic
NLS below the energy norm, Comm. Pure Appl. Math. 57 (2004), 987–1014.

[CKSTT11] J. Colliander, M. Keel, G. Staffilani, H. Takaoka, T. Tao, Global well-posedness and
scattering in the energy space for the critical nonlinear Schrodinger equation in R3, to appear,
Annals Math.

[CKSTT12] J. Colliander, M. Keel, G. Staffilani, H. Takaoka, T. Tao, Symplectic nonsqueezing of
the KdV flow , to appear, Acta Math.

[CKSTT13] J. Colliander, M. Keel, G. Staffilani, H. Takaoka, T. Tao, Growth of higher Sobolev
norms for a periodic nonlinear Schrödinger equation, preprint.

[CST] J. Colliander, G. Staffilani, H. Takaoka, Global well-posedness of the KdV equation below
L2, Math Res. Letters 6 (1999), 755-778.

[Cof] C.V. Coffman, Uniqueness of the ground state solution for ∆u−u+u3 = 0 and a variational
characterization of other solutions, Arch. Rat. Mech. Anal. 46 (1972), 81–95.

[CS] P. Constantin, J.C. Saut, Effets régularisants locaux pour des équations disperives générales,
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[Sau2] J. C. Saut, Quelques généralisations de l’équation de Korteweg-de Vries. II, J. Differential

Equations 33 (1979), 320–335.



BIBLIOGRAPHY 363

[Sau3] J.C. Saut, Sur quelques generalizations de l’equation de Korteweg-de Vries, J. Math. Pures
Appl. 58 (1979), 21-61.

[Schn] G. Schneider, Approximation of the Korteweg-de Vries equation by the nonlinear
Schrödinger equation, J. Differential Equations 147 (1998), 333–354.

[Scho] R. Schoen, Analytic aspects of the harmonic map problem, Math. Sci. Res. Inst. Publ. 2
(1984), Springer, Berlin, 321–358.

[SchU] R. Schoen, K. Uhlenbeck, A regularity theory for harmonic maps, J. Diff. Geom. 17 (1982),
307–335.

[SY] R. Schoen, S.T. Yau, Lectures on harmonic maps, Conference proceedings and Lecture notes
in Geometry and Topology, II. International Press.

[Seg] I.E. Segal, Non-linear semi-groups, Ann. of Math. 78 (1963), 339–364.
[Seg2] I.E. Segal, The global Cauchy problem for a relativistic scalar field with power interactions,

Bull. Soc. Math. France 91 (1963), 129–135.
[Seg3] I. E. Segal, Space-time Decay for Solutions of Wave Equations, Adv. Math., 22 (1976),

304–311.
[Sel] S. Selberg, Multilinear space-time estimates and applications to local existence theory for

non-linear wave equations, Princeton University Thesis.
[Sha] J. Shatah, The Cauchy problem for harmonic maps on Minkowski space, in Proceed. Inter.

Congress of Math. 1994, Birkhäuser, 1126–1132.
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[Sjo] P. Sjölin, Regularity of solutions to Schrödinger equations, Duke Math. J.,55 (1987), 699–

715.
[SSog] H. Smith, C.D. Sogge, Global Strichartz estimates for nontrapping perturbations of the

Laplacian, Commun. PDE 25 (2000), 2171–2183.
[Sog] C. D. Sogge, Lectures on Nonlinear Wave Equations, Monographs in Analysis II, Interna-

tional Press, 1995.
[Sta] G. Staffilani, On the growth of high Sobolev norms of solutions for KdV and Schrodinger

equations, Duke Math J. 86 (1997), 109–142.
[Stef] A. Stefanov, Strichartz estimates for the Schrödinger equation with radial data, Proc. Amer.

Math. Soc. 129 (2001), no. 5, 1395–1401.
[Stei] E. M. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton

University Press, 1970.
[Stei2] E. M. Stein, Harmonic Analysis, Princeton University Press, 1993.
[Stra] W. A. Strauss, Nonlinear wave equations, CBMS Regional Conference Series in Mathemat-

ics, no. 73, Amer. Math. Soc. Providence, RI, 1989.
[Stri] R. S. Strichartz, Restriction of Fourier Transform to Quadratic Surfaces and Decay of

Solutions of Wave Equations, Duke Math. J., 44 (1977), 70 5–774.
[Stri2] R. Strichartz, Asymptotic behavior of waves, J. Funct. Anal. 40 (1981), no. 3, 341–357.
[Stru] M. Struwe, On the evolution of harmonic mappings of Riemannian surfaces, Comment.

Math. Helv. 60 (1985), 558–581.
[Stru2] M. Struwe, Globally regular solutions to the u5 Klein-Gordon equation, Ann. Scuola Norm.

Sup. Pisa Cl. Sci. 15 (1988), 495–513.



364 BIBLIOGRAPHY

[Stru3] M. Struwe, Equivariant wave maps in two dimensions, Comm. Pure Appl. Math. 56
(2003), 815–823.

[Stru4] M. Struwe, Radially symmetric wave maps from the (1+2)-dimensional Minkowski space
to a sphere, Math Z. 242 (2002), 407–414.

[Stru5] M. Struwe, Radially symmetric wave maps from (1+2)-dimensional Minkowski space to
general targets, Calc. Var. 16 (2003), 431–437.

[SSul] C. Sulem, P.-L. Sulem, The nonlinear Schrödinger equation: Self-focusing and wave col-
lapse, Springer-Verlag, New York, (1999), p. 25.

[Tak] H. Takaoka, Well-posedness for the one-dimensional Schrödinger equation with the deriv-
ative nonlinearity, Adv. Diff. Eq. 4 (1999), 561–580.

[Tao] T. Tao, Low regularity semi-linear wave equations, Commun. Partial Differential Equations,
24 (1999), no. 3-4, 599–629.

[Tao2] T. Tao, Spherically averaged endpoint Strichartz estimates for the two-dimensional
Schrödinger equation, Commun. PDE 25 (2000), 1471–1485.

[Tao3] T. Tao, Ill-posedness of one-dimensional wave maps at the critical regularity, Amer. J.
Math., 122 (2000), 451–463.

[Tao4] T. Tao, Multilinear weighted convolution of L2 functions, and applications to non-linear
dispersive equations, Amer. J. Math. 123 (2001), 839–908.

[Tao5] T. Tao, Global regularity of wave maps I. Small critical Sobolev norm in high dimension,

IMRN 7 (2001), 299-328.
[Tao6] T. Tao, Global well-posedness of wave maps II. Small energy in two dimensions, Commun.

Math. Phys. 224 (2001), 443–544.
[Tao7] T. Tao, Global well-posedness of the Benjamin-Ono equation in H1(R), J. Hyperbolic Diff.

Eq. 1 (2004) 27–49.
[Tao8] T. Tao, On the asymptotic behavior of large radial data for a focusing non-linear

Schrödinger equation, Dynamics of PDE 1 (2004), 1–48.
[Tao9] T. Tao, Global well-posedness and scattering for the higher-dimensional energy-critical

non-linear Schrödinger equation for radial data, New York J. Math. 11 (2005), 57–80.
[Tao10] T. Tao, Geometric renormalization of large energy wave maps, Journées EDP, Forges les

Eaux, 7-11 June 2004, XI 1–32..
[Tao11] T. Tao, Recent progress on the Restriction conjecture, to appear, Park City Proceedings.
[TV] T. Tao, M. Visan, Stability of energy-critical nonlinear Schrödinger equations in high di-

mensions, Electron. J. Diff. Eq. 2005 (2005), No. 118, 1–28.
[TVZ] T. Tao, M. Visan, X. Zhang, The nonlinear Schrödinger equation with power type nonlin-

earities, preprint.
[Tat] D. Tataru, Local and global results for wave maps I, Commun. PDE 23 (1998), 1781–1793.
[Tat2] D. Tataru, On global existence and scattering for the wave maps equation, Amer. J. Math.

123 (2001), 37–77.
[Tat3] D. Tataru, On �u = |∇u|2 in 5 + 1 dimensions, Math. Res. Letters 6 (1999), 469-485.
[Tat4] D. Tataru, Rough solutions for the wave maps equation, Amer. J. Math. 127 (2005), 293–

377.
[Tat5] D. Tataru, The wave maps equation, preprint.
[Tay] M. Taylor, Partial Differential Equations I. Basic Theory, Applied Mathematical Sciences

115, Springer-Verlag, New York, Berlin, Heidelberg 1997.
[Tay2] M. Taylor, Tools for PDE. Pseudodifferential operators, paradifferential operators, and

layer potentials. Mathematical Surveys and Monographs, 81. American Mathematical Society,
Providence, RI, 2000.

[TU] C.L. Terng, K. Uhlenbeck, 1+1 wave maps into symmetric spaces, Comm. Anal. Geom. 12
(2004), 343–388.

[Tom] M.M. Tom, Smoothing properties of some weak solutions of the Benjamin-Ono equation,
Diff. Int. Eq. 3 (1990) 683–694.

[Tomas] P. Tomas, A restriction theorem for the Fourier transform, Bull. Amer. Math. Soc. 81
(1975), 477–478.

[Tsu] Y. Tsutsumi, L2 solutions for nonlinear Schrodinger equations and nonlinear groups, Funk.
Ekva. 30 (1987), 115–125.

[Tsu2] Y. Tsutsumi, The Cauchy problem for the Korteweg-de Vries equation with measures as
initial data, SIAM J. Math. Anal. 20 (1989), 582–588.



BIBLIOGRAPHY 365

[Tzi] N. Tzirakis, The Cauchy problem for the semilinear quintic Schrödinger equation in one
dimension 18 (2005).

[Tzv] N. Tzvetkov, Remark on the local ill-posedness for the KdV equation, C. R. Acad. Sci. Paris
329 (1999), 1043–1047.

[Tzv2] N. Tzvetkov, Ill-posedness issues for nonlinear dispersive equations, lecture notes.
[Tzv3] N. Tzvetkov, On the long time behavior of KdV type equations (after Martel-Merle),

Bourbaki seminar March 2004.
[Uhl] K. Uhlenbeck, Connections with Lp bounds on curvature, Commun. Math. Phys 83, (1982)

31–42.
[VV] A. Vargas, L. Vega, Global well-posedness for 1D nonlinear Schrodinger equation for data

with an infinite L2 norm, preprint, 2001.
[Veg] L. Vega, Schrödinger equations: pointwise convergence to the initial data, Proc. Amer.

Math. Soc., 102 (1988), 874–878.
[Vil] M. Vilela, Regularity of solutions to the free Schrödinger equation with radial initial data,

Illinois J. Math. 45 (2001), 361–370.
[Vil2] M. Vilela, Inhomogeneous Strichartz estimates for the Schrödinger equation, preprint.
[Vis] M. Visan, The defocusing energy-critical nonlinear Schrödinger equation in dimensions four

and higher, Ph.D. thesis, in preparation.
[Wei] M.I. Weinstein, Nonlinear Schrödinger equations and sharp interpolation estimates, Com-

mun. Math. Phys. 87 (1983), 567–576.
[Wei2] M. Weinstein, Modulational stability of ground states of nonlinear Schrodinger equations,

SIAM J. Math. Anal. 16 (1985), 472–491.
[Wei3] M. Weinstein, Lyapunov stability of ground states of nonlinear dispersive equations, CPAM

39 (1986), 51-68.
[Yaj] K. Yajima, Existence of solutions for Schrödinger evolution equations, Commun. Math.

Phys. 110 (1987), 415–426.
[Zho] Y. Zhou, Global weak solutions for the 1 + 2 dimensional wave maps into homogeneous

spaces Ann. Inst. Henri Poincaré (C) Analyse nonlinéaire 16 (1999), 411–422.
[Zho2] Y. Zhou, Uniqueness of weak solutions of 1 + 1 dimensional wave maps, Math. Z. 232

(1999), 707–719.
[Zho3] Y. Zhou, Local existence with minimal regularity for nonlinear wave equations, Amer. J.

Math, 119 (1997), 671–703.


